
Linear Statistical Models 

The purpose of this chapter is to develop a theory of linear unbiased 
estimation that is sufficiently general to be applicable to the linear models 
arising in multivariate analysis. Our starting point is the classical regression 
model where the Gauss-Markov Theorem is formulated in vector space 
language. The approach taken here is to first isolate the essential aspects of 
a regression model and then use the vector space machinery developed thus 
far to derive the Gauss-Markov estimator of a mean vector. 

After presenting a useful necessary and sufficient condition for the 
equality of the Gauss-Markov and least-squares estimators of a mean 
vector, we then discuss the existence of Gauss-Markov estimators for what 
might be called generalized linear models. This discussion leads to a version 
of the Gauss-Markov Theorem that is directly applicable to the general 
linear model of multivariate analysis. 

4.1. THE CLASSICAL LINEAR MODEL 

The linear regression model arises from the following considerations. Sup- 
pose we observe a random variable Y, € R and associated with Y, are known 
numbers z,,, . . . , zik, i = 1,. . . , n.  The numbers z,,, . . . , zik might be indica- 
tor variables denoting the presence or absence of a treatment as in the case 
of an analysis of variance situation or they might be the numerical levels of 
some physical parameters that affect the observed value of y .  It is assumed 
that the mean value of Y, is I Y ,  = C!zijPj where the P, are unknown 
parameters. It is also assumed that var(y) = u2  > 0 and cov(y, Y,) = 0 if 
i * j. Let Y E Rn be the random vector with coordinates Y,, . . . , Y,, let 
Z = { z i j )  be the n X k matrix of zjj's, and let p E Rk be the vector with 
coordinates P,, .  . . , Pk. In vector form, the assumptions we have made 
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concerning Y are that &Y = Zfl and Cov(Y) = a21n. In summary, we 
observe the vector Y whose mean is Zb where Z is a known n X k matrix, 
fl E R~ is a vector of unknown parameters, and Cov(Y) = a21n where a 2  is 
an unknown parameter. The two essential features of this parametric model 
are: (i) the mean vector of Y is an unknown element of a known subspace of 
Rn-namely, &Y is an element of the range of the known linear transforma- 
tion determined by Z that maps R~ to Rn; (ii) Cov(Y) = a21n--that is, the 
distribution of Y is weakly spherical. For a discussion of the classical 
statistical problems related to the above model, the reader is referred to 
Scheffe (1959). 

Now, consider a finite dimensional inner product space (V, ( -  , -)). With 
the above regression model in mind, we define a weakly spherical linear 
model for a random vector with values in (V, (. , .)). 

Definition 4.1. Let M be a subspace of V and let E, be a random vector in 
V with a distribution that satisfies &E, = 0 and Cov(eO) = I. For each 
p E M and a > 0, let Q,,. denote the distribution of p + ae,. The family 
{Qp,,lp E M, o > 0) is a weakly spherical linear model for Y E V if the 
distribution of Y is in {Q,, .Ip E M, o > 0). 

Thls definition is just a very formal statement of the assumption that the 
mean vector of Y is an element of the subspace of M and the distribution of 
Y is weakly spherical so Cov(Y) = a21 for some a 2  > 0. In an abuse of 
notation, we often write Y = p + E for p E M where E is a random vector 
with G E  = 0 and COV(E) = 0'1. T h s  is to indicate the assumption that we 
have a weakly spherical linear parametric model for the distribution of Y. 
The unobserved random vector E is often called the error vector. The 
subspace M is called the regression subspace (or manifold) and the subspace 
M L  is called the error subspace. Further, the parameter p E M is assumed 
unknown as is the parameter a2. It is clear that the regression model used to 
motivate Definition 4.1 is a weakly spherical linear model for the observed 
random vector and the subspace M is just the range of Z. 

Given a linear model Y = p + E, p E M, & E  = 0, COV(E) = u21, we now 
want to discuss the problem of estimating p. The classical Gauss-Markov 
approach to estimating p is to first restrict attention to linear transforma- 
tions of Y that are unbiased estimators and then, within this class of 
estimators, find the estimator with minimum expected norm-squared devia- 
tion from p. To make all of this precise, we proceed as follows. By a linear 
estimator of p, we mean an estimator of the form AY where A E C(V, V). 
(We could consider affine estimators AY + v,, v, E V, but the unbiased- 
ness restriction would imply u, = 0.) A linear estimator A Y of p is unbiased 
iff, when p E M is the mean of Y, we have &(AY) = p. This is equivalent 
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to the condition that Ap = p for all p E M since GAY = A&Y = Ay. Thus 
AY is an unbiased estimator of p iff Ap = p for all y E M. Let 

The linear unbiased estimators of p are those estimators of the form AY 
with A E a. We now want to choose the one estimator (i.e., A E &) that 
minimizes the expected norm-squared deviation of the estimator from p. In 
other words, the problem is to find an element A E & that minimizes 
&IIAY - p112. The justification for choosing such an A is that IIAY - y112 is 
the squared distance between AY and p so &IIAY - p112 is the average 
squared distance between AY and p. Since we would like AY to be close to 
p ,  such a criterion for choosing A E & seems reasonable. The first result in 
this chapter, the Gauss-Markov Theorem, shows that the orthogonal pro- 
jection onto M, say P, is the unique element in & that minimizes GllAY - 
pIl2. 

Theorem 4.1 (Gauss-Markov Theorem). For each A E &, p E M, and 
a2 > 0, 

where P is the orthogonal projection onto M. There is equality in this 
inequality iff A = P. 

Proof: W r i t e A = P + C s o C = A - P . S i n c e A p = p f o r p ~ M , C p = O  
for p E M and this implies that CP = 0. Therefore, C(Y - p )  and P(Y - y )  
are uncorrelated random vectors, so &(C(Y - p) ,  P(Y - p ) )  = 0 (see Prop- 
osition 2.21). Now, 

The third equality results from the fact that the cross product term is zero. 
This establishes the desired inequality. It is clear that there is equality in this 
inequality iff &IIC(Y - p)112 = 0. However, C(Y - p )  has mean zero and 
covariance a 2 ~ ~ '  so 

&llC(Y - p)112 = a2(1, CC') 

by Proposition 2.21. Since a2 > 0, there is equality iff ( I ,  CC') = 0. But 
( I ,  CC') = (C,  C )  and this is zero iff C = A - P = 0. 
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The estimator PY of p E M is called the Gauss-Markov estimator of the 
mean vector and the notation fi = PY is used here. A moment's reflection 
shows that the validity of Theorem 4.1 has nothing to do with the parameter 
u2, be it known or unknown, as long as u2 > 0. The estimator f i  = PY is 
also called the least-squares estimator of p for the following reason. Given 
the observation vector Y, we ask for that vector in M that is closest, in the 
given norm, to Y-that is, we want to minimize, over x E M, the expression 
IlY - x112 But Y = PY + QY where Q = (I - P )  so, for x E M, 

The second equality is a consequence of Qx = 0 and QP = 0. Thus 

with equality iff x = PY. In other words, the point in M that is closest to Y 
is f i  = PY. When the vector space V is Rn with the usual inner product, then 
JJY - x112 is just a sum of squares and f i  = P Y  E M minimizes this sum of 
squares-hence the term least-squares estimator. 

+ Example 4.1. Consider the regression model used to motivate 
Definition 4.1. Here, Y E Rn has a mean vector ZP when j3 E Rk 
and Z is an n x k known matrix with k < n. Also, it is assumed 
that Cov(Y) = u21,, u2 > 0. Therefore, we have a weakly spherical 
linear model for Y and p = ZP is the mean vector of Y. The 
regression manifold M is just the range of Z. To compute the 
Gauss-Markov estimator of p, the orthogonal projection onto M, 
relative to the usual inner product on Rn, must be found. To find 
ths  projection explicitly in terms of Z, it is now assumed that the 
rank of Z is k. The claim is that P = Z(Z'Z)-'Zf is the orthogonal 
projection onto M. Clearly, P 2  = P and P is self-adjoint so P is the 
orthogonal projection onto its range. However, Z' maps Rn onto R~ 
since the rank of Z' is k. Thus (ZfZ)-'z' maps Rn onto Rk. 
Therefore, the range of Z(ZIZ)-'Z' is Z(Rk), which is just M, so P 
is the orthogonal projection onto M. Hence f i  = Z(ZrZ)-'ZfY is 
the Gauss-Markov and least-squares estimator of p. Since p = Zfl, 
Z'p = Z'ZP and thus /3 = (zfZ)- 'z fp .  There is the obvious 
temptation to call 

the Gauss-Markov and least-squares estimator of the parameter P. 
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Certainly, calling b the least-squares estimator of P is justified since 

for all y E R ~ ,  as ZB = f i  and Zy E M. Thus b minimizes the sum 
of squares IIY - zy112 as a function of y. However, it is not clear 
why b should be called the Gauss-Markov estimator of P. The 
discussion below rectifies this situation. 

Again, consider the linear model in (V, (., a ) ) ,  Y = p + E, where p E M, 
& E  = 0, and COV(E) = 0'1. As usual, M is a linear subspace of V and E is a 
random vector in V. Let (W, [ a ,  a]) be an inner product space. Motivated by 
the considerations in Example 4.1, consider the problem of estimating Bp, 
B E C(V, W), by a linear unbiased estimator A Y where A E C(V, W). That 
AY is an unbiased estimator of Bp for each p E M is clearly equivalent to 
Ap = Bp for p E M since &A Y = Ap. Let 

@, = {AIA E C(V, W), Ap = Bp for p E M), 

so AY is an unbiased estimator of Bp, p E M iff A E @,. The following 
result, which is a generalization of Theorem 4.1, shows that BP is the 
Gauss-Markov estimator for Bp in the sense that, for all A E @,, 

Here 1 1  . 1 1 ,  is the norm on the space (W, [ a ,  .I). 

Proposition 4.1. For each A E @ ,, 

where P is the orthogonal projection onto M. There is equality in t h s  
inequality iff A = BP. 

Proof. The proof is very similar to the proof of Theorem 4.1. Define 
C E C(V, W) by C = A - BP and note that Cp = Ap - BPp = Bp - Bp 
= 0 since A E @, and Pp = p for p E M. Thus CP = 0, and t h s  implies 
that BP(Y - p) and C(Y - p) are uncorrelated random vectors. Since these 
random vectors have zero means, 

&[BP(Y - p), C(Y - p)] = 0. 
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For A E @,, 

This establishes the desired inequality. There is equality in this inequality iff 
& (IC(Y - p)ll? = 0. The argument used in Theorem 4.1 applies here so there 
is equality iff C = A - BP = 0. 

Proposition 4.1 makes precise the statement that the Gauss-Markov 
estimator of a linear transformation of p is just the linear transformation 
applied to the Gauss-Markov estimator of p. In other words, the 
Gauss-Markov estimator of Bp is BP where B E C(V, W). There is one 
particular case of this that is especially interesting. When W = R, the real 
line, then a linear transformation on V to W is just a linear functional on V. 
By Proposition 1.10, every linear functional on V has the form (x,, x)  for 
some x, E V. Thus the Gauss-Markov estimator of (x,, p) is just (x,, P) = 

(x,, PY) = (Px,, Y). Further, a linear estimator of (x,, p), say (z, Y), is 
an unbiased estimator of ( x , ,  p) iff (z, p) = (x,, p) for all p 1. M. For any 
such vector z, Proposition 4.1 shows that 

Thus the minimum of var(z, Y), over the class of all z's such that (z, Y) is 
an unbiased estimator of (x,, p), is achieved uniquely for z = Px,. In 
particular, if x, E M, z = x, achieves the minimum variance. 

In the definition of a linear model, Y = p + E, no distributional assump- 
tions concerning E were made, other than the first and second moment 
assumptions G E  = 0 and COV(E) = u21. One of the attractive features of 
Proposition 4.1 is its validity under these relatively weak assumptions. 
However, very little can be said concerning the distribution of fi = PY other 
than Gfi = p and Cov(fi) = u2p. In the following example, some of the 
implications of assuming that E has a normal distribution are discussed. 

+ Example 4.2. Consider the situation treated in Example 4.1. A 
coordinate random vector Y E Rn has a mean vector p = Z/3 where 
Z is an n x k known matrix of rank k (k < n) and /3 E R~ is a 
vector of unknown parameters. It is also assumed that Cov(Y) = 

a21n. The Gauss-Markov estimator of p is fi = Z(ZfZ)-'z'Y. Since 
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p = (ZrZ)-  ' ~ ' p ,  Proposition 4.1 shows that the Gauss-Markov 
estimator of j3 is p = (ZrZ)-'Z'$ = (z'z)-'Z'Y. Now, add the 
assumption that Y has a normal distribution-that is, C(Y) = 

N(p, a21n) where p E M and M is the range of Z. For this particu- 
lar parametric model, we want to find a minimal sufficient statistic 
and the maximum likelihood estimators of the unknown parame- 
ters. The density function of Y, with respect to Lebesgue measure, is 

where y E Rn, p E M, and u2 > 0. Let P denote the orthogonal 
projection onto M, so Q = I - P is the orthogonal projection onto 
M I  . Since Ily - p112 = llPy - ~ 1 . 1 1 ~  + ll&112, the density of y can be 
written 

This shows that the pair {Py, ll~y11~) is a sufficient statistic as the 
density is a function of the pair (Py, llQ~11~). The normality assump- 
tion implies that PY and QY are independent random vectors as 
they are uncorrelated (see Proposition 3.4). Thus PY and I ~ Q Y  11' are 
independent. That the pair (Py, llQ~11~) is minimal sufficient and 
complete follows from results about exponential families (see 
Lehmann 1959, Chapter 2). To find the maximum likelihood esti- 
mators of p E M and a2,  the densityp( y(p ,  u2) must be maximized 
over all values of p E M and a2.  For each fixed a 2  > 0, 

with equality iff p = Py. Therefore, the Gauss-Markov estimator 
f i  = PY is the maximum likelihood estimator for p. Of course, this 
also shows that p = (ZtZ)-'Z'Y is the maximum likelihood estima- 
tor of p. To find the maximum likelihood estimator of u2, it 
remains to maximize 
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An easy differentiation argument shows that p(ylPy, a 2 )  is maxi- 
mized for a 2  equal to llQY112/n. Thus e2  = (lQy11 2/n is the maxi- 
mum likelihood estimator of a2. From our previous observation, 
f i  = PY and e2  are independent. Since C(Y) = N(p, a2Z), 

c(P) = c ( P Y )  = ~ ( p ,  a 2 p )  

and 

Also, 

c (QY) = ~ ( 0 ,  a 2 e )  

since Qp = 0 and Q2 = Q = Q'. Hence from Proposition 3.7, 

since Q is a rank n - k orthogonal projection. Therefore, 

n - k  662 = - a2. 
n 

It is common practice to replace the estimator c2 by the unbiased 
estimator 

- llQYl12 62 = - 
n - k '  

It is clear that d2  is distributed as the constant a2/(n - k) times a 
X i  - random variable. + 

The final result of this section shows that the unbiased estimator of a2, 
derived in the example above, is in fact unbiased without the normality 
assumption. Let Y = p + E be a random vector in V where p E M c V,  
G E  = 0, and COV(E) = a21. Given thls linear model for Y, let P be the 
orthogonal projection onto M and set Q = I - P. 

Proposition 4.2. Let n = dim V,  k = dim M, and assume that k < n. Then 
the estimator 

6 2  = - I Q y l l 2  
n - k  

is an unbiased estimator of a2. 
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Proof. The random vector QY has mean zero and Cov(QY) = 02Q. By 
Proposition 2.2 1, 

The last equality follows from the observation that for any self-adjoint 
operator S, (I, S )  is just the sum of the eigenvalues of S. Specializing this 
to the projection Q yields (I ,  Q) = n - k. 

4.2. MORE ABOUT THE GAUSS-MARKOV THEOREM 

The purpose of this section is to investigate to what extent Theorem 4.1 
depends on the weak sphericity assumption. In this regard, Proposition 4.1 
provides some information. If we take W = V and B = I ,  then Proposition 
4.1 implies that 

where 1 1  . 1 1 ,  is the norm obtained from an inner product [., .]. Thus the 
orthogonal projection P minimizes GI1 AY - over A E @no matter what 
inner product is used to measure deviations of AY from p. The key to the 
proof of Theorem 4.1 is the relationship 

G[P(Y - p), (A - P)(Y-  P)] = 0. 

This follows from the fact that the random vectors P(Y - p) and (A - 
P)(Y - p) are uncorrelated and 

This observation is central to the presentation below. The following alterna- 
tive development of linear estimation theory provides the needed generality 
to apply the theory to multivariate linear models. 

Consider a random vector Y with values in an inner product space 
(V, (., a ) )  and assume that the mean vector of Y, say p = GY, lies in a 
known regression manifold M G V. For the moment, we suppose that 
Cov(Y) = Z where Z is fixed and known (Z is not necessarily nonsingular). 
As in the previous section, a linear estimator of p, say AY, is unbiased iff 

A E @ =  {AIAp = p , p  E M). 

Given any inner product [., .] on V, the problem is to choose A E @ to 
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minimize 

where the expectation is computed under the assumption that GY = p and 
Cov(Y) = Z. Because of Proposition 4.1, it is reasonable to expect that the 
minimum of +(A) occurs at a point Po E @where Po is a projection onto M 
along some subspace N such that M n N = (0) and M + N = V. Of course, 
N is the null space of Po and the pair M, N determines Po. To find the 
appropriate subspace N, write +(A) as 

When the third term in the final expression for *(A) is zero, then Po 
minimizes *(A). If Po(Y - p) and ( A  - Po)(Y - p) are uncorrelated, the 
third term will be zero (shown below), so the proper choice of Po, and hence 
N, will be to make Po(Y - p) and (A - Po)(Y - p) uncorrelated. Setting 
C = A - Po, it follows that %(C) 2 M. The absence of correlation be- 
tween Po(Y - p) and C(Y - p) is equivalent to the condition 

Here, C' is the adjoint of C relative to the initial inner product (., .) on V. 
Since %(C) 2 M, we have 

9% (C') = ( % ( c ) ) ~  M L  

and 

'3, ((CC') 

The symbol I refers to the inner product (., .). Therefore, if the null space 
of Po, namely N, is chosen so that N 2 (C(ML), then P0ZCf = 0 and Po 
minimizes +(A). Now, it remains to clean up the technical details of the 
above argument. Obviously, the subspace Z(M1) is going to play a role in 
what follows. 

First, a couple of preliminary results. 
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Proposition 4.3. Suppose Z = Cov(Y) in (V,(., .)) and M is a linear 
subspace of V,  Then: 

(i) Z(ML) n M = (0). 
(ii) The subspace Z(ML) does not depend on the inner product on V. 

Proof. To prove (i), recall that the null space of Z is 

since Z is positive semidefinite. If u E Z(ML) n M, then u = Xu, for some 
u, E ML . Since Zu, E M, (u,, Zu,) = 0 so u = Zu, = 0. Thus (i) holds. 
For (ii), let [., - 1  be any other inner product on V. Then 

for some positive definite linear transformation A,. The covariance transfor- 
mation of Y with respect to the inner product [., .]  is ZA, (see Proposition 
2.5). Further, the orthogonal complement of M relative to the inner product 
[., . ]  is 

{yl[x, y ]  = 0 for all x E M )  = {y((x, Aoy) = 0 for all x E M )  

= {~;'ul(x, U )  = 0 for allx E M) = A ; ~ ( M ~ ) .  

Thus Z(ML) = (ZAo)(A;'(M1)). Therefore, the image of the orthogonal 
complement of M under the covariance transformation of Y is the same no 
matter what inner product is used on V. 

Proposition 4.4. Suppose XI and X, are random vectors with values in 
(V, (., .)). If XI and X, are uncorrelated and &X2 = 0, then 

for every bilinear function f defined on V x V. 

Proof. Since XI and X, are uncorrelated and X, has mean zero, for 
x,,  x2 E V, we have 
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However, every bilinear form f on (V, (., -)) is given by 

f [ u l ,  u2l = ( ~ 1 ,  Bu2) 

where B E C(V, V). Also, every B can be written as 

where y,,  . . . , y, is a basis for V. Therefore, 

F f [ x 1 ,  x2] = GC C b ; ; ( x I ,  y i oy ; x2 )  = C C b i , & ( ~ i ,  x~ ) (Y ; ,  ~ 2 )  = 0. 

We are now in a position to generalize Theorem 4.1. To review the 
assumptions, Y is a random vector in (V, ( a ,  .)) with GY = p E M and 
Cov(Y) = 2. Here, M is a known subspace of V and Z is the covariance of 
Y relative to the given inner product (., a ) .  Let [., - 1  be another product on 
V and set 

for A  E &, where ( 1  . 1 1 ,  is the norm defined by [., a ] .  

Theorem 4.2. Let N be any subspace of V that is complementary to M and 
contains the subspace Z(ML). Here ML is the orthogonal complement of M 
relative to (., .). Let Po be the projection onto M along N. Then 

(4.1) * ( A )  > +(P,) for A E @ 

If I1: is nonsingular, define a new inner product (., .), by 

Then Po is the unique element of & that minimizes * ( A ) .  Further, Po is the 
orthogonal projection, relative to the inner product (. , .),, onto M. 

Proof. The existence of a subspace N 2 Z(ML), which is complementary 
to M, is guaranteed by Proposition 4.3. Let C E C(V, V) be such that 
M c %(C). Therefore, 
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This implies that 

since %(Po) = N 1 Z(ML). However, the condition P O X '  = 0 is equiva- 
lent to the condition that Po(Y - p) and C(Y - p) are uncorrelated. 

With these preliminaries out of the way, consider A E & and let C = A 
- Po so %(C) 2 M. Thus 

The last equality follows by applying Proposition 4.4 to Po(Y - p) and 
C(Y - p). Therefore, 

so Po minimizes \k over A E &. 
Now, assume that Z is nonsingular. Then the subspace N is uniquely 

defined ( N  = Z(ML)) since dim(Z(ML)) = dim(ML) and M + Z(ML) = 

V. Therefore, Po is uniquely defined as its range and null space have been 
specified. To show that Po uniquely minimizes \k, for A E &, we have 

where C = A - Po. Thus *(A) > *(Po) with equality iff 

This expectation can be zero iff C(Y - p) = 0 (a.e.) and this happens iff the 
covariance transformation of C(Y - p) is zero in some (and hence every) 
inner product. But in the inner product (., .), 

Cov(C(Y - p)) = CZC' 

and this is zero iff C = 0 as Z is nonsingular. Therefore, Po is the unique 
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minimizer of \k. For the last assertion, let N, be the orthogonal complement 
of M relative to the inner product ( a ,  a),. Then, 

N, = {yJ(x, y), = 0 for allx E M )  = {yl(x, Z-'y) = 0 for allx E M) 

= {Zyl(x, y )  = 0 for allx E M )  = Z(ML).  

Since %(Po)  = Z(ML), it follows that Po is the orthogonal projection onto 
M relative to (., .),. 

In all of the applications of Theorem 4.2 in this book, the covariance of Y 
is nonsingular. Thus the projection Po is unique and f i  = PoY is called the 
Gauss-Markov estimator of p E M. In the context of Theorem 4.2, if 
Cov(Y) = a 28 where Z is known and nonsingular and a 2  > 0 is unknown, 
then PoY is still the Gauss-Markov estimator for p E M since ( a 2 Z ) ( ~ I )  
= Z(ML) for each a 2  > 0. That is, the presence of an unknown scale 
parameter a 2  does not affect the projection Po. ~ h u s  Po still minimizes \k for 
each fixed a 2  > 0. 

Consider a random vector Y taking values in (V, ( - ,  a ) )  with GY = p E M 
and 

Here, 8, is assumed known and positive definite while a 2  > 0 is unknown. 
Theorem 4.2 implies that the Gauss-Markov estimator of p is f i  = PoY 
where Po is the projection onto M along Zl(ML). Recall that the least-squares 
estimator of p is P Y  where P is the orthogonal projection onto M in the 
given inner product, that is, P is the projection onto M along M L  . 

Proposition 4.5. The Gauss-Markov and least-squares estimators of p are 
the same iff Z,(M) G M. 

Proof: Since Po and P are both projections onto M, PoY = P Y  iff both Po 
and P have the same null spaces-that is, the Gauss-Markov and least- 
squares estimators are the same iff 

Since 2, is nonsingular and self-adjoint, this condition is equivalent to the 
condition Z, (M)  G M. 
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The above result shows that if Z,(M) C M, we are free to compute either 
P or Po to find f i .  The implications of this observation become clearer in the 
next section. 

4.3. GENERALIZED LINEAR MODELS 

First, consider the linear model introduced in Section 4.2. The random 
vector Y in (V, (., .)) has a mean vector p E M where M is a subspace of V 
and Cov(Y) = a2Z,. Here, 2,  is a fixed positive definite linear transforma- 
tion and a > 0. The essential features of this linear model are: (i) the mean 
vector of Y is assumed to be an element of a known subspace M and (ii) the 
covariance of Y is an element of the set {a2Zlla2 > 0). The assumption 
concerning the mean vector of Y is not especially restrictive since no special 
assumptions have been made about the subspace M. However, the covari- 
ance structure of Y is quite restricted. The set {a2Zllo2 > 0) is an open half 
line from 0 E C(V, V) through the point 2, E C(V, V) so the set of the 
possible covariances for Y is a one-dimensional set. It is this assumption 
concerning the covariance of Y that we want to modify so that linear models 
become general enough to include certain models in multivariate analysis. 
In particular, we would like to discuss Example 3.2 w i t h  the framework of 
linear models. 

Now, let M be a fixed subspace of (V, (., .)) and let y be an arbitrary set 
of positive definite linear transformations on V to V. We say that {M, y) is 
the parameter set of a linear model for Y if &Y = p E M and Cov(Y) E y. 
For a general parameter set {M, y), not much can be said about a linear 
model for Y. In order to restrict the class of parameter sets under considera- 
tion, we now turn to the question of existence of Gauss-Markov estimators 
(to be defined below) for p. As in Section 4.1, let 

@ = {AIA E C(V, v), Ap = p for p E M). 

Thus a linear transformation of Y is an unbiased estimator of p E M iff it 
has the form AY for A E @. The following definition is motivated by 
Theorem 4.2. 

Definition 4.2. Let {M, y) be the parameter set of a linear model for Y. 
For A, E @, A,Y is a Gauss-Markov estimator of p iff 

for all A E @and Z E y. The subscript Z on the expectation means that the 
expectation is computed when Cov(Y) = 2.  
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When y  = {a211a2 > 0), Theorem 4.1 establishes the existence and 
uniqueness of a Gauss-Markov estimator for p. More generally, when 
y  = {a2Z, la2 > 0), Theorem 4.2 shows that the Gauss-Markov estimator 
for p is Ply where PI is the orthogonal projection onto M  relative to the 
inner product ( a ,  a ) ,  given by 

The problem of the existence of a Gauss-Markov estimator for general y  is 
taken up in the next paragraph. 

Suppose that { M ,  y )  is the parameter set for a linear model for Y. 
Consider a fixed element Z ,  E y, and let (., .), be the inner product on V 
defined by 

As asserted in Theorem 4.2, the unique element in & that minimizes 
& , , I 1  AY - p)I2 is PI-the orthogonal projection onto M  relative to (. , .) , .  
Thus if a Gauss-Markov estimator A,Y exists according to Definition 4.2, 
A, must be PI .  However, exactly the same argument applies for Z ,  E y, so 
A, must be P2-the orthogonal projection onto M  relative to the inner 
product defined by Z,. These two projections are the same iff Z l ( M L )  = 

Z2(ML)-see Theorem 4.2. Since Z l  and 2,  were arbitrary elements of y, 
the conclusion is that a Gauss-Markov estimator can exist iff Z , ( M L )  = 

Z 2 (  M L )  for all Z, ,  2 ,  E y. Summarizing t h s  leads to the following. 

Proposition 4.6. Suppose that { M ,  y )  is the parameter set of a linear model 
for Y in ( V , ( . ,  .)). Let Z l  be a fixed element of y. A Gauss-Markov 
estimator of p  exists iff 

Z ( M L )  = Z l ( M L )  for all Z  E y. 

When a Gauss-Markov estimator of p  exists, it is = PY where P is the 
orthogonal projection onto M  relative to any inner product [., . ]  given by 
[ x ,  y ]  = (x, Z - ' y )  for some Z  E y. 

Proof: It has been argued that a Gauss-Markov estimator for p  can exist 
iff Z l ( M L )  = Z 2 ( M L )  for all X I ,  Z ,  E y. This is clearly equivalent to 
Z ( M L )  = Z l ( M L )  for all Z  E M. The second assertion follows from the 
observation that when Z ( M L )  = Z l ( M L ) ,  then all the projections onto M,  
relative to the inner products determined by elements of y, are the same. 
That f i  = PY is a consequence of Theorem 4.2. 
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An interesting special case of Proposition 4.6 occurs when I E y. In this 
case, choose 2 ,  = I so a Gauss-Markov estimator exists iff Z(ML) = M I  
for all Z E y. This is clearly equivalent to Z(M) = M for all Z E y ,  which 
is equivalent to the condition 

since each Z E y is nonsingular. It is this condition that is verified in the 
examples that follow. 

+ Example 4.3. As motivation for the discussion of the general 
multivariate linear model, we first consider the multivariate version 
of the k-sample situation. Suppose Xij's, j = 1,. . . , n,  and i = 

1,. . . , k, are random vectors in RP. It is assumed that GTj = y,, 
Cov(Xij) = 2 ,  and different random vectors are uncorrelated. Form 
the random matrix X whose first n ,  rows are Xij, j = 1,. . . , n,,  the 
next n ,  rows of X are Xij, j = 1 ,..., n,, and so on. Then X i s  a 
random vector in (Cp, ,, ( , a ) )  where n  = Cfn,. It was argued in 
the discussion following Proposition 2.18 that 

relative to the inner product ( . , .) on Cp, ,. The mean of X, say 
p = GX, is an n  x p matrix whose first n ,  rows are all p;, whose 
next n ,  rows are all pi ,  and so on. Let B be the k x p matrix with 
rows p;, . . . , p',. Thus the mean of X can be written p = ZB where 
Z is an n  x k matrix with the following structure: the first column 
of Z consists of n ,  ones followed by n  - n ,  zeroes, the second 
column of Z consists of n ,  zeroes followed by n ,  ones followed by 
n  - n ,  - n  , zeroes, and so on. Define the linear subspace M of Cp, , 
by 

so M is the range of Z €3 I, as a linear transformation on CP,, to 
4, ,. Further, set 

y = {I, €3 212 E tlp,p, Z positive definite) 

and note that y is a set of positive definite linear transformations on 
CP,, to Cp, ,. Therefore, GX E M and Cov( X) E y ,  and {M, y )  is a 
parameter set for a linear model for X. Since I, €3 I, is the identity 



linear transformation on %,, and I, Q I, E y, to show that a 
Gauss-Markov estimator for p E M exists, it is sufficient to verify 
that, if x E M, then (I, 8 Z)x E M. For x E M, x = ZB for some 
B E Cp,  ,. Therefore, 

which is an element of M. Thus M is invariant under each element 
of y so a Gauss-Markov estimator for p exists. Since the identity is 
an element of y, the Gauss-Markov estimator is just the orthogonal 
projection of X on M relative to the given inner product ( , .). To 
find t h s  projection, we argue as in Example 4.1. The regression 
subspace M is the range of Z 8 I, and, clearly, Z has rank k. Let 

which is an orthogonal projection; see Proposition 1.28. To verify 
that P is the orthogonal projection onto M, it suffices to show that 
the range of P is M. For any x E $,, ,, 

which is an element of M since (ZfZ)-'Z'x E ep, ,. However, if 
x E M, then x = ZB and Px = P(ZB) = ZB-that is, P is the 
identity on M. Hence, the range of P is M and the Gauss-Markov 
estimator of p is 

f i  = PX = z ( z ' z ) - ' z ' x .  

Since p = ZB, 

and, by Proposition 4.1, 

is the Gauss-Markov estimator of the matrix B. Further, &( B) = B 
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and 

For the particular matrix Z, Z'Z is a k X k diagonal matrix with 
diagonal entries n , , .  . . , n ,  so (ZfZ)-'  is diagonal with diagonal 
elements n;  ', . . . , n ,  '. A bit of calculation shows that the matrix 
B = (Z'Z)- 'Z'X has rows g, .  . . , x~ where 

is the sample mean in the ith sample. Thus the Gauss-Markov 
estimator of the ith mean pi is z, i = 1,. . . , k .  + 

It is fairly clear that the explicit form of the matrix Z in the previous 
example did not play a role in proving that a Gauss-Markov estimator for 
the mean vector exists. This observation leads quite naturally to what is 
usually called the general linear model of multivariate analysis. After 
introducing this model in the next example, we then discuss the implications 
of adding the assumption of normality. 

+ Example 4.4 (Multivariate General Linear Model). As in Example 
4.3, consider a random matrix X in (C,, ., ( , a ) )  and assume that 
(i) GX = ZB where Z is a known n X k matrix of rank k and B is a 
k X p matrix of parameters, (ii) Cov(X) = I, b 2 where 2 is a 
p x p positive definite matrix-that is, the rows of X are uncorre- 
lated and each row of X has covariance matrix 2.  It is clear we have 
simply abstracted the essential features of the linear model in 
Example 4.3 into assumptions for the linear model of this example. 
The similarity between the current example and Example 4.1 should 
also be noted. Each component of the observation vector in Exam- 
ple 4.1 has become a vector, the parameter vector has become a 
matrix, and the rows of the observation matrix are still uncorre- 
lated. Of course, the rows of the observation vector in Example 4.1 
are just scalars. For the example at hand, it is clear that 
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is a subspace of Cp, , and is the range of Z 8 1,. Setting 

y = {I, 8 212 is a p  x p positive definite matrix), 

{M, y )  is the parameter set of a linear model for X. More specifi- 
cally, the linear model for X is that &X = p E M and Cov(X) E y. 
Just as in Example 4.3, M is invariant under each element of y so a 
Gauss-Markov estimator of p = &X exists and is PX where 

is the orthogonal projection onto M relative to ( . , .). Mimicking 
the argument given in Example 4.3 yields 

and 

In addition to the linear model assumptions for X, we now assume 
that C(X) = N(ZB, I, 8 Z) so X has a normal distribution in 
(C,, ,,, ( , .)). As in Example 4.2, a discussion of sufficient statis- 
tics and maximum likel~hood estimators follows. The density func- 
tion of X with respect to Lebesgue measure is 

as discussed in Chapter 3. Let Po = Z(Z'Z)-'Z' and Qo = I - Po 
so P = Po @ I, is the orthogonal projection onto M and Q = Qo 8 
I, is the orthogonal projection onto M I .  Note that both P and Q 
commute with I, 8 2 for any Z. Since p E M, we have 

(x - ~ ~ ( 1 ,  €3 2- ')(x - p)) 

because (Qx,(Z, 8 Z-')P(x - p)) = (x, Q(I, @ Z-')P(x - P)) 
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= 0 since Q(In @ 2 - ' ) P  = QP(In @ 2-I )  = 0. However, 

= tr(xZ-'x'Q,) = tr(xfQ0xZ-I). 

Thus 

= (Px - p, (In @ z-')(Px - p)) + t r ( x ' ~ , x Z - ~ ) .  

Therefore, the densityp(xlp, Z) is a function of the pair {Px, x'Q,x} 
so the pair {Px, xtQ0x} is sufficient. That this pair is minimal 
sufficient and complete for the parametric family {p(.Ip, Z); p E M, 
Z positive definite} follows from exponential family theory. Since 
P(In 8 2)Q = PQ(In @ Z) = 0, the random vectors PX and QX 
are independent. Also, X'Q, X = (QX)'(QX) so the random vectors 
PX and X'Q,X are independent. In other words, {PX, X'Q,X} is a 
sufficient statistic and PX and XrQ0X are independent. To derive 
the maximum likelihood estimator of p E M, fix Z. Then 

x exp[- ~ ( P X  - p, (1, 8 z-')(Px - p)) - 4 trx'Q,xZ-'1 

with equality iff p = Px. Thus the maximum likelihood estimator of 
p is fi = PX, which is also the Gauss-Markov and least-squares 
estimator of p. It follows immediately that 

is the maximum likelihood estimator of B. and 
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To find the maximum likelihood estimator of Z, the function 

must be maximized over all p x p positive definite matrices Z. 
When xfQox is positive definite, this maximum occurs uniquely at 

so the maximum likelihood estimator of Z is stochastically indepen- 
dent of f i .  A proof that 5 is the maximum likelihood estimator of Z 
and a derivation of the distribution of f: is deferred until later. + 

The principal result of this chapter, Proposition 4.6, gives necessary and 
sufficient conditions on the parameter set {M, y) of a linear model in order 
that the Gauss-Markov estimator of p E M exists. Many of the classical 
parametric models in multivariate analysis are in fact linear models with a 
parameter set {M, y) so that there is a Gauss-Markov estimator for p E M. 
For such models, the additional assumption of normality implies that f i  is 
also the maximum likelihood estimator of p, and the estimation of p is 
relatively easy if we are satisfied with the maximum likelihood estimator. 
For the time being, let us agree that the problem of estimating p has been 
solved in these models. However, very little has been said about the 
estimation of the covariance other than in Example 4.4. To be specific, 
assume C ( X )  = N(p, 2 )  where p E M c (V, (., .)) and {M, y) is the 
parameter set of this linear model for x .  Assume that I E y and f i  = PX is 
the Gauss-Markov estimator for p so ZM = M for all Z E y. Here, P is the 
orthogonal projection onto M in the given inner product on V. It follows 
immediately from Proposition 4.6 that f i  = PX is also the maximum likeli- 
hood estimator of p E M. Substituting f i  into the density of X yields 

where n = dim V and Q = I - P is the orthogonal projection onto M I .  
Thus to find the maximum likelihood estimator of Z E y, we must compute 

assuming that the supremum is attained at a point 5 E y. Although many 
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examples of explicit sets y are known where f: is not too difficult to find, 
general conditions on y that yield an explicit 2 are not available. This 
overview of the maximum likelihood estimation problem in linear models 
where Gauss-Markov estimators exists has been given to provide the reader 
with a general framework in which to view many of the estimation and 
testing problems to be discussed in later chapters. 

PROBLEMS 

1. Let Z be an n X k matrix (not necessarily of full rank) so Z defines a 
linear transformation on Rk to Rn. Let M be the range of Z and let 
z,,. . . , zk be the columns of Z. 

(i) Show that M = span{z,,. . . , z,). 
(ii) Show that Z(ZfZ)-Z' is the orthogonal projection onto M where 

(ZfZ)-  is the generalized inverse of Z'Z. 

2. Suppose XI,. . . , X, are i.i.d. from a density p(xlj3) = f (x - j3) where 
f is a symmetric density on R1 and jx2f (x)  dx = 1. Here, j3 is an 
unknown translation parameter. Let X E Rn have coordinates XI,. . . , 
xn . 

(i) Show that C(X) = C(j3e + E) where E ~ , .  . . , E, are i.i.d. with 
density f .  Show that GX = j3e and Cov(X) = I,. 

(ii) Based on (i), find the Gauss-Markov estimator of j3. 
(iii) Let U be the vector of order statistics for X (Ul < U, < . . . < 

U,) so C(U) = C(j3e + v) where v is the vector of order statis- 
tics of E. Show that G(U) = j3e + a, where a, = G v  is a known 
vector (f is assumed known), and Cov(U) = Z, = Cov(v) where 
Z, is also known. Thus C(U - a,) = C(j3e + (v - a,)) where 
G(v - a,) = 0 and COV(V - a,,) = 2,. Based on this linear 
model, find the Gauss-Markov estimator for j3. 

(iv) How do these two estimators of j3 compare? 

3. Consider the linear model Y = p + E where p E M, GE = 0, and 
COV(E) = u21,. At times, a submodel of this model is of interest. In 
particular, assume p E w where w is a linear subspace of M. 

(i) Let M - w = {xlx E M, x I a). Show that M - w = M n w L  . 
(ii) Show that PM - Pw is the orthogonal projection onto M - w and 

verify that II(PM - PW)x1l2 = JIP ,X( )~  - ll~,x11~. 
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4. For this problem, we use the notation of Problem 1.15. Consider 
subspaces of RIJ given by 

M, = {yly, ,  = y.. for all 2 ,  j )  

M, = {yly, ,  = yk j  for all i ,  k ;  j = 1,. . . , J )  

(i) Show that % ( A )  = M,, %(B,) = MI - M,, and %(B2) = M2 
- M,. 

Let M, be the range of B,. 

(ii) Show that RIJ = M, $ (MI - M,) CB (M2 - M,) $ M,. 
(iii) Show that a vector p is in M = M, $ (M, - M,) $ (M2 - M,) 

iff p can be writte,n as pi, = a + pi + y,, i = 1,. . . , I ,  j = 1,. . . , 
J ,  where a, pi, and y, are scalars that satisfy ZPi = Zy, = 0. 

5. (The 9-test.) Most of the classical hypothesis testing problems in 
regression analysis or ANOVA can be described as follows. A linear 
model Y  = p + E, p E M, G E  = 0, and COV(E) = u21 is given in 
(V, (., .)). A subspace o of M ( o  * M)  is given and the problem is to 
test H,: p E w versus HI : y CZ o,  y E M. Assume that C(Y)  = 

N ( p ,  u21) in (V , ( . ,  .I). 
(i) Show that the likelihood ratio test of H, versus HI rejects for 

large values of F = ((P,-,Y ( ( 2 / ( ( Q M ~  ( 1 2  where Q, = I - PM. 

(ii) Under H,, show that F is distributed as the ratio of two indepen- 
dent chi-squared variables. 

6. In the notation of Problem 4, consider Y  E RIJ with GY = y E M ( M  
is given in (iii) of Problem 4). Under the assumption of normality, use 
the results of Problem 5 to show that the $test for testing H, : PI = P2 
- - . . .  = p, rejects for large values of 

2 
C i C j ( y j j  - Jj.- Y., + J . . )  

Identify o for this problem. 

7. (The normal equations.) Suppose the elements of the regression sub- 
space M G R" are given by y = Xp where X is n X k and /3 E Rk.  
Given an observation vector y, the problem is to find @ = P,y. The 
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equations (in @) 

LINEAR STATISTICAL MODELS 

are often called the normal equations. 

(i) Show that (4.2) always has a solution b E Rk. 
(ii) If b is any solution to (4.2), show that Xb = PMy. 

8. For Y E Rn,assumep = GY E MandCov(Y) E ywherey = {ZIZ = 

aP, + @Qe, a > 0, @ > 0). As usual, e is the vector of ones, Pe is the 
orthogonal projection onto span{e), and Q, = 1 - P,. 

(i) If e E M or e E ML , show that the Gauss-Markov and least- 
squares estimators for p are the same for each a and @. 

(ii) If e 4 M and e P M I  , show that there are values of a and @ so 
that the least-squares and Gauss-Markov estimators of p differ. 

(iii) If C(Y) = N(p, 2 )  with 2 E y and M G (span{e))' ( M  * 
(span{e))l), find the maximum likelihood estimates for p, a ,  
and @. What happens when M = span{e)? 

9. In the linear model Y = X@ + E on Rn with X:  n X k of full rank, 
G E  = 0, and COV(E) = a2Z1 (Z1 is positive definite and known), show 
that @ = x(x'Z;'X)-'X'Z;'Y and = (XIZ;'X)-'XIZ;'Y. 

10. (Invariance in the simple linear model.) In (V, (., a)) ,  suppose that 
{M, y ) is the parameter set for a linear model for Y where y = {ZIZ = 

a21, a > 0). Thus GY = p E M and Cov(Y) E y. This problem has to 
do with the invariance of t h s  linear model under affine transforma- 
tions: 

(i) If I' E Q(V) satisfies I'(M) G M, show that r ' (M) L M. 
Let O,(V) be those I? E Q(V) that satisfy r ( M )  G M. 
(ii) For x, E M, c > 0, and I' E QM(V), define the function 

(c, I', x,) on V to V by (c, I?, x,) y = cry + x,. Show that this 
function is one-to-one and onto and find the inverse of this 
function. Show that this function maps M onto M. 

(iii) Let F = (c, 1', x,)Y. Show that GF E M and C O V ( ~ )  E y. Thus 
(M, y) is the parameter set for and we say that the linear 
model for Y is invariant under the transformation (c, I', x,). 

Since GY = p, it follows that GF = (c, I', x,)y for y E M. If t(Y) (t 
maps V into M )  is any point estimator for p, then it seems plausible to 
use t(F) as a point estimator for (c, I?, xg)y = c rp  + x,. Solving for 
p, it then seems plausible to use c-'I"(t(Y) - x,) as a point estimator 
for p. Equating these estimators of y leads to t(Y) = c-'rl(t(cI'Y + 



NOTES AND REFERENCES 157 

xo) - xo) or 

(4.3) t ( ~ r ~  + x,) = ~ r t ( ~ )  + xo. 

An estimator that satisfies (4.3) for all c > 0, E OM(V), and x, E M 
is called equivariant. 

(iv) Show that t,(Y) = PMY is equivariant. 

(v) Show that if t maps V into M and satisfies the equation 
t ( rY  + x,) = rt(Y) + x, for all r E OM(V) and x, E M, then 
t(Y) = PMY. 

11. Consider U E Rn and V E  Rn and assume C(U) = N(Z,/3,,u,,In) 
and C(V) = N(Z,P,, u2,1n). Here, Z, is n X k of rank k and Pi E Rk 
is an unknown vector of parameters, i = 1,2. Also, uii > 0 is unknown, 
i = 1,2. Now, let X = (UV) : n x 2 so p = GX has first column ZIP,  
and second column Z, P,. 

(i) When U and V are independent, then Cov(X) = In 8 A where 

In this case, show that the Gauss-Markov and least-squares 
estimates for p are the same. Further, show that the 
Gauss-Markov estimates for P, and P, are the same as what we 
obtain by treating the two regression problems separately. 

(ii) Now, suppose Cov(X) = In 8 2 where 

is positive definite and unknown. For general Z, and Z,, show 
that the regression subspace of X is not invariant under all 
In 8 2 so the Gauss-Markov and least-squares estimators are 
not the same in general. However, if Z ,  = Z,, show that the 
results given in Example 4.4 apply directly. 

(iii) If the column space of Z, equals the column space of Z,, show 
that the Gauss-Markov and least-squares estimators of p are the 
same for each In 8 2. 

NOTES AND REFERENCES 

1. Scheffi: (1959) contains a coordinate account of what might be called 
univariate linear model theory. The material in the first section here 
follows Kruskal (1961) most closely. 
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2. The result of Proposition 4.5 is due to Kruskal (1968). 

3. Proposition 4.3 suggests that a theory of best linear unbiased estimation 
can be developed in vector spaces without inner products (i.e., dual 
spaces are not identified with the vector space via the inner product). 
For a version of such a theory, see Eaton (1978). 

4. The arguments used in Section 4.3 were used in Eaton (1970) to help 
answer the following question. Given X E C,, with Cov(X) = I,, 8 Z 
where Z is unknown but positive definite, for what subspaces M does 
there exist a Gauss-Markov estimator for p E M? In other words, with 
y as in Example 4.4, for what M's can the parameter set {M, y )  admit a 
Gauss-Markov estimator? The answer to this question is that M must 
have the form of the subspaces considered in Example 4.4. Further 
details and other examples can be found in Eaton (1970). 
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