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martingale noise: Kalman filter with
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Abstract: We consider non-linear filtering problem with Gaussian martingales
as a noise process, and obtain iterative equations for the optimal filter. We
apply that result in the case of fractional Browian motion noise process and
derive Kalman type equations in the linear case.

1. Introduction

The study of filtering of a stochastic process with a general Gaussian noise was
initiated in [8]. In case the system satisfies a stochastic differential equation, we
derived an iterative form for the optimal filter given by the Zakai equation ([3]).
It was shown in [2] that in the case of a Gaussian noise, one can derive the FKK
equation from which one can obtain the Kalman filtering equation. However in order
to obtain Kalman’s equation in the case of fractional Brownian motion (fBm) noise,
we had to assume in [3] the form of the observation process, which was not intuitive.
Using the ideas in [5], we are able to study the problem with a natural form of the
observation process as in the classical work. In order to get such a result from the
general theory we have to study the Bayes formula for Gaussian martingale noise
and use the work in [5]. This is accomplished in Section 1. In Section 2, we obtain
iterative equations for the optimal filter and in Section 3 we apply them to the case
of fBm noise.

The problem of filtering with system and observation processes driven by fBm
was considered in [1]. However, even the form of the Bayes formula in this case is
complicated and no iterative equations for the filter can be obtained. The Bayes
formula in [8] is applicable to any system process and observation process with
Gaussian noise. In order to get iterative equations in non-linear case we assume
that the system process is a solution of a martingale problem. This allows us to
obtain an analogue of the Zakai and FKK equations. As a consequence, we easily
derive the Kalman equations in the linear case. If the data about the “signal” are
sent to the server and transmitted to AWACS, the resulting process has bursts [6].
We assume a particular form for this observation process (see equation (3)). In most
cases, signal (missile trajectory, e.g.) is Markovian.

The work completed by D. Fisk under the guidence of Professor Herman Rubin
has found applications in deriving filtering equations in the classical case [4].
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2. Bayes formula with Gaussian martingale noise

Let us consider the filtering problem with a signal or system process {Xt,
0 ≤ t ≤ T }, which is unobservable. Information about Xt is obtained by observing
another process Yt, which is a function of Xt, and is corrupted by noise, i.e.

Yt = β(t, X) + Nt, 0 ≤ t ≤ T,

where β(t, ·) is measurable with respect to the σ–field FX
t , generated by the signal

process {Xs, 0 ≤ s ≤ t}, and the noise {Nt, 0 ≤ t ≤ T } is independent of
{Xt, 0 ≤ t ≤ T }. The observation σ–field FY

t = σ{Ys, 0 ≤ s ≤ t} contains all the
available information about the signal Xt. The primary aim of filtering theory is to
get an estimate for Xt based on the σ–field FY

t . This is given by the conditional
distribution Π̂t of Xt given FY

t or, equivalently, by the conditional expectation
E

(
f(Xt)

∣∣FY
t

)
for a rich enough class of functions f . Since this estimate minimizes

the squared error loss, Π̂t is called the optimal filter.
In [8] an expression for an optimal filter was given for {Nt, 0 ≤ t ≤ T }, a

Gaussian process and β(·, X) ∈ H(R), the reproducing kernel Hilbert space (RKHS)
of the covariance R of the process Nt ([8]). Throughout we assume, without loss of
generality, that E(Nt) = 0.

Let us assume that Nt = Mt, a continuous Gaussian martingale with the co-
variance function RM . We shall first compute the form of H(RM ). As we shall be
using this notation exclusively for the martingale Mt, we will drop the subscript
M from now on and denote the RKHS of R by H(R). Let us also denote by m(t)
the expectation EM2

t . Note that m(t) is a non–decreasing function on [0, T ] and,
abusing the notation, we will denote by m the associated measure on the Borel
subsets B([0, T ]). With this convention, we can write

H(R) =
{

g : g(t) =
∫ t

0

g∗(u) dm(u), 0 ≤ t ≤ T, g∗ ∈ L2(m)
}

.

The scalar product in H(R) is given by (g1, g2)H(R) =< g∗1 , g∗2 >L2(m). If we denote
by H(R : t) the RKHS of R|[0,t]×[0,t], then it follows from the above that

H(R : t) =
{

g : g(s) =
∫ s

0

g∗(u) dm(u), 0 ≤ s ≤ t, g∗ ∈ L2(m)
}

.

It is well known (see [8], Section 2), that there exists an isometry π between H(R)
and spL2{Mt, 0 ≤ t ≤ T }, which, in case M is a martingale, is given by

π(g) =
∫ T

0

g∗(u) dMu,

where the RHS denotes the stochastic integral of the deterministic function g∗ with
respect to M . The isometry

πt(g) : H(R : t) → spL2{Ms, 0 ≤ s ≤ t}

is given by πt(g) =
∫ t

0
g∗(u)dMu.

Suppose now

Yt =
∫ t

0

h(s, X)dm(s) + Mt,



94 L. Gawarecki and V. Mandrekar

where h(s, X) is FX
s -measurable and h(·, X) ∈ L2(m). Then using Theorem 3.2

of [8] we get the Bayes formula for an FX
T -measurable and integrable function

g(T, X)

E
(
g(T, X)

∣∣FY
t

)
=

∫
g(T,x)e

∫ t

0
h(s,x)dYs− 1

2

∫ t

0
h2(s,x) dm(s)

dP ◦ X−1

∫
e

∫ t

0
h(s,x) dYs− 1

2

∫ t

0
h2(s,x) dm(s)

dP ◦ X−1

. (1)

3. Equations for non-linear filter with martingale noise

In this section we derive the Zakai equation for the so-called “unconditional”
measure-valued process. We follow the techniques developed in [2]. We assume that
{Xt, 0 ≤ t ≤ T } is a solution of the martingale problem. Let C2

c (Rn) be the space
of twice continuously differentiable functions with compact support. Let

(Ltf)(x) =
n∑

j=1

bj(t, x)
∂f

∂xj
(x) + 1/2

n∑
i,j=1

σi,j(t, x)
∂2f

∂xixj
(x),

for f ∈ C2
c (Rn), with bj(t, x) and σi,j(t, x) bounded and continuous. We assume

that Xt is a solution to the martingale problem, i.e., for f ∈ Cc(Rn),

f(Xt) −
∫ t

0

(Luf)(Xu) du

is an FX
t –martingale with respect to the measure P . Consider the probability space

(Ω × Ω,F ⊗ F , P ⊗ P ′), where P ′ is a probability measure given by

dP ′ = exp
(
−

∫ t

0

h(s, X)dYs +
1
2

∫ t

0

h2(s, X)dm(s)
)

dP.

Then under the measure P ′, the process Yt has the same distribution as Mt and is
independent of Xt. In addition, P ◦ X−1 = P ′ ◦ X−1. This follows from Theorem
3.1 in [8]. Define

αt(ω′, ω) = exp
(∫ t

0

h (s, X(ω′)) dYs(ω) − 1/2
∫ t

0

h2 (s, X(ω′)) dm(s)
)

.

Then, with a notation g(ω′) = g(T, X(ω′)), equation (1) can be written as

E
(
g(T, X)

∣∣FY
t

)
=

∫
g(ω′)αt(ω′, ω) dP ◦ X−1(ω′)∫

αt(ω′, ω) dP ◦ X−1(ω′)
.

For a function f ∈ C2
c (Rn), denote

σ̂t(f, Y )(ω) =
∫

f (Xt(ω′))αt(ω′, ω) dP (ω′).

Then we get the following analogue of the Zakai equation. We assume here that m
is mutually absolutely continuous with respect to the Lebesgue measure.

Theorem. The quantity σ̂t(f, Y ) defined above satisfies the equation

dσ̂t (f(·), Y ) = σ̂t (Ltf(·), Y ) dt + σ̂t (h(t, ·)f(·), Y ) dYt.
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Proof. We follow the argument as in [2]. Consider gt(ω′) = f (XT (ω′)) −∫ T

t
(Lsf)(Xs(ω′)) ds, with f ∈ C2

c (Rn). Then

EP

(
gt

∣∣FX
t

)
= f(Xt), 0 ≤ t ≤ T.

We can represent σ̂t(f, Y ) as

σ̂t(f, Y ) =
∫

f (Xt (ω′)) αt(ω′, ω) dP (ω′)

=
∫

EP

(
gt(ω′)αt(ω′, ω)

∣∣FX
t

)
dP (ω′)

= EP (gt(ω′)αt(ω′, ω))
=: σ′

t (gt, Y ) .

By definition of gt,
dgt = (Ltf) (X ′

t) dt,

with X ′
t an independent copy of Xt as a function of ω′. Using Itô’s formula,

dαt = αth (t, X ′) dYt.

Since σ′
t (gt, Y ) = EP (gtαt), utilizing the Fubini theorem and Theorem 5.14 in [7],

we rewrite the latter as

EP (gtαt) = EP g0 +
∫ t

0

σ̂s (Lsf, Y ) ds

+
∫ ∫ t

0

gs(ω′)αs(ω′, ω)h (s, X(ω′)) dYs(ω) dP (ω′)

= EP g0 +
∫ t

0

σ̂s (Lsf, Y ) ds

+
∫ t

0

σ̂s (h (s, X(ω′)) f (Xs(ω′)) , Y ) dYs.

It should be noted the application of Theorem 5.14 above is valid due to the fact that
the martingale Mt is a time changed Brownian motion with non–singular time.

Now we note that the optimal filter is given by

Π̂t(f) = E
(
f(Xt)

∣∣FY
t

)
=

σ̂(f, Y )
σ̂(1, Y )

.

Under our construction, Yt is a continuous Gaussian martingale with the increasing
process m(t). Using Itô’s formula we obtain

dΠ̂t(f) = Π̂t(Ltf)dt +
[
Π̂t(hf) − Π̂t(f)Π̂t(h)

]
dνt, (2)

where νt = Yt −
∫ t

0 Π̂s(h) dm(s).

4. Filtering equations in case of fractional Brownian motion noise

Let us start with the definition of fractional Brownian motion (fBm). We say that
a Gaussian process {WH

t , 0 ≤ t ≤ T } on a filtered probability space (Ω,F ,Ft, P ),
with continuous sample paths is a fractional Brownian motion if WH

0 = 0, EWH
t =

0, and for 0 < H < 1,

EWH
s WH

t =
1
2
[s2H + t2H − |s − t|2H ], 0 ≤ s, t ≤ T.
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Let us set up some notation following [5].

kH(t, s) = κ−1
H s1/2−H(t − s)1/2−H , where κH = 2HΓ(3/2 − H)Γ(H + 1/2),

wH
t = λ−1

H t2−2H , with λH =
2HΓ(3 − 2H)Γ(H + 1/2)

Γ(3/2 − H)
,

MH
t =

∫ t

0

kH(t, s)dWH
s .

The integral with respect to fBm WH
t is described in [9]. The process MH

t is a
Gaussian martingale. Define

Qc
H(t) =

d

dwH
t

∫ t

0

kH(t, s)C(s) ds,

where C(t) is an Ft–adapted process and the derivative is understood to be in terms
of absolute continuity. Then the following result can be derived from [5].

Let Yt =
∫ t

0 C(s, X) ds + WH
t . Then

Zt =
∫ t

0

Qc
H(s) dwH

s + MH
t

is an FY
t semi–martingale and FY

t = FZ
t . Let us now consider the filtering problem

as in Section 1, with the noise Nt = WH
t , and the observation process

Yt =
∫ t

0

C(s, X) ds + WH
t . (3)

Then the equivalent filtering problem is given by the system process Xt and the
observation process

Zt =
∫ t

0

Qc
H(s, X) dwH

s + MH
t .

Using results of Section 2, and assuming that Xt is a solution to the martingale
problem, equation (2) reduces to

dΠ̂t(f) = Π̂t(Ltf)dt +
[
Π̂t(Qc

Hf) − Π̂t(f)Π̂t(Qc
H)

]
dνt,

where νt = Z(t)−
∫ t

0
Π̂s(Qc

H) dwH
s . By Theorem 2 in [5] we get that νt is a continuous

Gaussian FY
t –martingale with variance wH

t .
Let us now assume that the system process and observation processes are given

by

Xt =
∫ t

0

b(u)Xu du +
∫ t

0

σ(u) dWu

Yt =
∫ t

0

c(u)Xu du + WH
t ,

where the processes Wt and WH
t are independent. Because (Xt, Zt) is jointly

Gaussian we get

Π̂t(XtXs) − Π̂t(Xt)Π̂t(Xs)
= E

{
(Xt − Π̂t(Xt))(Xs − Π̂t(Xs))

∣∣FY
t

}
= E

{
(Xt − Π̂t(Xt))(Xs − Π̂t(Xs))

}
= Γ(t, s).
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We obtain that

dΠ̂t(Xt) = b(t)Π̂t(Xt)dt +
∫ t

0

kH(t, s)Γ(t, s) ds dνt. (4)

Denote by γ(t) = EX2
t , and F (t) = E

(
Π̂2

t (Xt)
)
. Then by the Itô formula for

f(x) = x2 and by taking the expectation, we get
dγ(t) = 2b(t)γ(t)dt + σ2(t)dt

and dF (t) = 2b(t)F (t)dt +
(∫ t

0

kH(t, s)Γ(t, s) ds

)2

dwH
t .

Let us consider
Γ(t, t) = E(Xt − Π̂(Xt))2

= E(X2
t ) − E(Π̂2

t (Xt))
= γ(t) − F (t).

Then we arrive at

dΓ(t, t) = 2b(t)Γ(t, t)dt + σ2(t)dt −
(∫ t

0

kH(t, s)Γ(t, s) ds

)2

dwH
s . (5)

For H = 1
2 this reduces to the Kalman equation.

Equations (4) and (5) give the Kalman filtering equations in the linear case.
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