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Vector Space Theory 

In order to understand the structure and geometry of multivariate distribu- 
tions and associated stati~tical problems, it is essential lhat we be able to 
distinguish those aspects of multivariate distributions that can be described 
without reference to a coordinate system and those that cannot. Finite 
dimensional vector space theory provides us with a framework in which it 
becomes relatively easy to distinguish between coordinate free and coordi- 
nate concepts. It is fair to say that the material presented in t h s  chapter 
furnishes the language we use in the rest of this book to describe many of 
the geometric (coordinate free) and coordinate properties of multivariate 
probability models. The treatment of vector spaces here is far from com- 
plete, but those aspects of the theory that arise in later chapters are covered. 
Halmos (1958) has been followed quite closely in the first two sections of 
this chapter, and because of space limitations, proofs sometimes read "see 
Halmos (1958)." 

The material in this chapter runs from the elementary notions of basis, 
dimension, linear transformation, and matrix to inner product space, or- 
thogonal projection, and the spectral theorem for self-adjoint linear trans- 
formations. In particular, the linear space of linear transformations is 
studied in detail, and the chapter ends with a discussion of what is 
commonly known as the singular value decomposition theorem. Most of the 
vector spaces here are finite dimensional real vector spaces, although 
excursions into infinite dimensions occur via applications of the 
Cauchy-Schwarz Inequality. As might be expected, we introduce complex 
coordinate spaces in the discussion of determinants and eigenvalues. 

Multilinear algebra and tensors are not covered systematically, although 
the outer product of vectors and the Kronecker product of linear transfor- 
mations are covered. It was felt that the simplifications and generality 
obtained by introducing tensors were not worth the price in terms of added 
notation, vocabulary, and abstractness. 



2 VECTOR SPACE THEORY 

1.1. VECTOR SPACES 

Let R denote the set of real numbers. Elements of R, called scalars, are 
denoted by a, P,. . . . 

Definition 1.1. A set V, whose elements are called vectors, is called a real 
vector space if: 

(I) to each pair of vectors x, y E V, there is a vector x + y E V, called the 
sum of x and y, and for all vectors in V, 

(i) x + y = y + x .  
(ii) ( x + y ) + z = x + ( y + z ) .  

(iii) There exists a unique vector 0 E V such that x + 0 = x for all x. 
(iv) For each x G V, there is a unique vector -x  such that x + ( -x)  

= 0. 

(11) For each a E R and x E V,  there is a vector denoted by ax  E V, called 
the product of a and x, and for all scalars and vectors, 

(9 4 P x )  = (aP>x. 
(ii) l x = x .  

(iii) ( a + p ) x = a x + p x .  

(iv) a (x  + y )  = ax + ay. 

In II(iii), ( a  + p)x  means the sum of the two scalars, a and p ,  times x, 
while ax + px means the sum of the two vectors, ax and px. T h s  multiple 
use of the plus sign should not cause any confusion. The reason for calling 
V a real vector space is that multiplication of vectors by real numbers is 
permitted. 

A classical example of a real vector space is the set Rn of all ordered 
n-tuples of real numbers. An element of Rn, say x, is represented as 

and x, is called the ith coordinate of x. The vector x + y has ith coordinate 
xi + y, and ax, a E R, is the vector with coordinates ax,, i = 1,. . . , n.  With 
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0 E Rn representing the vector of all zeroes, it is routine to check that Rn is 
a real vector space. Vectors in the coordinate space Rn are always repre- 
sented by a column of n real numbers as indicated above. For typographical 
convenience, a vector is often written as a row and appears as x' = (x,, . . . , 
x,). The prime denotes the transpose of the vector x E Rn. 

The following example provides a method of constructing real vector 
spaces and yields the space Rn as a special case. 

+ Example 1.1. Let 5X be a set. The set V is the collection of all the 
real-valued functions defined on EX. For any two elements xi ,  x, E 

V, define xi  + x, as the function on EX whose value at t is 
x,(t) + x,(t). Also, if a E R and x E V, ax is the function on % 
given by (ax)(t) = ax(t). The symbol 0 E V is the zero function. It 
is easy to verify that V is a real vector space with these definitions 
of addition and scalar multiplication. When EX = {l, 2,. . . , n), then 
V is just the real vector space Rn and x E Rn has as its ith 
coordinate the value of x at i E EX. Every vector space discussed in 
the sequel is either V (for some set EX) or a linear subspace (to be 
defined in a moment) of some V. + 

Before defining the dimension of a vector space, we need to discuss linear 
dependence and independence. The treatment here follows Halmos (1958, 
Sections 5-9). Let V be a real vector space. 

Definition 1.2. A finite set of vectors {x,li = 1,. . . , k )  is linearly dependent 
if there exist real numbers a, , .  . . , a,, not all zero, such that Ca,xi = 0. 
Otherwise, {x,(i = 1,. . . , k) is linearly independent. 

A brief word about summation notation. Ordinarily, we do not indicate 
indices of summation on a summation sign when the range of summation is 
clear from the context. For example, in Definition 1.2, the index i was 
specified to range between 1 and k before the summation on i appeared; 
hence, no range was indicated on the summation sign. 

An arbitrary subset S c V is linearly independent if every finite subset of 
S is linearly independent. Otherwise, S is linearly dependent. 

Definition 1.3. A basis for a vector space V is a linearly independent set S 
such that every vector in V is a linear combination of elements of S. V is 
finite dimensional if it has a finite set S that is a basis. 

+ Example 1.2. Take V = Rn and let E: = (0,. . . , 0, 1,0,. . . , 0) where 
the one occurs as the ith coordinate of ei, i = 1,. . . , n. For x E Rn, 
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it is clear that x = Exi&, where xi is the ith coordinate of x. Thus 
every vector in R n  is a linear combination of E,, . . . , E,. TO show that 
{Eili = 1,. . . , n) is a linearly independent set, suppose Ca,ei = 0 for 
some scalars ai ,  i = 1,. . . , n. Then x = Ca,ei = 0 has a i  as its ith 
coordinate, so a i  = 0, i = 1,. . . , n. Thus {ei(i = 1,. . . , n) is a basis 
for Rn and Rn is finite dimensional. The basis {e,li = 1,. . . , n) is 
called the standard basis for Rn. 6 

Let V be a finite dimensional real vector space. The basic properties of 
linearly independent sets and bases are: 

(i) If {x,, . . . , x,) is a linearly independent set in V, then there exist 
vectors x,, ,, . . . , x,,, such that {x,, . . . , x,,,) is a basis for V. 

(ii) All bases for V have the same number of elements. The dimension 
of V is defined to be the number of elements in any lsasis. 

(iii) Every set of n + 1 vectors in an n-dimensional vector space is 
linearly dependent. 

Proofs of the above assertions can be found in Halmos (1958, Sections 5-8). 
The dimension of a finite dimensional vector space is denoted by dim(V). If 
{x,, . . . , x,) is a basis for V, then every x E V is a unique linear combina- 
tion of {x,,. . . , x,)-say x = &xi. That every x can be so expressed 
follows from the definition of a basis and the uniqueness follows from the 
linear independence of {x,,. . . , x,). The numbers a, , .  . . , a, are called the 
coordinates of x in the basis {x,,. . . , x,). Clearly, the coordinates of x 
depend on the order in which we write the basis. Thus by a basis we always 
mean an ordered basis. 

We now introduce the notion of a subspace of a vector space. 

Definition 1.4. A nonempty subset M c V is a subspace (or linear rnani- 
fold) of V if, for each x, y E M and a ,  P E R, ax + By E M. 

A subspace M of a real vector space V is easily shown to satisfy the 
vector space axioms (with addition and scalar multiplication inherited from 
V), so subspaces are real vector spaces. It is not difficult to verify the 
following assertions (Halmos, 1958, Sections 10-12): 

(i) The intersection of subspaces is a subspace. 
(ii) If M is a subspace of a finite dimensional vector space V, then 

dim(M) G dim(V). 
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(iii) Given an m-dimensional subspace M of an n-dimensional vector 
space V, there is a basis {x,,. . . , x,,. . . , x,) for V such that 
{x,, . . . , x,) is a basis for M. 

Given any set S G V, span(S) is defined to be the intersection of all the 
subspaces that contain S-that is, span(S) is the smallest subspace that 
contains S. It is routine to show that span(S) is equal to the set of all linear 
combinations of elements of S.  The subspace span(S) is often called the 
subspace spanned by the set S. 

If M and N are subspaces of V, then span(M U N) is the set of all 
vectors of the form x + y where x E M and y E N. The suggestive notation 
M + N = {zlz = x + y, x E M, y E N) is used for span(M u N) when M 
and N are subspaces. Using the fact that a linearly independent set can be 
extended to a basis in a finite dimensional vector space, we have the 
following. Let V be finite dimensional and suppose M and N are subspaces 
of v. 

(i) Let m = dim(M), n = dim(N), and k = dim(M n N). Then there 
exist vectors x,, . . . , x,, y,+ ,, . . . , y,, and z,, ,, . . . , z, such that 
{x,, . . . , x,) is a basis for M n N, {x,, . . . , x,, y,, ,,. . . , y,) is a 
basis for M, {x,, . . . , x,, z,, ,, . . . , z,) is a basis for N, and {x,, . . . , 
x,, yk+,,.  . . , ym, z,,,,. . . , z,) is a basis for M + N. If k = 0, then 
{x,, . . . , x,) is interpreted as the empty set. 

(ii) dim(M + N ) =  dim(M) + dim(N) - dim(Mf? N). 
(iii) There exists a subspace MI c V such that M n MI = (0) and 

M + M, = v. 

Definition 1.5. If M and N are subspaces of V that satisfy M n N = (0) 
and M + N = V, then M and N are complementary subspaces. 

The technique of decomposing a vector space into two (or more) comple- 
mentary subspaces arises again and again in the sequel. The basic property 
of such a decomposition is given in the following proposition. 

Proposition 1.1. Suppose M and N are complementary subspaces in V. 
Then each x E V has a unique representation x = y + z with y E M and 
z E N. 

Proof: Since M + N = V, each x E V can be written x = y, + z, with 
y , ~ M a n d z , ~ N . I f x = y ~ + z , w i t h y ~ ~ M a n d z ~ ~ N , t h e n O = x -  
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x = (Y, - Y,) + (z, - 22). Hence (Y, - Y,) = (z, - z,) so (Y, - Y,) E M 
n N = (0). Thus y, = y,. Similarly, z ,  = z,. 

The above proposition shows that we can decompose the vector space V 
into two vector spaces M and N and each x in V has a unique piece in M 
and in N. Thus x can be represented as (y, z)  with y E M and z E N. Also, 
note that if x,, x, E V and have the representations (y,,  z,), (y,, z,), then 
ax ,  + px2 has the representation (ay,  + py,, az, + pz,), for a, P E R. In 
other words the function that maps x into its decomposition (y, z) is linear. 
To make this a bit more precise, we now define the direct sum of two vector 
spaces. 

Definition 1.6. Let V, and V2 be two real vector spaces. The direct sum of 
V, and V,, denoted by V, @ V,, is the set of all ordered pairs {x, y), 
x E V,, y E V,, with the linear operations defined by a,{x,, y,) + 
a2(x2, Y2) " { ~ I x I  + a2x2, a1Y1 + ( ~ 2 ~ 2 )  

That V, @ V, is a real vector space with the above operations can easily 
be verified. Further, identifying V, with {{x,, 0)Ix E V,) = v, and V2 with 
((0, y)ly E V,) = P2, we can thnk of V, and V2 as complementary sub- 
spaces of V, @ V,, since vl + v2 = V, @ V, and vl n P2 = {0,0), whch is 
the zero element in V, @ V,. The relation of the direct sum to our previous 
decomposition of a vector space should be clear. 

+ Example 1.3. Consider V = Rn, n >, 2, and let p and q be positive 
integers such that p + q = n. Then RP and R4 are both real vector 
spaces. Each element of Rn is a n-tuple of real numbers, and we can 
construct subspaces of Rn by setting some of these coordinates 

equal to zero. For example, consider M = {x E Rnlx = (:) with 

y ~ R P , 0 ~ R ~ ) a n d N = ( x E R " l x =  w i t h O ~ R ~ a n d z ~  (9 
R4). It is clear that dim(M) = p, dim(N) = q, M n N = {O), and 
M + N = Rn. The identification of RP with M and R4 with N 
shows that it is reasonable to write RP @ R9 = RP+4. 

1.2. LINEAR TRANSFORMATIONS 

Linear transformations occupy a central position, both in vector space 
theory and in multivariate analysis. In this section, we discuss the basic 
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properties of linear transforms, leaving the deeper results for consideration 
after the introduction of inner products. Let V and W be real vector spaces. 

Definition 1.7. Any function A defined on V and taking values in W is 
called a linear transformation if A(a,x, + a2x2) = aIA(xI)  + a2A(x2) for 
all x , ,  x, E Vand a,,  a, E R. 

Frequently, A(x) is written Ax when there is no danger of confusion. Let 
C(V, W) be the set of all linear transformations on V to W. For two linear 
transformations A, and A, in C(V, W), A, + A, is defined by (A, + A,)(x) 
= A,x + A,x and (aA)(x) = aAx for a E R. The zero linear transforma- 
tion is denoted by 0. It should be clear that C(V, W) is a real vector space 
with these definitions of addition and scalar multiplication. 

+ Example 1.4. Suppose dim(V) = m and let x,, .  . . , x, be a basis 
for V. Also, let y,, . . . , ym be arbitrary vectors in W. The claim is 
that there is a unique linear transformati0n.A such that Ax, = y,, 
i = 1,. . . , m. To see this, consider x E V and express x as a unique 
linear combination of the basis vectors, x = Caixi. Define A by 

The linearity of A is easy to check. To show that A is unique, let B 
be another linear transformation with Bx, = y,, i = 1,. . . , n. Then 
(A - B)(x,) = 0 for i = 1,. . . , n,  and (A - B)(x) = (A - 
B)(Caix,) = Ca,(A - B)(xi) = 0 for all x E V. Thus A = B. + 

The above example illustrates a general principle-namely, a linear 
transformation is completely determined by its values on a basis. This 
principle is used often to construct linear transformations with specified 
properties. A modification of the construction in Example 1.4 yields a basis 
for C(V, W) when V and W are both finite dimensional. T h s  basis is given 
in the proof of the following proposition. 

Proposition 1.2. If dim(V) = m and dim(W) = n ,  then dim(C(V, W)) = 

mn. 

Proof. Let x, , .  . . , xm be a basis for V and let y,,. . . , y, be a basis for W. 
Define a linear transformation A,,, i = 1,. . . , m and j = 1,. . . , n ,  by 
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For each ( j ,  i), A.. has been defined on a basis in V so the linear 
J! 

transformation Aj j  is uniquely determined. We now claim that ( A j i J i  = 

1,. . . , m; j = 1,. . . , n) is a basis for C(V, W). To show linear independence, 
suppose CCajiAji = 0. Then for each k = 1,. . . , m, 

Since {y,, . . . , y,) is a linearly independent set, this implies that 9, = 0 for 
all j and k. Thus linear independence holds. To show every A E C(V, W) is 
a linear combination of the A .., first note that Ax, is a vector in Wand thus 

J ! 
is a unique linear combination of y,, . . . , y,, say Ax, = Cja,, y, where 
a,, E R. However, the linear transformation CCajiAji evaluated at x, is 

Since A and CCaj,Aji agree on a basis in V, they are equal. Thls completes 
the proof since there are mn elements in the basis {A,,Ji = 1,. . . , m; 
j = 1 ,..., n) for C(V, W). 

Since C(V, W) is a vector space, general results about vector spaces, of 
course, apply to C(V, W). However, linear transformations have many 
interesting properties not possessed by vectors in general. For example, 
consider vector spaces v, i = 1,2,3. If A E C(V,, V2) and B E C(V., V3), 
then we can compose the functions B and A by defining (BA)(x) = B( A(x)). 
The linearity of A and B implies that BA is a linear transformation on Vl to 
V3-that is, BA E C(V,, &). Usually, BA is called the product of B and A. 

There are two special cases of C(V, W) that are of particular interest. 
First, if A, B E C(V, V), then AB E C(V, V) and BA E C(V, V), so we 
have a multiplication defined in C(V, V). However, this multiplication is not 
commutative-that is, AB is not, in general, equal to BA. Clearly, A(B + 
C) = AB + AC for A, B, C E C(V, V). The identity linear transformation 
in C(V, V), usually denoted by I ,  satisfies AI = IA = A for all A E C(V, V), 
since Ix = x for all x E V. Thus C(V, V) is not only a vector space, but 
there is a multiplication defined in C(V, V). 

The second special case of C(V, W) we wish to consider is when W = R 
-that is, W is the one-dimensional real vector space R. The space C(V, R) 
is called the dual space of V and, if dim(V) = n,  then dim(C(V, R)) = n. 
Clearly, C(V, R) is the vector space of all real-valued linear functions 
defined on V. We have more to say about C(V, R )  after the introduction of 
inner products on V. 
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Understanding the geometry of linear transformations usually begins 
with a specification of the range and null space of the transformation. These 
objects are now defined. Let A E C(V, W) where V and W are finite 
dimensional. 

Definition 1.8. The range of A, denoted by %(A), is 

%(A)  = {ulu E W, Ax = u for somex E V).  

The null space of A, denoted by %(A), is 

It is routine to verify that %(A) is a subspace of W and %(A) is a 
subspace of V. The rank of A, denoted by r(A), is the dimension of %(A). 

Proposition 1.3. If A E C(V, W) and n = dim(V), then r(A) + 
dim(% (A)) = n. 

ProoJ: Let M be a subspace of V such that M @ %(A) = V, and consider 
a basis {x,, . . . , x,) for M. Since dim(M) + dim(%(A)) = n, we need to 
show that k = r(A). To do this, it is sufficient to show that {AX,, . . . , Ax,) 
is a basis for % ( A ) .  If 0 = &,Axi = A(Ca,x,), then Caixi E M n %(A) 
so &,xi = 0. Hence a ,  = . . = a, = 0 as {x,, . . . , x,) is a basis for M. 
Thus {Ax,,. . . , Ax,) is a linearly independent set. To verify that {AX,,. . . , 
Ax,) spans %(A), suppose w E %(A). Then w = Ax for some x E V. 
Write x = y + z where y E M and z E %(A). Then w = A(y + z)  = Ay. 
Since y E M, y = Ca,x, for some scalars a,,  . . . , a,. Therefore, w = 

A(Caixi) = CaiAxi. 

Definition 1.9. A linear transformation A E C(V, V) is called invertible if 
there exists a linear transformation, denoted by A-', such that AA-' = 

A- 'A = I. 

The following assertions hold; see Halmos (1958, Section 36): 

(i) A is invertible iff %(A) = V iff Ax = 0 implies x = 0. 
(ii) If A, B, C E C(V, V) and if AB = CA = I, then A is invertible and 

B = C = A-1. 

(iii) If A and B are invertible, then AB is invertible and (AB)-' = 

B-'A-'. If A is invertible and a * 0, then ( a ~ ) - '  = a - ' ~ - '  and 
= A .  
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In terms of bases, invertible transformations are characterized by the 
following. 

Proposition 1.4. Let A E C(V, V) and suppose {x , , .  . . , x,) is a basis for 
V. The following are equivalent: 

(i) A is invertible. 

(ii) { A X , , .  . . , Ax,) is a basis for V 

Proof. Suppose A is invertible. Since dim(V) = n,  we must show { A x , ,  . . . , 
Ax,) is a linearly independent set. Thus if 0 = CaiAxi = A(Caixi), then 
Ca,x, = 0 since A is invertible. Hence ai = 0, i = 1,. . . , n,  as { x , ,  . . . , x,) is 
a basis for V. Therefore, { A X , , .  . . , Ax,) is a basis. 

Conversely, suppose { A X , ,  . . . , Ax,) is a basis. We show that Ax = 0 
implies x = 0. First, write x = Caix, so Ax = 0 implies CaiAxi = 0. Hence 
a, = 0, i = l , . .  . , n,  as {Ax, , .  . ., Ax,) is a basis. Thus x = 0, so A is 
invertible. 

We now introduce real matrices and consider their relation to linear 
transformations. Consider vector spaces V and W of dimension m and n,  
respectively, and bases {x , , .  . . , x,) and {y , , .  . . , yn) for V and W. Each 
x E V has a unique representation x = Ca,x,. Let [ x ]  denote the column 
vector of coordinates of x in the given basis. Thus [ x ]  E Rm and the ith 
coordinate of [ x ]  is a,, i = 1,. . . , m. Similarly, [ y ]  E Rn is the column 
vector of y E W in the basis {y , , .  . . , y,). Consider A E C(V, W) and 
express Ax, in the given basis of W, Ax, = C,ai,yi for unique scalars a,,, 
i = 1 , .  . . , n,  j = 1,. . . , m. The n x m rectangular array of real scalars 

is called the matrix of A relative to the two given bases. Conversely, given 
any n x m rectangular array of real scalars {aiJ) ,  i = 1,. . . , n,  j = 1 , .  . . , m,  
the linear transformation A defined by Ax, = Cia,,yi has as its matrix 
[A1 = {a,,). 

Definition 1.10. A rectangular array {a,,) : m X n of real scalars is called 
an m X n matrix. If A = {a,,) : m X n is a matrix and B = {b,,) : n x p is a 
matrix, then C = AB, called the matrix product of A and B (in that order) is 
defined to be the matrix {c,,): m X p with ciJ = Ckaikbkj. 
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In this book, the distinction between linear transformations, matrices, 
and the matrix of a linear transformation is always made. The notation [A] 
means the matrix of a linear transformation with respect to two given bases. 
However, symbols like A, B, or C may represent either linear transforma- 
tions or real matrices; care is taken to clearly indicate whch case is under 
consideration. 

Each matrix A = {a,,) : m X n defines a linear transformation on Rn to 
Rm as follows. For x E Rn with coordinates x,, . . . , x,, Ax is the vector y in 
Rm with coordinates y, = Cja,,x,, i = 1,. . . , m. Of course, this is the usual 
row by column rule of a matrix operating on a vector. The matrix of this 
linear transformation in the standard bases for Rn and Rm is just the matrix 
A. However, if the bases are changed, then the matrix of the linear 
transformation changes. When m = n, the matrix A = {a,,) determines a 
linear transformation on Rn to Rn via the above definition of a matrix times 
a vector. The matrix A is called nonsingular (or invertible) if there exists a 
matrix, denoted by A-', such that A A '  = A-'A = In where I, is the n X n 
identity matrix consisting of ones on the diagonal and zeroes off the 
diagonal. As with linear transformations, A- '  is unique and exists iff 
Ax = 0 implies x = 0. 

The symbol C,,, denotes the real vector space of m x n real matrices 
with the usual operations of addition and scalar multiplication. In other 
words, if A = {a,,) and B = {b,,) are elements of en,,, then A + B = {aij 
+ b,,) and aA = {aa,,). Notice that C,,, is the set of m x n matrices (m 
and n are in reverse order). The reason for writing C,,, is that an m x n 
matrix determines a linear transformation from Rn to Rm. We have made 
the choice of writing C(V, W) for linear transformations from V to W, and 
it is an unpleasant fact that the dimensions of a matrix occur in reverse 
order to the dimensions of the spaces V and W. The next result summarizes 
the relations between linear transformations and matrices. 

Proposition 1.5. Consider vector spaces V,, V2, and with bases {x,, . . . , 
xnI) ,  {y,,. . . , y,,), and {z,, . . . , zn3), respectively. For x E V,, y E V2, and 
z E V3, let [x], [y], and [z] denote the vector of coordinates of x, y, and z in 
the given bases, so [x]  E Rn1, [y ]  E Rn2, and [z] E Rn3. For A E C(Vl, V2) 
and B E C(V2, V3) let [A] ([B]) denote the matrix of A(B) relative to the 
bases{x,, ..., x,,) and{y1 ,..., yn2)({yl, ..., Y,,) and{zl, .  .., zn3)). Then: 

(9 [Ax1 = [Al[xl. 
(ii) [BA] = [B][A]. 

(iii) If Vl = V2 and A is invertible, [Ap ' ]  = [A]- I .  Here, [Ap ' ]  and [A] 
are matrices in the bases {x,, . . . , x,,) and {x,, . . . , x, ,). 
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Proof A few words are in order concerning the notation in (i), (ii), and 
(iii). In (i), [Ax] is the vector of coordinates of Ax E V2 with respect to the 
basis (y,,. . . , ynZ) and [A][x] means the matrix [A] times the coordinate 
vector [x] as defined previously. Since both sides of (i) are linear in x, it 
suffices to verify (i) for x = x,, j = 1,. . . , n,. But [A][x,] is just the column 
vector with coordinates a .  ., i = 1,. . . , n,, and Ax, = Ciai, yi, so [Ax,] is the '! 
column vector with coordinates a .  ., i = 1,. . . , n,. Hence (1) holds. 

For (ii), [B][A] is just the ma&x product of [B] and [A]. Also, [BA] is 
the matrix of the linear transformation BA E C(V,, F/,) with respect to the 
bases (x,, . . . , x,,) and (z,, . . . , zn3). To show that [BA] = [B][A], we must 
verify that, for all x E V, [BA][x] = [B][A][x]. But by (i), [BA][x] = [BAx] 
and, using (i) twice, [B][A][x] = [B][Ax] = [BAx]. Thus (ii) is established. 

In (iii), [A]-' denotes the inverse of the matrix [A]. Since A is invertible, 
AA-' = A-'A = I where I is the identity linear transformation on Vl to V,. 
Thus by (ii), with In denoting the n X n identity matrix, I,, = [ I ]  = [AA-'1 
= [A][A- '1 = [A-'A] = [ A  - '][A]. By the uniqueness of the matrix inverse, 
[A-'1 = [A]-'. 

Projections are the final topic in this section. If V is a finite dimensional 
vector space and M and N are subspaces of V such that M @ N = V, we 
have seen that each x E V has a unique piece in M and a unique piece in N. 
In other words, x = y + z where y E M, z E N, and y and z are unique. 

Definition 1.11. Given subspaces M and N in V such that M @ N = V, if 
x = y + z with y E M and z E N, then y is called the projection of x on M 
along N and z is called the projection of x on N along M. 

Since M and N play symmetric roles in the above definition, we con- 
centrate on the projection on M. 

Proposition 1.6. The function P mapping V into V whose value at x is the 
projection of x on M along N is a linear transformation that satisfies 

(i) % ( P ) =  M, % ( P ) =  N. 
(ii) p 2 =  P. 

Proof. We first show that P is linear. If x = y + z with y E M, z E N, 
then by definition, Px = y. Also, if x, = y, + z, and x, = y, + z, are the 
decompositions of x, and x, ,  respectively, then a lx l  + a,x, = (a,  y, + 
a, y,) + (aIzI  + a2z2) is the decomposition of a ,x l  + a,x,. Thus P(a lx l  
+ a,x,) = alPx,  + a2Px, so P is linear. By definition Px E M, so %(P) 
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c M. But if x E M, Px = x and % ( P )  = M. Also, if x E N, Px = 0 so 
%(P)  2 N. However, if Px = 0, then x = 0 + x, and therefore x E N. 
Thus %(P)  = N. To show p2 = P, note that Px E M and Px = x for 
x E M. Hence, Px = P(Px) = P2x, which implies that P = p2.  

A converse to Proposition 1.6 gives a complete description of all linear 
transformations on V to V that satisfy A2 = A. 

Proposition 1.7. If A E C(V, V) and satisfies = A, then %(A) $ %(A) 
= V and A is the projection on %(A) along %(A). 

Proof: To show %(A) $ %(A) = V, we must verify that %(A) n %(A) 
= (0) and that each x E V is the sum of a vector in %(A) and a vector in 
%(A). If x E %(A) n %(A), then x = Ay for some y E V and Ax = 0. 
 since^^ = A ,  0 = A x  = Ay = x and%(A) n %(A) = (0). Forx  E 

V, write x = Ax + ( I  - A)x and let y = Ax and z = ( I  - A)x. Then 
y E %(A) by definition and Az = A(I - A)x = (A - A2)x = 0, SO z E 

%(A). Thus %(A) $ %(A) = V. 
The verification that A is the projection on %(A) along %(A) goes as 

follows. A is zero on %(A) by definition. Also, for x E %(A), x = Ay for 
some y E V. Thus Ax = A2y = Ay = x, so Ax = x and x E %(A). How- 
ever, the projection on %(A) along %(A), say P,  also satisfies Px = x for 
x E %(A) and Px = 0 for x E %(A). This implies that P = A since 
%(A) @ %(A) = V. 

The above proof shows that the projection on M along N is the unique 
linear transformation that is the identity on M and zero on N. Also, it is 
clear that P is the projection on M along N iff I - P is the projection on N 
along M. 

1.3. INNER PRODUCT SPACES 

The discussion of the previous section was concerned mainly with the linear 
aspects of vector spaces. Here, we introduce inner products on vector spaces 
so that the geometric notions of length, angle, and orthogonality become 
meaningful. Let us begin with an example. 

+ Example 1.5. Consider coordinate space Rn with the standard 
basis { E , ,  . . . , E,).  For x, y E Rn, define x'y = Cx, y, where x and y 
have coordinates x,, .  . . , xn and y,,. . . , yn. Of course, x' is the 
transpose of the vector x and x'y can be thought of as the 1 x n 
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matrix x' times the n x 1 matrix y. The real number x'y is some- 
times called the scalar product (or inner product) of x and y. Some 
properties of the scalar product are: 

(i) x'y = y'x (symmetry). 

(ii) x'y is linear in y for fixed x and linear in x for fixed y. 
(iii) x'x = Cyx? 2 0 and is zero iff x = 0. 

The norm of x, defined by llxll = (x'x)'/~, can be thought of as the 
2 1/2 distance between x and 0 E Rn. Hence, Ilx - yll = (C(x, - y,) ) 

is usually called the distance between x and y. When x and y are 
both not zero, then the cosine of the angle between x and y is 
x'y/llxll 1 1  yll (see Halmos, 1958, p. 118). Thus we have a geometric 
interpretation of the scalar product. In particular, the angle between 
x and y is 77/2(cos 77/2 = 0) iff x'y = 0. Thus we say x and y are 
orthogonal (perpendicular) iff x'y = 0. 

Let V be a real vector space. An inner product on V is obtained by 
simply abstracting the properties of the scalar product on Rn. 

Definition 1.12. An inner product on a real vector space V is a real valued 
function on V x V, denoted by (., .), with the following properties: 

(i) (x, Y)  = (Y, x) (symmetry). 
(ii) (~~1x1 + a2x2, Y)  = aI(x1, Y) + a2(x2, Y)  (linearity). 
(iii) (x, x) >, 0 and (x, x) = 0 only if x = 0 (positivity). 

From (i) and (ii) it follows that (x, a ,  y, + a2y2) = a,(x, y,) + a2(x, y2). 
In other words, inner products are linear in each variable when the other 
variable is fixed. The norm of x, denoted by Ilxll, is defined to be llxll = 

(x, x ) ' / ~  and the distance between x and y is Ilx - yII. Hence geometrically 
meaningful names and properties related to the scalar product on Rn have 
become definitions on V. To establish the existence of inner products on 
finite dimensional vector spaces, we have the following proposition. 

Proposition 1.8. Suppose {x,, . . . , x,) is a basis for the real vector space V. 
The function (., .) defined on V x V by (x, y) = C;aiP,, where x = Caixi 
and y = CPixi, is an inner product on V. 

Proof: Clearly (x, y) = (y, x). If x = Caixi and z = Cyixi, then (ax + 
yz, y) = C(aai + yyi)Pi = aCaiPi + yCyiPi = a(x, y) + y(z, y). Ths  
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establishes the linearity. Also, (x, x)  = Caf, whch is zero iff all the a, are 
zero and t h s  is equivalent to x being zero. Thus (., .) is an inner product 
on V. 

A vector space V with a given inner product ( a ,  a )  is called an inner 
product space. 

Definition 1.13. Two vectors x and y in an inner product space (V, (., .)) 
are orthogonal, written x I y, if (x, y)  = 0. Two subsets S, and S2 of V are 
orthogonal, written S, I S,, if x I y for all x E S ,  and y E S2. 

Definition 1.14. Let (V, (., .)) be a finite dimensional inner product space. 
A set of vectors (x,, . . . , x,) is called an orthonormal set if (xi, x,) = Sij for 
i ,  j =  1 ,. . . , k where Sij = 1 if i = j  and 0 if i * j. A set (x,, .  . . , x,) is 
called an orthonormal basis if the set is both a basis and is orthonormal. 

First note that an orthonormal set (x,, . . . , x,) is linearly independent. 
To see this, suppose 0 = Caixi. Then 0 = (0, x,) = (Caixi, x,) = 

Cai(xi, x,) = CiaiSij = a,. Hence a, = 0 for j = 1,. . . , k and the set 
(x,,  . . . , x,) is linearly independent. 

In Proposition 1.8, the basis used to define the inner product is, in fact, 
an orthonormal basis for the inner product. Also, the standard basis for Rn 
is an orthonormal basis for the scalar product on Rn-ths scalar product is 
called the standard inner product on Rn. An algorithm for constructing 
orthonormal sets from linearly independent sets is now given. It is known as 
the Gram-Schmidt orthogonalization procedure. 

Proposition 1.9. Let {x,, . . . , x,) be a linearly independent set in the inner 
product space (V, (., .)). Define vectors y,,. . . , y, as follows: 

X I  

y, =)Jx,JJ 
and 

for i = 1,. . . , k - 1. Then (y,, .  . . , y,) is an orthonormal set and 
span(x,,. . . , xi) = span(y,,. . . , y,), i = 1,. . . , k .  

Proof. See Halmos (1958, Section 65). 
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An immediate consequence of Proposition 1.9 is that if (x,, . . . , x,) is a 
basis for V, then { y,, . . . , y,) constructed above is an orthonormal basis for 
(V, (., .)). If {y,,. . . , y,) is an orthonormal basis for (V, (., .)), then each x 
in V has the representation x = C(x, y,) yi in the given basis. To see this, we 
know x = Ca, yi for unique scalars a,,  . . . , a,. Thus 

Therefore, the coordinates of x in the orthonormal basis are (x, y,), i = 

1,. . . , n. Also, it follows that (x, x)  = C(x, yi)2. 
Recall that the dual space of V was defined to be the set of all real-valued 

linear functions on V and was denoted by C(V, R). Also dim(V) = 

dim(C(V, R)) when V is finite dimensional. The identification of V with 
C(V, R) via a given inner product is described in the following proposition. 

Proposition 1.10. If (V, (., -)) is a finite dimensional inner product space 
and if f E C(V, R), then there exists a vector x, E V such that f (x)  = 

(x,, x)  for x E V. Conversely, (x,, .) is a linear function on V for each 
x, E v. 

Proof: Let x,, . . . , x, be an orthonormal basis for V and set ai = f(xi)  for 
i = 1,. . . , n. For x, = Ca,x,, it is clear that (x,, x,) = a, = =(xi). Since the 
two linear functions f and (x,, .) agree on a basis, they are the same 
function. Thus f (x)  = (x,, x) for x E V. The converse is clear. 

Definition 1.15. If S is a subset of V, the orthogonal complement of S ,  
denoted by SL , is S' = {xlx 1 y for ally E S) .  

It is easily verified that S' is a subspace of V for any set S ,  and S I S L  . 
The next result provides a basic decomposition for a finite dimensional 
inner product space. 

Proposition 1.11. Suppose M is a k-dimensional subspace of an n-dimen- 
sional inner product space (V, (., .)). Then 

(i) M n M'= (0). 

(ii) M @ M L  = V. 
(iii) ( M L ) ' =  M. 

Proof. Let {x,, . . . , x,) be a basis for V such that (x,, . . . , x,) is a basis for 
M. Applying the Gram-Schmidt process to (x,, . . . , x,), we get an ortho- 
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normal basis {y,,. . ., y,) such that {y ,,.. ., y,) is a basis for M. Let 
N = span{y,+,,. . . , y,). We claim that N = ML . It is clear that N G ML 
sincey, 1 M f o r j  = k + 1, ..., n. Butifx E M L ,  thenx = C;(x, y,)y,and 
(x, y,) = 0 for i = 1 ,..., k since x E M L ,  that is, x = C ; + , ( x ,  y,)y, E N. 
Therefore, M = NL . Assertions (i) and (ii) now follow easily. For (iii), ML 
is spanned by { y,, ,, . . . , y,) and, arguing as above, (MI)'  must be 
spanned by y,, . . . , y,, which is just M. 

The decomposition, V = M @ ML , of an inner product space is called 
an orthogonal direct sum decomposition. More generally, if M,, . . . , Mk are 
subspaces of V such that Mi 1 M, for i # j and V = MI @ M2 @ @ Mk, 
we also speak of the orthogonal direct sum decomposition of V. As we have 
seen, every direct sum decomposition of a finite dimensional vector space 
has associated with it two projections. When V is an inner product space 
and V = M @ ML , then the projection on M along ML is called the 
orthogonalprojection onto M. If P is the orthogonal projection onto M, then 
I - P is the orthogonal projection onto M I .  The thing that makes a 
projection an orthogonal projection is that its null space must be the 
orthogonal complement of its range. After introducing adjoints of linear 
transformations, a useful characterization of orthogonal projections is given. 

When (V, ( a ,  .)) is an inner product space, a number of special types of 
linear transformations in C(V, V) arise. First, we discuss the adjoint of a 
linear transformation. For A E C(V, V), consider (x, Ay). For x fixed, 
(x, Ay) is a linear function of y, and, by Proposition 1.9, there exists a 
unique vector (which depends on x)  z(x) E V such that (x, Ay) = (z(x), y )  
for ally E V. Thus z defines a function from V to V that takes x into z(x). 
However, the verification that z(a,x, + a2x2) = alz(xl)  + a2z(x2) is 
routine. Thus the function z is a linear transformation on V to V, and this 
leads to the following definition. 

Definition 1.16. For A E C(V, V), the unique linear transformation in 
C(V, V), denoted by A', which satisfies (x, Ay) = (A'x, y), for all x, y E V, 
is called the adjoint (or transpose) of A. 

The uniqueness of A' in Definition 1.16 follows from the observation that 
if (Bx, y )  = (Cx, y )  for all x, y E V, then ((B - C)x, y)  = 0. Taking 
y = (B - C)x yields ((B - C)x, (B - C)x) = 0 for all x, so (B - C)x = 0 
for all x. Hence B = C. 

Proposition 1.12. If A, B E C(V, V), then (AB)' = B'A', and if A is 
invertible, then (A- I)' = (A')- l .  Also, (A')' = A. 
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Proof. (AB)' is 
(x, ABy). Using 
(B'A'x, y). Thus 

the transformation in C(V, V) that satisfies ((AB)'x, y) = 

the definition of A' and B', (x, ABy) = (A'x, By) = 

(AB)' = B'A'. The other assertions are proved similarly. 

Definition 1.17. A linear transformation in C(V, V) is called: 

(i) Self-adjoint (or symmetric) if A = A'. 
(ii) Skew symmetric if A' = -A. 

(iii) Orthogonal if (Ax, Ay) = (x, y) for x, y E V. 

For self-adjoint transformations, A is: 

(iv) Non-negative definite (or positive semidefinite) if (x, Ax) 2 0 for 
x E V. 

(v) Positive definite if (x, Ax) > 0 for all x * 0. 

The remainder of this section is concerned with a variety of descriptions 
and characterizations of the classes of transfcrmations defined above. 

Proposition 1.13. Let A E C (V, V). Then 

(i) %(A)=  (%(A'))' .  

(ii) %(A) = % ( AA'). 
(iii) %(A) = % ( A'A). 
(iv) r( A) = r( A') 

Proof. Assertion (i) is equivalent to (%(A))'= %(Af). But x E %(A') 
means that 0 = (y, A'x) for ally E V, and this is equivalent to x I %(A) 
since (y, A'x) = (Ay, x). This proves (i). For (ii), it is clear that %(AA') c 
%(A). If x E %(A), then x = Ay for some y E V. Write y = y, + y2 where 
y, E %(Af) and y2 E (%(A'))' . From (i), (%(A'))' = %(A), so Ay2 = 0. 
Since y, E %(Af), y, = A'z for some z E V. Thus x = Ay = Ay, = AA'z, so 
x E %(AA'). 

To prove (iii), if Ax = 0, then A'Ax = 0, so %(A) g %( A'A). Con- 
versely, if A'Ax = 0, then 0 = (x, A'Ax) = (Ax, Ax), so Ax = 0, and 
%(A'A) s %(A). 

Since dim(% (A)) + dim(% (A)) = dim(V), dim(% (A')) + dim(% (Af)) 
= dim(V), and %(A) = (%(At))' , it follows that r(A) = r(A'). 
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If A E C(V, V) and r(A) = 0, then A = 0 since A must map everything 
into 0 E V. We now discuss the rank one linear transformations and show 
that these can be thought of as the "building blocks" for C(V, V). 

Proposition 1.14. For A E C(V, V), the following are equivalent: 

(i) r (A)= 1. 

(ii) There exist x, * 0 and yo * 0 in V such that Ax = (yo, x)x, for 
x E v. 

Proof: That (ii) implies (i) is clear since, if Ax = (yo, x)x,, then %(A) = 

span{x,), which is one-dimensional. Thus suppose r(A) = 1. Since 
3 (A) is one-dimensional, there exists x, E %(A) with x, * 0 and %(A) = 

span{x,). As Ax E %(A) for all x, Ax = a(x)x, where a(x) is some scalar 
that depends on x. The linearity of A implies that a(P,xl + P2x2) = 

P1a(xl) + P2a(x2). Thus a is a linear function on V and, by Proposition 
1.10, a(x) = (yo, x)  for some yo E V. Since a(x) f 0 for some x E V, 
yo -+ 0. Therefore, (i) implies (ii). q 

This description of the rank one linear transformations leads to the 
following definition. 

Definition 1.18. Given x, y E V, the outer product of x and y, denoted by 
x y, is the linear transformation on V to V whose value at z is (x y)z = 

(Y, z)x. 
ThusxO y E C(V,V) a n d x o  y = Oiffxoryiszero .  Whenx * 0 and 

y += 0, % (x q y) = span{x) and 9L (X q y) = (span{ y))' . The result of 
Proposition 1.14 shows that every rank one transformation is an outer 
product of two nonzero vectors. The following properties of outer products 
are easily verified: 

0) xU(a,y,  + a2y2) = a1xO Yl + a2xO ~ 2 .  
(ii) (a,xl  + a2x2)U y = a1x,O y + a 2 x 2 0  y. 

(iii) (XU y)' = yOx. 

(iv) (x, Y , ) ( x , ~  ~ 2 )  = (Y,, ~21x1 q Y2. 

One word of caution: the definition of the outer product depends on the 
inner product on V. When there is more than one inner product for V, care 
must be taken to indicate which inner product is being used to define the 
outer product. The claim that rank one linear transformations are the 
building blocks for C(V, V) is partially justified by the following proposi- 
tion. 
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Proposition 1.15. Let {x,,. . . , x,) be an orthonormal basis for (V, (., .)). 
Then {xiO xj; i, j = 1,. . . , n) is a basis for C(V, V). 

Proof: If A  E C(V, V), A  is determined by the n2 numbers aij = (xi, Ax,). 
But the linear transformation B = CCai,x,O x, satisfies 

Thus B = A  so every A  E e(V, V) is a linear combination of {xiO x,li, j = 

1,. . . , n}. Since dim(C(V, V)) = n2, the result follows. q 

Using outer products, it is easy to give examples of self-adjoint linear 
transformations. First, since linear combinations of self-adjoint linear trans- 
formations are again self-adjoint, the set M of self-adjoint transformations 
is a subspace of C(V, V). Also, the set N of skew symmetric transformations 
is a subspace of C(V, V). It is clear that the only transformation that is both 
self-adjoint and skew symmetric is 0, so M n N = (0). But if A  E C(V, V), 
then 

A + A f  A - A '  A = -  A + A '  A - A '  
2 

+- 
2 ' 2 E M ,  and - 

2 
E N  

This shows that C(V, V) = M @ N. To give examples of elements of M, let 
x, , .  . . , x, be an orthonormal basis for (V,(., .)). For each i, xiO xi is 
self-adjoint, so for scalars ai ,  B = CaixiO x, is self-adjoint. The geometry 
associated with the transformation B is interesting and easy to describe. 
Since llx,ll = 1, (xi = xi xi, SO xi xi is a projection on span{xi) 
along (~pan{x,) )~  -that is, xiO xi is the orthogonal projection on span{xi} 
as the null space of x,O x, is the orthogonal complement of its range. Let 
Mi = span{x,}, i = 1,. . . , k. Each M, is a one-dimensional subspace of 
(V,(.;)),M,I M,i f i* j ,andM, @ M 2 @  @ M,= V.Hence, Visthe 
direct sum of n mutually orthogonal subspaces and each x E V has the 
unique representation x = C(x, xi)xi where (x, xi)xi = (xiO xi)x is 
the projection of x onto Mi, i = 1,. . . , n. Since B is linear, the value of Bx is 
completely determined by the value of B on each Mi, i = 1,. . . , n. However, 
if y E M,, then y = ax, for some a E R and By = aBx, = aCa,(xiO xi)x, 
= aol,xj = ~ y .  Thus when B is restricted to M,, B is a, times the identity 
transformation, and understanding how B transforms vectors has become 
particularly simple. In summary, take x E V and write x = C(x, xi)xi; then 
Bx = Cai(x, x,)x,. What is especially fascinating and useful is that every 
self-adjoint transformation in C(V, V) has the representation Ca,xiO xi for 
some orthonormal basis for V and some scalars a,, .  . . , a,. This fact is 
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known as the spectral theorem and is discussed in more detail later in this 
chapter. For the time being, we are content with the following observation 
about the self-adjoint transformation B = CaixiO xi: B is positive definite 
iff a ,  > 0, i = 1,. . . , n. This follows since (x, Bx) = Cai(x, and x = 0 
iff (x, = 0 for all i = 1,. . . , n.  For exactly the same reasons, B is 
non-negative definite iff a i  > 0 for i = 1,. . . , n.  Proposition 1.16 introduces 
a useful property of self-adjoint transformations. 

Proposition 1.16. If A, and A, are self-adjoint linear transformations in 
C(V, V) such that (x, A,x) = (x, A,x) for all x, then A, = A,. 

Proof: It suffices to show that (x, A,y) = (x, A2y) for all x, y E V. But 

Since (z, A,z) = (z, A,z) for all z E V, we see that (x, Aly) = (x, A2y). 

In the above discussion, it has been observed that, if x E V and llxll = 1, 
then x x is the orthogonal projection onto the one-dimensional subspace 
span{x). Recall that P E C(V, V) is an orthogonal projection if P is a 
projection (i.e., P 2  = P )  and if %(P)  = (%(P))' . The next result char- 
acterizes orthogonal projections as those projections that are self-adjoint. 

Proposition 1.17. If P E C(V, V), the following are equivalent: 

(i) P is an orthogonal projection. 
(ii) P 2 = P = P ' .  

Proof: If (ii) holds, then P is a projection and P is self-adjoint. By 
Proposition 1.13, %(P)  = (%(P'))' = (%(P))I  since P = P'. Thus P is 
an orthogonal projection. Conversely, if (i) holds, then p2 = P since P is a 
projection. We must show that if P is a projection and %(P)  = ( % ( P ) ) l ,  
then P = P'. Since V = % (P)  @ %(P), consider x, y E V and write x = 

x, + x,, y = y, + y, with x,, y, E %(P)  and x,, y2 E %(P)  = (%(P) ) l .  
Using the fact that P is the identity on %(P), compute as follows: 

(P'x, y )  = (x ,  PY) = (XI + x2, PY,) = (XI? Y,) = (px, ,  Y,) 



22 VECTOR SPACE THEORY 

Since P' is the unique linear transformation that satisfies (x, Py) = (P'x, y), 
we have P = P'. 

It is sometimes convenient to represent an orthogonal projection in terms 
of outer products. If P is the orthogonal projection onto M, let {x,, . . . , x,) 
be an orthonormal basis for M in (V,(., a)). Set A = Cx,O xi so A is 
self-adjoint. If x E M, then x = C(x, xi)xi and Ax = (XxiO xi)x = 

C(x, x,)x, = X. If x E M I ,  then Ax = 0. Since A agrees with P on M and 
M I  , A = P = Cx,O xi. Thus all orthogonal projections are sums of rank 
one orthogonal projections (given by outer products) and different terms in 
the sum are orthogonal to each other (i.e., (x,O xi)(x,O x,) = 0 if i * j). 
Generalizing this a little bit, two orthogonal projections PI and P2 are called 
orthogonal if PIP2 = 0. It is not hard to show that PI and P, are orthogonal 
to each other iff the range of PI and the range of P, are orthogonal to each 
other, as subspaces. The next result shows that a sum of orthogonal 
projections is an orthogonal projection iff each pair of summands is 
orthogonal. 

Proposition 1.18. Let PI, .  . . , P, be orthogonal projections on (V, (., .)). 
Then P = PI  + . . . + P, is an orthogonal projection iff PiP, = 0 for i * j. 

Proof. See Halmos (1958, Section 76). q 

We now turn to a discussion of orthogonal linear transformations on an 
inner product space (V, (., a)) .  Basically, an orthogonal transformation is 
one that preserves the geometric structure (distance and angles) of the inner 
product. A variety of characterizations of orthogonal transformations is 
possible. 

Proposition 1.19. If (V, (., a ) )  is a finite dimensional inner product space 
and if A E C(V, V), then the following are equivalent: 

(i) (Ax, Ay) = (x, y)  for all x, y E V. 
(ii) llAxll = llxll for all x E V. 
(iii) AA' = A'A = I. 
(iv) If {x,,. . . , x,) is an orthonormal basis for (V, (., .)), then 

{Ax,,. . . , Ax,) is also an orthonormal basis for (V, (., -)). 

Proof. Recall that (i) is our definition of an orthogonal transformation. We 
prove that (i) implies (ii), (ii) implies (iii), (iii) implies (i), and then show that 
(i) implies (iv) and (iv) implies (ii). That (i) implies (ii) is clear since 
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1 1  ~ ~ 1 1 ,  = (Ax, Ax). For (ii) implies (iii), (x, x)  = (Ax, Ax) = (x, A'Ax) 
implies that A'A = I since A'A and I are self-adjoint (see Proposition 1.16). 
But, by the uniqueness of inverses, this shows that A' = A-' so I = AA-' 
= AA' and (iii) holds. Assuming (iii), we have (x, y)  = (x, A'Ay) = 

(Ax, Ay) and (i) holds. If (i) holds and {x,,. . . , x,) is an orthonormal basis 
for (V, ( . , a)), then 4, = (xi, x,) = (Ax,, Ax,), which implies that {Ax,, . . . , 
Ax,) is an orthonormal basis. Now, assume (iv) holds. For x E V, we have 
x = C(x, xi)x, and (1x11~ = C(x, xi)'. Thus 

llAx1I2 = (Ax, Ax) = (x,  x,)Ax,, (x ,  x,) Ax, 
i 

Therefore (ii) holds. 

Some immediate consequences of the preceding proposition are: if A is 
orthogonal, so is A-' = A' and if A,  and A, are orthogonal, then AlA2 is 
orthogonal. Let B(V) denote all the orthogonal transformations on the 
inner product space (V, ( -  , . )). Then Q(V) is closed under inverses, I E B(V), 
and O(V) is closed under products of linear transformations. In other 
words, B(V) is a group of linear transformations on (V,(., .)) and B(V) is 
called the orthogonal group of (V,(., .)). This and many other groups of 
linear transformations are studied in later chapters. 

One characterization of orthogonal transformations on (V, (., .)) is that 
they map orthonormal bases into orthonormal bases. Thus given two 
orthonormal bases, there exists a unique orthogonal transformation that 
maps one basis onto the other. This leads to the following question. Suppose 
{x,, . . . , x,) and {y,, . . . , y,) are two finite sets of vectors in (V(-, .)). Under 
what conditions will there exist an orthogonal transformation A such that 
Ax, = y, for i = 1,. . ., k? If such an A E Q(V) exists, then (xi, x,) = 

(Ax,, Ax,) = (y,, y,) for all i, j = 1,. . . , k. That this condition is also 
sufficient for the existence of an A E O(V) that maps xi toy,, i = 1,. . . , k, 
is the content of the next result. 

Proposition 1.20. Let {x,,. . ., x,) and {y,,. .., y,) be finite sets in 
( V, ( . , . )). The following are equivalent: 

(i) (x, ,x,)= (y,, y,) fori, j =  1 ,..., k. 
(ii) There exists an A E O(V) such that Ax, = y, for i = 1,. . . , k .  
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Proof. That (ii) implies (i) is clear, so assume that (i) holds. Let M = 

span{x,, . . . , x,). The idea of the proof is to define A on M using linearity 
and then extend the definition of A to V using linearity again. Of course, it 
must be verified that all this makes sense and that the A so defined is 
orthogonal. The details of this, which are primarily computational, follow. 
First, by (i), Ca,xi = 0 iff Caiy, = 0 since (Ca ix i ,C~x , )  = CCai9(xi, x,) 
= CCa,aj(y,, y,) = (Caiyj,Cajyj). Let N = span{y,,. . . , y,) and define B 
on M to N by B(Caixi) = Caiyi. B is well defined since Caixi = CPixi 
implies that Ca,y, = C&yi and the linearity of B on M is easy to check. 
Since B maps M onto N, dim(N) g dim(M). But if B(Caixi) = 0, then 
Ca,y, = 0, so Caixi = 0. Therefore the null space of B is (0) G M and 
dim(M) = dim(N). Let M I  and N' be the orthogonal complements of M 
and N, respectively, and let {u,,. . . , us) and {v,,. . . , us) be orthonormal 
bases for M I  and NL , respectively. Extend the definition of B to V by first 
defining B(ui) = vi for i = 1,. . . , s and then extend by linearity. Let A be 
the linear transformation so defined. We now claim that l lA~11~ = llw112 for 
all w E V. To see this write w = w, + w2 where w, E M and w2 E ML . 
Then Awl E N and Aw, E NL . Thus 1 1 ~ ~ 1 1 ~  = llAwI + Aw2112 = l l ~ w , 1 1 ~  + 
ll~w,11~. But w, = Caixi for some scalars a,. Thus 

Similarly, I I A W , ~ ~ ~  = llw2112. Since llw112 = llw1112 + llw2112, the claim that 
1 1  Aw112 = 1 1  wl12 is established. By Proposition 1.19, A is orthogonal. 

4 Example 1.6. Consider the real vector space Rn with the standard 
basis and the usual inner product. Also, let en, be the real vector 
space of all n x n real matrices. Thus each element of en,, de- 
termines a linear transformation on Rn and vice versa. More pre- 
cisely, if A is a linear transformation on Rn to Rn and [A] denotes 
the matrix of A in the standard basis on both the range and domain 
of A, then [Ax] = [A]x for x E Rn. Here, [Ax] E Rn is the vector 
of coordinates of Ax in the standard basis and [A]x means the 
matrix [A] = {aij) times the coordinate vector x E Rn. Conversely, 
if [A] E en, and we define a linear transformation A by Ax = [Alx, 
then the matrix of A is [A]. It is easy to show that if A is a linear 
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transformation on Rn to Rn with the standard inner product, then 
[A']  = [A] '  where A' denotes the adjoint of A and [A]'  denotes the 
transpose of the matrix [ A ] .  Now, we are in a position to relate the 
notions of self-adjointness and skew symmetry of linear transforma- 
tions to properties of matrices. Proofs of the following two asser- 
tions are straightforward and are left to the reader. Let A be a linear 
transformation on Rn to Rn with matrix [ A ] .  

(i) A is self-adjoint iff [ A ]  = [A] ' .  
(ii) A is skew-symmetric iff [A] '  = - [ A ] .  

Elements of C,,  , that satisfy B = B' are usually called symmetric 
matrices, while the term skew-symmetric is used if B' = - B,  B E 

C,,  ,. Also, the matrix B is called positive definite if x'Bx > 0 for all 
x E Rn,  x * 0. Of course x'Bx is just the standard inner product of 
x with Bx. Clearly, B is positive definite iff the linear transforma- 
tion it defines is positive definite. 

If A is an orthogonal transformation on Rn to Rn,  then [ A ]  must 
satisfy [ A ] [ A ] '  = [ A ] ' [ A ]  = In where In is the n X n identity matrix. 
Thus a matrix B E en is called orthogonal if BB' = B'B = In.  An 
interesting geometric iherpretation of the condition BB' = B'B = I, 
follows. If B = {b,,), the vectors b, E Rn with coordinates b. ., 

IJn i = 1,. . . , n, are the column vectors of B and the vectors ci E R 
with coordinates b,,, j = 1,. . . , n, are the row vectors of B. The 
matrix BB' has elements c:c, and the condition BB' = I, means that 
c;cJ = a,,-that is, the vectors c,, . . . , c, form an orthonormal basis 
for Rn in the usual inner product. Similarly, the condition B'B = I, 
holds iff the vectors b,,. . . , bn form an orthonormal basis for Rn.  
Hence a matrix B is orthogonal iff both its rows and columns 
determine an orthonormal basis for Rn with the standard inner 
product. 

1.4. THE CAUCHY-SCHWARZ INEQUALITY 

The form of the Cauchy-Schwarz Inequality given here is general enough to 
be applicable to both finite and infinite dimensional vector spaces. The 
examples below illustrate that the generality is needed to treat some 
standard situations that arise in analysis and in the study of random 
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variables. In a finite dimensional inner product space (V, (., a)), the inequal- 
ity established in this section shows that I(x, y)l 6 llxllll yll where 1 1 ~ 1 1 ~  = 

(x, x). Thus - 1 Q (x, ~)/llxllllyll Q 1 and the quantity (x, ~)/llxllllyII is 
defined to be the cosine of the angle between the vectors x and y. A variety 
of applications of the Cauchy-Schwarz Inequality arise in later chapters. 
We now proceed with the technical discussion. 

Suppose that V is a real vector space, not necessarily finite dimensional. 
Let [., . ]  denote a non-negative definite symmetric bilinear function on 
V x V-that is, [ - ,  . ]  is a real-valued function on V x V that satisfies (i) 
[x, Y I  = [Y, XI, (ii) [alxl + a2x2, yl = a,[x,, yl + az[x,, yl, and (iii) [x, X I  
2 0. It is clear that (i) and (ii) imply that [x, a,y, + a2y2] = a,[x, y,] + 
a,[x, y2]. The Cauchy-Schwarz Inequality states that [x, Q [x, x][y, y]. 
We also give necessary and sufficient conditions for equality to hold in this 
inequality. First, a preliminary result. 

Proposition 1.21. Let M = {x([x, x] = 0). Then M is a subspace of V. 

Proof: If x E M and a E R, then [ax, ax] = a2[x, X] = 0 SO ax E M. 
Thus we must show that if x,,  x2 E M, then x, + x, E M. For a E R, 
0 Q Ix, + ax,, x, + ax,] = [x,, x,] + 2a[x,, x2] + a2[x2, x,] = 2a[x1,x2] 
since x,, x, E M. But if 2a[x,, x,] 2 0 for all a E R, [x,, x,] = 0, and this 
implies that 0 = [x, + ax,, x, + ax,] for all a E R by the above equality. 
Therefore, x, + ax, E M for all a when x,, x2 E M and thus M is a 
subspace. 

Theorem 1.1. (Cauchy-Schwan Inequality). Let [ a ,  . ]  be a non-negative 
definite symmetric bilinear function on V X V and set M = {x)[x, x] = 0). 
Then: 

(i) [x, yI2 Q [x, x][Y, Y] for x, Y E v- 
(ii) [x, Y]2 = [x, x][y, y] iff ax + by E M for some real a and p not 

both zero. 

Proof: To prove (i), we consider two cases. If x E M, then 0 Q [y + ax, y 
+ ax] = [y, y] + 2a[x, y] for all a E R, so [x, y] = 0 and (i) holds. Sirni- 
larly, if y E M, (i) holds. If x P M and y P M, let x, = x/[x, x]'/2 and let 
y ,  = y/[y, y]'/2. Then we must show that I[x,, yl]l Q 1. This follows from 
the two inequalities 

0 Q [x,  - y,, x, - Y I I  = 2 - 2[x,, Y I I  
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and 

0 < [x,  + y , , x ,  + y , l  = 2 + 2[x,, y, l .  

The proof of (i) is now complete. 
To prove (ii), first assume that [x, y]2 = [x, x][y, y]. If either x E M or 

y E M, then ax + py E M for some a, p not both zero. Thus consider 
x P M and y P M. An examination of the proof of (i) shows that we can 
have equality in (i) iff either 0 = [x, - y,, x, - y,] or 0 = [x, + y,, x, 
+y,] and, in either case, this implies that ax + by E M for some real a, P 
not both zero. Now, assume ax + py E M for some real a, P not both zero. 
If a = 0 or /3 = 0 or x E M or y E M, we clearly have equality in (i). For 
the case when crp * 0, x GC M, and y P M, our assumption implies that 
x,  + yy, E M for some y * 0, since M is a subspace. Thus there is a real 
y * 0 such that0 = [x, + yy,,x, + yy,] = 1 + 2y[xl, y,] + y2. Theequa- 
tion for the roots of a quadratic shows that this can hold only if ([x,, y,]l = 1. 
Hence equality in (i) holds. 

+ Example 1.7. Let (V, (-,  .)) be a finite dimensional inner product 
space and suppose A is a non-negative definite linear transforma- 
tion on V to V. Then [x, y]  = (x, Ay) is a non-negative definite 
symmetric bilinear function. The set M = (xl(x, Ax) = 0) is equal 
to %(A)-this follows easily from Theorem l.l(i). Theorem 1.1 
shows that (x, A Y ) ~  < (x, Ax)(y, Ay) and provides conditions for 
equality. In particular, when A is nonsingular, M = (0) and equality 
holds iff x and y are linearly dependent. Of course, if A = I, then 
we have (x, Y ) ~  < l l ~ 1 1 ~ 1 1  y112, which is one classical form of the 
Cauchy-Schwarz Inequality. + 

+ Example 1.8. In this example, take V to be the set of all continu- 
ous real-valued functions defined on a closed bounded interval, say 
a to b, of the real line. It is easily verified that 

is symmetric, bilinear, and non-negative definite. Also [x, x]  > 0 
unless x = 0 since x is continuous. Hence M = (0). The 
Cauchy-Schwarz Inequality yields 
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+ Example 1.9. The following example has its origins in the study of 
the covariance between two real-valued random variables. Consider 
a probability space (9 ,  F,  Po) where 9 is a set, F is a a-algebra of 
subsets of 9 ,  and Po is a probability measure on 9. A random 
variable X is a real-valued function defined on 9 such that the 
inverse image of each Borel set in R is an element of F;  symboli- 
cally, X-'(B) E Ffor each Borel set B of R. Sums and products of 
random variables are random variables and the constant functions 
on 9 are random variables. If X is a random variable such that 
jlX(w)lPo(do) < + co, then X is integrable and we write &X for 
jX(o)Po(do). 

Now, let V be the collection of all real-valued random variables 
X, such that &x2 < + co. It is clear that if X E V, then ax E V for 
all real a. Since (XI + X2)2 < 2(X: + X:), if XI and X2 are in V, 
then XI + X2 is in V. Thus V is a real vector space with addition 
being the pointwise addition of random variables and scalar multi- 
plication being pointwise multiplication of .random variables by 
scalars. For XI, X2 E V, the inequality IX,X21 G X: + X: implies 
that X,X2 is integrable. In particular, setting X2 = 1, XI is integra- 
ble. Define [ a ,  . ]  on V X V by [XI, X2] = &(XlX2). That [., . ]  is 
symmetric and bilinear is clear. Since [XI, XI] = &x: 2 0, [ - ,  . ]  is 
non-negative definite. The Cauchy-Schwarz Inequality yields 
(&XlX2)2 < &x:&x:, and setting X2 = 1, this gves ( & x , ) ~  < 
&X:. Of course, this is just a verification that the variance of a 
random variable is non-negative. For future use, let var(Xl) = &X: 
- To discuss conditions for equality in the 
Cauchy-Schwarz Inequality, the subspace M = {XI[X, XI = 0) 
needs to be described. Since [X, XI = &X2, X E M iff X is zero, 
except on set of Po measure zero-that is, X = 0 a.e. (Po). There- 
fore, (&XlX2)2 = &x:&x: iff axl + PX2 = 0 a.e. (Po) for some 
real a, fi not both zero. In particular, var(X,) = 0 iff XI - &XI = 0 
a.e. (Po). 

A somewhat more interesting non-negative definite symmetric 
bilinear function on V X V is 

and is called the covariance between XI and X2. Symmetry is clear 
and bilinearity is easily checked. Since cov{Xl, XI) = &x: - 
( & x ~ ) ~  = var(X,), cov{. , -) is non-negative definite and MI = 

{Xlcov{X, X} = 0) is just the set of random variables in V that have 
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variance zero. For this case, the Cauchy-Schwarz Inequality is 

Equality holds iff there exist a, P, not both zero, such that var(aX, 
+ fix2) = 0; or equivalently, a(X, - &XI) + P(X2 - &X,) = 0 
a.e. ( P o )  for some a,  /3 not both zero. The properties of cov{., .) 
given here are used in the next chapter to define the covariance of a 
random vector. + 

When (V, (., .)) is an inner product space, the adjoint of a linear transfor- 
mation in C(V, V) was introduced in Section 1.3 and used to define some 
special linear transformations in C(V, V). Here, some of the notions dis- 
cussed in relation to C(V, V) are extended to the case of linear transforma- 
tions in C(V, W) where (V,(., a ) )  and (W,[., -1) are two inner product 
spaces. In particular, adjoints and outer products are defined, bilinear 
functions on V X W are characterized, and Kronecker products are intro- 
duced. Of course, all the results in this section apply to C(V, V) by taking 
(W, [., .I) = (V, (., .)) and the reader should take particular notice of this 
special case. There is one point that needs some clarification. Given (V, (. , a ) )  

and (W, [., .I), the adjoint of A E C(V, W), to be defined below, depends 
on both the inner products (- ,  .) and [., .I. However, in the previous 
discussion of adjoints in C(V, V), it was assumed that the inner product was 
the same on both the range and the domain of the linear transformation 
(i.e., V is the domain and range). Whenever we discuss adjoints of A E 

C(V, V) it is assumed that only one inner product is involved, unless the 
contrary is explicitly stated-that is, when specializing results from C(V, W) 
to C(V, V), we take W = V and [., . ]  = (-, .). 

The first order of business is to define the adjoint of A E C(V, W) where 
(V,(., .)) and (W,[., a ] )  are inner product spaces. For a fixed w E W, 
[w, Ax] is a linear function of x E V and, by Proposition 1.10, there exists a 
unique vector y(w) E V such that [w, Ax] = (y(w), x)  for all x E V. It is 
easy to verify that y(alw, + a2w2) = a ,  y(wl) + a, y(w,). Hence y(.)  de- 
termines a linear transformation on W to V, say A', whch satisfies [w, Ax] 
= (A'w, x) for all w E Wand x E V. 

Definition 1.19. Given inner product spaces (V, ( . , . )) and ( W, [ . , .I), if 
A E C(V, W), the unique linear transformation A' E C(W, V) that satisfies 
[w, Ax] = (A'w, x)  for all w E W and x E V is called the adjoint of A. 
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The existence and uniqueness of A' was demonstrated in the discussion 
preceeding Definition 1.19. It is not hard to show that ( A  + B)' = A' + B', 
(A')' = A, and (aA)' = aA'. In the present context, Proposition 1.13 be- 
comes Proposition 1.22. 

Proposition 1.22. Suppose A E C(V, W). Then: 

(i) %(A) = (%(Ar))'. 

(ii) % (A) = % ( AA'). 
(iii) % (A) = % ( A'A). 
(iv) r(A) = r(At). 

ProoJ: The proof here is essentially the same as that given for Proposition 
1.13 and is left to the reader. 

The notion of an outer product has a natural extension to C(V, W). 

Definition 1.20. For x E (V,(-,  .) and w E (W, [., .I), the outer product, 
wO x is that linear transformation in C(V, W) given by (wO x)(y) = 
(x, y)w for ally E V. 

If w = 0 or x = 0, then w x = 0. When both w and x are not zero, then 
w q x has rank one, %(w q x )  = span{w), and %(w q x )  = (span{x))l. 
Also, a minor modification of the proof of Proposition 1.14 shows that, if 
A E C(V, W), then r(A) = 1 iff A = wO x for some nonzero w and x. 

Proposition 1.23. The outer product has the following properties: 

(i) (alwl + a2w2) q x = aIwI q x + a2w2 q X. 

(ii) wO(a,x, + a2x2) = alwO x l  + a2w0 x,. 

(iii) (wOx) '=  xO w E C(W,V). 

If (Vl,(-,  .),), (V2,(-, .),), and (&,(., . )3)  are inner product spaces with 
x1 E Vl, x2, y2 E V2, and y3 E V3, then 

Proof: Assertions (i), (ii), and (iii) follow easily. For (iv), consider x E Vl. 
Then ( x 2 0  x l )x  = (xl ,  xI1x2, so ( y 3 0  y2)(x20 x l )x  = (XI ,  X ) I ( Y ~ O  ~ 2 ) x 2  
= (XI ,  x ) I ( Y ~ ,  ~ 2 ) 2 ~ 3  V3. ( ~ 2 ,  ~ 2 ) 2 ( ~ 3  q = 

( ~ 2 ,  Y ~ ) , ( ~ I ,  ~ 1 1 ~ 3 .  Thus (iv) 



There is a natural way to construct an inner product on C(V, W) from 
inner products on V and W. This construction and its relation to outer 
products are described in the next proposition. 

Proposition 1.24. Let {x,,. . . , x,) be an orthonormal basis for (V, (., .)) 
and let {w,, . . . , w,) be an orthonormal basis for (W, [., .I). Then: 

(i) { w , ~  x,(i = 1,. . . , n, j = 1,. . . , m) is a basis for C(V, W). 
Let a .  . = [w,, Ax,]. Then: 

11 

(ii) A = CCa,,w,O x, and the matrix of A is [A] = {a,,) in the given 
bases. 

If A = CCa,,w,U x, and B = CCb,,w,U x,, define (A, B) = CCa,,b,,. Then: 

(iii) ( .  , - ) i s  aninnerproductonC(V,W) and{w,Ox,li = 1, ..., n, j 
- - 1,. . . , m) is an orthonormal basis for (C(V, W), ( . , a ) ) .  

Proof: Since dim(C(V, W)) = mn, to prove (i) it suffices to prove (ii). Let 
B = CCa,,w,O x,. Then 

so[w,, Bx,] = [w,, Ax,] for i = 1,. . . , n and j = 1,. . . , m. Therefore, [w, Bx] 
= [w, Ax] for all w E Wand x E V, which implies that [w, (B - A)x] = 0. 
Choosing w = (B - A)x, we see that (B - A)x = 0 for all x E V and, 
therefore, B = A. To show that the matrix of A is [A] = {a,,), recall that the 
matrix of A consists of the scalars b,, defined by Ax, = ZkbkJwk. The inner 
product of w, with each side of this equation is 

a,, = [w,, AX,] = Zbkj[w,, w,] = b. 1 J 

k 

and the proof of (ii) is complete. 
For (iii), ( - , a) is clearly symmetric and bilinear. Since (A, A) = =a$, 

the positivity of ( . , - )  follows. That {win x,li = 1,. . . , n, j = 1,. . . , m) is 
an orthonormal basis for (C(V, W), ( . , .)) follows immediately from the 
definition of ( . , a ) .  

A few words are in order concerning the inner product ( . , .) on 
C(V, W). Since {win x,li = 1,. . . , n, j = 1,. . . , m) is an orthonormal basis, 



32 VECTOR SPACE THEORY 

we know that if A E C(V, W), then 

since this is the unique expansion of a vector in any orthonormal basis. 
However, A = CC[w,, Ax,]w, x, by (ii) of Proposition 1.24. Thus 
(A, win x,) = [w,, Ax,] for i = 1,. . . , n and j = 1,. . . , m. Since both sides 
of this relation are linear in w, and x,, we have ( A ,  w q x )  = [w, Ax] for all 
w E W and x E V. In particular, if A = G q 2, then 

This relation has some interesting implications. 

Proposition 1.25. The inner product ( . , . ) on C(V, W) satisfies 

(i) (GO2,wOx)  = [ $ , W ] ( ~ , X )  

for all G, w E Wand 2, x E V, and ( . , .) is the unique inner product with 
this property. Further, if (z,,. . . , z,) and (y,, .  . . , y,) are any orthonormal 
bases for W and V, respectively, then (z ,0  yJli = 1,. . . , n, j = 1,. . . , m) is 
an orthonormal basis for (C(V, W), ( . , .)). 

Pro05 Equation (i) has been verified. If (. , .) is another inner product on 
C(V, W) that satisfies (i), then 

for all i , ,  i2 = 1,. . . , n and j,, j2 = 1,. . . , m where (x,, .  . . , x,) and 
(w,,. . . , w,) are the orthonormal bases used to define ( - , .). Using (i) of 
Proposition 1.24 and the bilinearity of inner products, this implies that 
(A, B) = (A, B) for all A, B E C(V, W). Therefore, the two inner products 
are the same. The verification that (z ,0  yjli = 1,. . . , n, j = 1,. . . , m) is an 
orthonormal basis follows easily from (i). q 

The result of Proposition 1.25 is a formal statement of the fact that 
( , a )  does not depend on the particular orthonormal bases used to define 
it, but ( - , . ) is determined by the inner products on V and W. Whenever V 
and Ware inner product spaces, the symbol ( . , .) always means the inner 
product on C(V, W) as defined above. 
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+ Example 1.10. Consider V = Rm and W = Rn with the usual inner 
products and the standard bases. Thus we have the inner product 
( , a )  on em,,--the linear space of n x m real matrices. For 
A = { a , , )  and B = { b , j )  in em,,, 

(A, B) = z a i j b j j .  
1 - 1  j = l  

If C = AB': n X n. then 

so (A, B) = Cc,,. In other words, (A, B) is just the sum of the 
diagonal elements of the n x n matrix AB'. This observation leads 
to the definition of the trace of any square matrix. If C : k x k is a 
real matrix, the trace of C, denoted by trC, is the sum of the 
diagonal elements of C. The identity (A, B) = (B, A) shows that 
tr AB' = tr B'A for all A, B E em ,. In the present example, it is 
clear that w O  x = wx' for x E Rm and w E Rn, so w O  x is just the 
n x 1 matrix w times the 1 x m matrix x'. Also, the identity in 
Proposition 1.25 is a reflection of the fact that 

for w, VG E Rn and x, 2 E Rm. + 
If (V, (., .)) and (W, [., .I) are inner product spaces and A E C(V, W), 

then [Ax, w] is linear in x for fixed w and linear in w for fixed x. This 
observation leads to the following definition. 

Definition 1.21. A function f defined on V x W to R is called bilinear if: 

These conditions apply for scalars a ,  and a,; x, x,, x, E V and w, w,, w, 
E W. 

Our next result shows there is a natural one-to-one correspondence 
between bilinear functions and C(V, W). 



34 VECTOR SPACE THEORY 

Proposition 1.26. If f is a bilinear function on V X W to R, then there 
exists an A E C(V, W) such that f (x ,  w )  = [Ax, w ]  for all x E V and 
w E W. Conversely, each A E C(V, W) determines the bilinear function 
[Ax, w] on V X W. 

Proof. Let {x,, . . . , x,) be an orthonormal basis for (V, (., a)) and {w,, . . . , 
w,)beanorthonormalbasisfor(W,[~, .I). Setaij  = f(xj,  w,) for i = 1,. . . , n 
and j = 1,. . . , m and let A = CCai,wiO x,. By Proposition 1.24, we have 

a,, = [AX,, wi] = f(x,, wi). 

The bilinearity off  and of [Ax, w] implies [Ax, w] = f(x,  w) for all x E V 
and w E W. The converse is obvious. q 

Thus far, we have seen that C(V, W) is a real vector space and that, if V 
and W have inner products (., .) and [., . I ,  respectively, then C(V, W) has a 
natural inner product determined by (., .) and [., . I .  Since C(V, W) is a 
vector space, there are: h e a r  transformations on C(V, W) to other vector 
spaces and there is not much more to say in general. However, C(V, W) is 
built from outer products and it is natural to ask if there are special linear 
transformations on C(V, W) that transform outer products into outer 
products. For example, if A E C(V, V) and B E C(W, W), suppose we 
define B @ A on C(V, W) by (B 8 A)C = BCA' where A' denotes the 
transpose of A E C(V, V). Clearly, B @ A is a linear transformation. If 
C = wO x, then ( B  8 A)(wO x) = B(wO x)A' E C(V, W). But for v E V, 

This calculation shows that (B @ A)(wO x) = (Bw)O(Ax), so outer prod- 
ucts get mapped into outer products by B @ A. Generalizing this a bit, we 
have the following definition. 

Definition 1-22. Let (Vl,(-,  . ) , I ,  (I/,,(., .I2), (W,,[., .Il), and (W2,[., . I2)  
be inner product spaces. For A E C(V,, V,) and B E C( W,, W,), the 
Kronecker product of B and A, denoted by B 8 A,  is a linear transformation 
on C(Vl, W,) to C(V,, W,), defined by 

( B  @ A)C = BCA' 

for all C E C(V,, W,). 



In most applications of Kronecker products, V, = V2 and W, = W,, so 
B 8 A is a linear transformation on C(V,, W,) to C(V,, W,). It is not easy to 
say in a few words why the transpose of A should appear in the definition of 
the Kronecker product, but the result below should convince the reader that 
the definition is the "right" one. Of course, by A', we mean the linear 
transformation on V2 to V,, which satisfies (x,, Ax,), = (A'x,, x,),  for 
x,  E V, and x, E V,. 

Proposition 1.27. In the notation of Definition 1.22, 

Also, 

(ii) (B 8 A)' = B' 8 A', 

where (B 8 A)' denotes the transpose of the linear transformation B 8 A 
on (C(VI> WI), ( . , . ) I )  to (C(V2, W,), ( , .),I. 

Prooj To verify (i), for v, E V2, compute as follows: 

Since this holds for all v, E V,, assertion (i) holds. The proof of (ii) requires 
we show that B' 8 A' satisfies the defining equation of the adjoint-that is, 
for C, E C(V,, W,) and C, E C(V,, W,), 

Since outer products generate C(V,, W,), it is enough to show the above 
holds for C, = w,Ox, with w, E Wl and x,  E V,. But, by (i) and the 
definition of transpose, 

= [B1C2Ax,, w , ] ,  = (B'C,A, w,U x , ) ,  

and this completes the proof of (ii). 
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We now turn to the case when A E C(V, V) and B E C(W, W) SOB 8 A 
is a linear transformation on C(V, W) to C(V, W). First note that if A is 
self-adjoint relative to the inner product on V and B is self-adjoint relative 
to the inner product on W, then Proposition 1.27 shows that B @ A is 
self-adjoint relative to the natural induced inner product on C(V, W). 

Proposition 1.28. F o r A i =  C(V,V), i =  1,2, and Bi E C(W,W), i =  1,2, 
we have: 

0) (B, 8 A,)(B, @ A,) = (BIB,) 8 (AIA,). 
(ii) If A,' and B;' exist, then (B, 8 A,)-' = B;' @ A-'  1 . 
(iii) If A, and Bl are orthogonal projections, then B, @ A, is an 

orthogonal projection. 

Proot The proof of (i) goes as follows: For C E C(V, W), 

(B, 8 A,)(B2 8 A2)C = (B, 8 A1)(B2CA;) = B,B,CA;A; 

Now, (ii) follows immediately from (i). For (iii), it needs to be shown that 
(B, 8 A,), = B, 8 A, = (B, 8 A,)'. The second equality has been verified. 
The first follows from (i) and the fact that B: = B, and A: = A,. 

Other properties of Kronecker products are given as the need arises. One 
issue to think about is this: if C E C(V, W) and B E C(W, W), then BC 
can be thought of as the product of the two linear transformations B and C. 
However, BC can also be interpreted as (B 8 I)C, I E C(V, ',)-that is, 
BC is the value of the linear transformation B @ I at C. Of course, the 
particular situation determines the appropriate way to think about BC. 

Linear isometries are the final subject of discussion in t h s  section, and 
are a natural generalization of orthogonal transformations on (V, (., .)). 
Consider finite dimensional inner product spaces V and W with inner 
products ( a ,  a )  and [., .]  and assume that dim V 6 dim W. The reason for 
this assumption is made clear in a moment. 

Definition 1.23. A linear transformation A E C(V, W) is a linear isometry 
if (v,, v,) = [Av,, Av,] for all v,, v, E V. 

If A is a linear isometry and v E V, v * 0, then 0 < (v, v) = [Av, Av]. 
This implies that %(A) = (01, so necessarily dim V g dim W. When W = V 
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and [., . ]  = (., .), then linear isometries are simply orthogonal transforma- 
tions. As with orthogonal transformations, a number of equivalent descrip- 
tions of linear isometries are available. 

Proposition 1.29. For A E C(V, W) (dim V < dim W), the following are 
equivalent: 

(i) A is a linear isometry. 
(ii) A'A = I  E C(V,V). 

(iii) [Av, Av] = (0, v), v E V. 

Proof. The proof is similar to the proof of Proposition 1.19 and is left to 
the reader. 

The next proposition is an analog of Proposition 1.20 that covers linear 
isometries and that has a number of applications. 

Proposition 1.30. Let v,,. . . , v, be vectors in (V,(-,  .)), let w,,. . . , w, be 
vectors in (W, [ a ,  .I), and assume dim V 6 dim W. There exists a linear 
isometryA E C(V, W) such that Av, = w,, i = 1,. . . , k, iff (v,, v,) = [w,, w,] 
fori,  j =  1 ,..., k. 

Proof: The proof is a minor modification of that given for Proposition 1.20 
and the details are left to the reader. 

Proposition 1.31. Suppose A E C(V, W,) and B E C(V, W2) where dim W, 
6 dim W,, and (., .), [., a],, and [., .I, are inner products on V, W,, and 
W,. Then A'A = B'B iff there exists a linear isometry \k E C( W,, W,) such 
that A = \kB. 

Proof: If A = \kB, then A'A = B1\k'\kB = B'B, since \k'\k = I E 
C(W,, W,). Conversely, suppose A'A = B'B and let { u , ,  . . . , om) be a basis 
for V. With xi = Av, E W, and y, = Bv, E W,, i = 1,. . . , m, we have [xi, 
x,],, = [Av,, Av.] = (v,, AfAvJ) = (v,, B'Bv,) = [Bv,, Bv,], = [y,, y,], for 

J 1 
i, J = 1,. . . , m. Applying Proposition 1.30, there exists a linear isometry 
\k E C(W2, W,) such that \ky, = x, for i = 1, ..., m. Therefore, \kBv, = Av, 
for i = 1,. . . , m and, since {v,, . . . , vm) is a basis for V, \kB = A. 

+ Example 1.11. Take V = Rm and W = Rn with the usual inner 
products and assume m g n.  Then a matrix A = {ajj) : n x m is a 
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linear isometry iff A'A = I, where I, is the m X m identity matrix. 
If a,,  . . . , a, denote the columns of the matrix A ,  then A'A is just 
the m x m matrix with elements aja,, i, j = 1,. . . , m. Thus the 
condition A'A = I, means that aja, = so A is a linear isometry 
on Rm to Rn iff the columns of A are an orthonormal set of vectors 
in R". Now, let G,,n be the set of all n X m real matrices that are 
linear isometries-that is, A E G,,n iff A'A = I,. The set G,," is 
sometimes called the space of m-frames in Rn as the columns of A 
form an m-dimensional orthonormal "frame" in Rn. When m = 1, 
GI,, is just the set of vectors in Rn of length one, and when m = n, 
Gn, is the set of all n x n orthogonal matrices. We have much more 
to say about T,, in later chapters. 

An immediate application of Proposition 1.31 shows that, if 
A : n, X m and B : n, X m are real matrices with n, < n ,, then 
A'A = B'B iff A = \kB where \k : n, X n, satisfies *'\k = In2. In 
particular, when n, = n ,, A'A = B'B iff there exists an orthogonal 
matrix \k: n, x n, such that A = \kB. 

1.6. DETERMINANTS AND EIGENVALUES 

At this point in our discussion, we are forced, by mathematical necessity, to 
introduce complex numbers and complex matrices. Eigenvalues are defined 
as the roots of a certain polynomial and, to insure the existence of roots, 
complex numbers arise. This section begins with complex matrices, determi- 
nants, and their basic properties. After defining eigenvalues, the properties 
of the eigenvalues of linear transformations on real vector spaces are 
described. 

In what follows, 6 denotes the field of complex numbers and the symbol 
i is reserved for m. If a E 6 ,  say a = a + ib, then ti = a - ib is the 
complex conjugate of a. Let 6 "  be the set of all n-tuples (henceforth called 
vectors) of complex numbers-that is, x E C" iff 

The number x, is called the jth coordinate of x, j = 1,. . . , n. For x, y E a", 
x + y is defined to be the vector with coordinates x, + y,, j = 1,. . . , n, and 
for a E C, ax is the vector with coordinates ax,, j = 1,. . . , n. Replacing R 
by 6 in Definition 1.1, we see that a" satisfies all the axioms of a vector 
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space where scalars are now taken to be complex numbers, rather than real 
numbers. More generally, if we replace R by C in (11) of Definition 1.1, we 
have the definition of a complex vector space. All of the definitions, results, 
and proofs in Sections 1.1 and 1.2 are valid, without change, for complex 
vector spaces. In particular, a" is an n-dimensional complex vector space 
and the standard basis for a" is {E,,. . . , E,) where E, has its jth coordinate 
equal to one and the remaining coordinates are zero. 

As with real matrices, an m x n array A = {a,,) for j = 1,. . . , rn, and 
k = 1,. . . , n where a,, E C is called an m x n complex matrix. If A = 

{a,,) : rn X n and B = {b,,) : n X p are complex matrices, then C = AB is 
the rn x p complex matrix with with entries c,, = X,a,,b,, for j = 1,. . . , rn 
and I = 1,. . . , p. The matrix C is called the product of A and B (in that 
order). In particular, when p = 1, the matrix B is n x 1 so B is an element 
of T .  Thus if x E a" (x now plays the role of B) and A : rn x n is a 
complex matrix, Ax E a"". Clearly, each A : m x n determines a linear 
transformation on a" to a"" via the definition of Ax for x E a*. For an 
m X n complex matrix A = {a,,), the conjugate transpose of A, denoted by 
A*, is the n X rn matrix A* = {if,,), k = 1,. . . , n, j = 1,. . . , rn, where a,, is 
the complex conjugate of a,, E C. In particular, if x E a", x* denotes the 
conjugate transpose of x. The following relation is easily verified: 

where y E a"", x E a", and A is an m x n complex matrix. Of course, the - 
bar over y*Ax denotes the complex conjugate of y*Ax E C. 

With the preliminaries out of the way, we now want to define determi- 
nant functions. Let C?, denote the set of all n x n complex matrices so C?, is 
an n2-dimensional complex vector space. If A E C?,, write A = (a, ,  a,,. . . , 
a,) where a, is the j th column of A. 

Definition 1.24. A function D defined on E?, and taking values in @ is 
called a determinant function if 

(i) D(A) = D(a,, . . . , a,) is linear in each column vector a, when the 
other columns are held fixed. That is, 

~ ( a ,  ,..., aa, + Pb,,. .. , a,) = aD(al , .  . . , aJ,.  . ., a,) 

+PD(a l , .  . . , b,,. . . , a,) 

for a, /3 E C. 
(ii) For any two indices j and k, j < k, 

~ ( a , , .  . . , a,, . . . , ak , .  . . , a,) = -D(a1, .  . . , ak , .  . . , a,,. . . , a,). 
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Functions D on en to C that satisfy (i) are called n-linear since they are 
linear in each of the n vectors a,,  . . . , a, when the remaining ones are held 
fixed. If D is n-linear and satisfies (ii), D is sometimes called an alternating 
n-linear function, since D(A) changes sign if two columns of A are inter- 
changed. The basic result that relates all determinant functions is the 
following. 

Proposition 1.32. The set of determinant functions is a one-dimensional 
complex vector space. If D is a determinant function and D s 0, then 
D( I )  * 0 where I is the n X n identity matrix in en .  

Proof. We briefly outline the proof of this proposition since the proof is 
instructive and yields the classical formula defining the determinant of an 
n x n matrix. Suppose D(A) = D(a,,. . . , a,) is a determinant function. 
For each k = 1,. . . , n, a, = Cjajk&j where {E,, . . . , en) is the standard basis 
for and A = {ajk) : n X n. Since D is n-linear and a ,  = Ca,,e,, 

~ ( a  ,,..., a,) = C U , , D ( E ~ ,  a, , . . . ,  an ) .  
J 

Applying this same argument for a, = 

~ ( a , , .  . . , a,) = x xaj l la j2Z~( ' j l ,  'j2> a3,.. . ,  
.i~ j2 

Continuing in the obvious way, 

D(a, , .  . . , a,) = ajl1aj22.. . a j , n ~ ( ~ j l ,  ej2,. . . , E , ~ )  
11 9 . . . ,in 

where the summation extends over all j,, . . . , j, with 1 < j, < n for 1 = 

1,. . . , n. The above formula shows that a determinant function is de- 
termined by the n" numbers D(ejl,. . . , E,") for 1 < j, < n, and ths  fact 
followed solely from the assumption that D is n-linear. But since D is 
alternating, it is clear that, if two columns of A are the same, then 
D(A) = 0. In particular, if two indices j, and jk are the same, then D(E~, ,  . . . , 
E,~) = 0. Thus the summation above extends only over those indices where 
j, ,  . . . , j, are all distinct. In other words, the summation extends over all 
permutations of the set {I, 2, .  . . , n). If ?r denotes a permutation of 1,2,. . . , n, 
then 
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where the summation now extends over all n! permutations. But for a fixed 
permutation ~ ( l ) , .  . ., a(n) of I , . .  ., n, there is a sequence of pairwise 
interchanges of the elements of a(l), . . . , a(n), which results in the order 
1,2,. . . , n. In fact there are many such sequences of interchanges, but the 
number of interchanges is always odd or always even (see Hoffman and 
Kunze, 1971, Section 5.3). Using this, let sgn(a) = 1 if the number of 
interchanges required to put m(l), . . . , a (n)  into the order 1,2,. . . , n.is even 
and let sgn(a) = - 1 otherwise. Now, since D is alternating, it is clear that 

Therefore, we have arrived at the formula D(a , , .  . . , a,) = 

D(I)C,sgn(a)a,(,), . . . a,(,), since D( I )  = D(E,,. . . , E,). It is routine to 
verify that, for any complex number a,  the function defined by 

is a determinant function and the argument given above shows that every 
determinant function is a D, for some a E C. This completes the proof; for 
more details, the reader is referred to Hoffman and Kunze (1971, Chapter 
5). 

Definition 1.25. If A E en, the determinant of A, denoted by det(A) (or 
det A), is defined to be D,(A) where Dl is the unique determinant function 
with D,( I )  = 1. 

The proof of Proposition 1.32 gives the formula for det(A), but that is 
not of much concern to us. The properties of det(.) given below are most 
easily established using the fact that det(-) is an alternating n-linear 
function of the columns of A. 

Proposition 1.33. For A, B E en: 

(i) det(AB) = det A det B. - 
(ii) det A* = det A. 
(iii) det A * 0 iff the columns of A are linear independent vectors in 

the complex vector space a". 

I f A , , :  n, x n , ,AI2:  n, X n,,A2,: n2 X n,, andA,,: n, X n2arecomplex 
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matrices, then: 

(iv) detjA" O ] = detjA" = det A,, det A,,. 
A21 A22 0 A22 

(v) If A is a real matrix, then det(k) is real and det(A) = 0 iff the 
columns of A are linearly dependent vectors over the real vector 
space Rn. 

ProoJ: The proofs of these assertions can be found in Hoffman and Kunze 
(1971, Chapter 5). 

These properties of det(.) have a number of useful and interesting 
implications. If A has columns a,, . . . , a,, then the range of the linear 
transformation determined by A is just span{a,, . . . , a,). Thus A is invert- 
ible iff span{a,,. . . , a,) = a" iff det A * 0. If det A * 0, then 1 = 

det A A '  = det Adet A-I, so det A-' = l/det A. Consider B,, : n, x n,, 
BIZ : n, X n,, B2, : n2 X n,, and B2, : n2 X n2- complex matrices. Then it 
is easy to verify the identity: 

where All,  A,,, A,,, and A,, are defined in Proposition 1.33. This tells us 
how to multiply the two (n, + n,) X (n, + n,) complex matrices in terms 
of their blocks. Of course, such matrices are called partitioned matrices. 

Proposition 1.34. Let A be a complex matrix, partitioned as above. If 
det A,, +; 0, then: 

(i) det = det A,,det(A2, - A,,A,'A,,). 
A21 A22 

If det A,, * 0, then: 

(ii) det = det A,,det(A,, - A,,A;~,,). 
A 22 

ProoJ: For (i), first note that 



PROPOSITION 1.35 

by Proposition 1.33, (iv). Therefore, by (i) of Proposition 1.33, 

det = det 
A21 A22 

0 
= det 

= det ~ , , d e t ( ~ , ,  - A , , A ~ ~ ~ A , , ) .  

The proof of (ii) is similar. 

Proposition 1.35. Let A : n x m and B : m x n be complex matrices. Then 

det! I,, + AB) = det( I, + BA). 

Proof. Apply the previous proposition to 

We now turn to a discussion of the eigenvalues of an n X n complex matrix. 
The definition of an eigenvalue is motivated by the following considera- 
tions. Let A E en. To analyze the linear transformation determined by A, 
we would like to find a basis x,,. . . , x ,  of a, such that Ax, = Ajx,, 
j = 1,. . . , n, where A, E a .  If this were possible, then the matrix of the 
linear transformation in the basis {x,, . . . , x,) would simply be 

where the elements not indicated are zero. Of course, this says that the 
linear transformation is A, times the identity transformation when restricted 
to span{x,). Unfortunately, it is not possible to find such a basis for each 
linear transformation. However, the numbers A,, . . . , A,, which are called 
eigenvalues after we have an appropriate definition, can be interpreted in 
another way. Given A E a ,  Ax = Ax for some nonzero vector x iff (A - 
A I ) x  = 0, and this is equivalent to saying that A - A I is a singular matrix, 
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that is, det(A - AI) = 0. In other words, A - A I  is singular iff there exists 
x + 0 such that Ax = Ax. However, using the formula for det(.), a bit of 
calculation shows that 

where a,, a, , .  . . , a,-, are complex numbers. Thus det(A - AI) is a poly- 
nomial of degree n in the complex variable A, and it has n roots (counting 
multiplicities). This leads to the following definition. 

Definition 1.26. Let A E en and set 

p(A) = det(A - AI). 

Then nth degree polynomial p is called the characteristic polynomial of A 
and the n roots of the polynomial (counting multiplicities) are called the 
eigenvalues of A. 

If p(A) = det(A - XI) has roots A,, . . . , A,, then it is clear that 

since the right-hand side of the above equation is an nth degree polynomial 
with roots A,, . . . , A, and the coefficient of A" is ( - 1)". In particular, 

so the determinant of A is the product of its eigenvalues. 
There is a particular case when the characteristic polynomial of A can be 

computed explicitly. If A E en,  A = {a,,) is called lower triangular if 
a,, = 0 when k > j. Thus A is lower triangular if all the elements above the 
diagonal of A are zero. An application of Proposition 1.33 (iv) shows that 
when A is lower triangular, then 

But when A is lower triangular with diagonal elements a,,, j = 1,. . . , n, then 
A - A I  is lower triangular with diagonal elements (a,, - A), j = 1,. . . , n. 
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Thus 

SO A has eigenvalues a , , ,  . . . , a,,. 
Before returning to real vector spaces, we first establish the existence of 

eigenvectors (to be defined below). 

Proposition 1.36. If X is an eigenvalue of A E en,  then there exists a 
nonzero vector x E C such that Ax = Ax. 

Proof. Since X is an eigenvalue of A, the matrix A - X I  is singular, so the 
dimension of the range of A - X I  is less than n. Thus the dimension of the 
null space of A - X I  is greater than 0. Hence there is a nonzero vector in 
the null space of A - X I ,  say x, and (A - AI)x = 0. 

Definition 1.27. If A E en,  a nonzero vector x E Cn is called an eigenvec- 
tor of A if there exists a complex number X E a such that Ax = Ax. 

If x * 0 is an eigenvector of A and Ax = Ax, then (A - XI)x = 0 so 
A - X I  is singular. Therefore, X must be an eigenvalue for A. Conversely, if 
X E a is an eigenvalue, Proposition 1.36 shows there is an eigenvector x 
such that Ax = Ax. 

Now, suppose V is an n-dimensional real vector space and B is a linear 
transformation on V to V. We want to define the characteristic polynomial, 
and hence the eigenvalues of B. Let (v,, .  . . , vn) be a basis for V so the 
matrix of B is [B] = {b,,) where the bjk's satisfy Bv, = Cjbjkvj. The char- 
acteristic polynomial of [B] is 

p(A) = det([B] - XI) 

where I is the n x n identity matrix and A E a. If we could show that p(A) 
does not depend on the particular basis for V, then we would have a 
reasonable definition of the characteristic polynomial of B. 

Proposition 1.37. Suppose {v,,. . . , 0,) and (y,, .  . . , y,) are bases for the 
real vector space V, and let B E C(V, V). Let [B] = (b,,) be the matrix of B 
in the basis (v,, . . . , vn) and let [B], = (a,,) be the matrix of B in the basis 
(y,,  . . . , y,). Then there exists a nonsingular real matrix C = (c,,) such that 
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ProoJ: The numbers a,, are uniquely determined by the relations 

BY, = xu,, y,, k = 1,. . . , n .  
J 

Define the linear transformation C, on V to V by Clv, = yJ, j = 1,. . . , n. 
Then C, is nonsingular since C, maps a basis onto a basis. Therefore, 

and this yields 

Thus the matrix of C;'BC, in the basis (v,, . . . , v,) is (a,,). From Proposi- 
tion 1.5, we have 

where [C,] is the matrix of C, in the basis (v,, .  . . , 0,). Setting C = [C,], the 
conclusion follows. 

The above proposition implies that 

p(X) = det([B] - XI) = det(C-'([B] - AI)C) 

= d e t ( c - ' [ ~ ] C  - XI)  = det([B], - XI). 

Thus p(A) does not depend on the particular basis we use to represent B, 
and, therefore, we call p the characteristic polynomial of the linear transfor- 
mation B. The suggestive notation 

p(X) = det(B - XI) 

is often used. Notice that Proposition 1.37 also shows that it makes sense to 
define det(B) for B E C(V, V) as the value of det[B] in any basis, since the 
value does not depend on the basis. Of course, the roots of the polynomial 
p(X) = det(B - XI) are called the eigenvalues of the linear transformation 
B. Even though [B] is a real matrix in any basis for V, some or all of the 
eigenvalues of B may be complex numbers. Proposition 1.37 also allows us 
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to define the trace of A E C(V, V). If { v , , .  . . , v,) is a basis for V, let 
trA = tr[A] where [A] is the matrix of A in the given basis. For any 
nonsingular matrix C, 

which shows that our definition of tr A does not depend on the particular 
basis chosen. 

The next result summarizes the properties of eigenvalues for linear 
transformations on a real inner product space. 

Proposition 1.38. Suppose (V,(., a ) )  is a finite dimensional real inner 
product space and let A E C(V, V). 

(i) If X E C is an eigenvalue of A, then X is an eigenvalue of A. 
(ii) If A is symmetric, the eigenvalues of A are real 
(iii) If A is skew-symmetric, then the eigenvalues of A are pure imagin- 

ary 
(iv) If A is orthogonal and A is an'eigenvalue of A, then A X  = 1. 

Proof: If A E C(V, V), then the characteristic polynomial of A is 

where [A] is the matrix of A in a basis for V. An examination of the formula 
for det(.) shows that 

where a,,. . . , a ,,-,- are - real numbers since [A] is a real matrix Thus if 
p(A) = 0, then p(A) = p (A) = 0 so whenever p(X) = 0, p(X) = 0. This 
establishes assertion (i). 

For (ii), let X be an eigenvalue of A, and let {v,, . . . , v,) be an orthonor- 
ma1 basis for (V, (., .)). Thus the matrix of A, say [A], is a real symmetric 
matrix and [A] - X I  is singular as a matrix acting on a". By Proposition 
1.36, there exists a nonzero vector x E a" such that [A]x = Ax. Thus 
x*[A]x = Ax*x. But since [A] is real and symmetric, 

Thus Xx*x = Ax*x and, since x + 0, X = X so A is real. 
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To prove (iii), again let [A] be the matrix of A in the orthonormal basis 
{ol , .  . . , on} so [A]' = [A]* = -[A]. If A is an eigenvalue of A, then there 
exists x E C ,  x * 0, such that [A]x = Ax. Thus x*[A]x = Ax*x and 

Since x * 0, X = -A, which implies that A = ib for some real number 
b-that is, A is pure imaginary and this proves (iii). 

If A is orthogonal, then [A] is an n x n orthogonal matrix in the 
orthonormal basis (v,, .  . . , v,). Again, if A is an eigenvalue of A, then 
[A]x = Ax for some x E C ,  x * 0. Thus Xx* = x*[A]* = x*[A]' since [A] 
is a real matrix. Therefore 

as [A]'[A] = I. Hence A X  = 1 and the proof of Proposition 1.38 is complete. 

It has just been shown that if (V, ( - ,  .)) is a finite dimensional vector 
space and if A E C(V, V) is self-adjoint, then the eigenvalues of A are real. 
The spectral theorem, to be established in the next section, provides much 
more useful information about self-adjoint transformations. For example, 
one application of the spectral theorem shows that a self-adjoint trans- 
formation is positive definite iff all its eigenvalues are positive. 

If A E C(V, W) and B E C(W, V), the next result compares the eigen- 
values of AB E C(W, W) with those of BA E C(V, V). 

Proposition 1.39. The nonzero eigenvalues of AB are the same as the 
nonzero eigenvalues of BA, including multiplicities. If W = V, AB and BA 
have the same eigenvalues and multiplicities. 

Proof: Let m = dim V and n = dim W. The characteristic polynomial of 
BA is 

pl(A) = det(BA - AI,). 

Now, for A * 0, compute as follows: 

1 
= ( - ~ ) " d e t ( ~ ) ( ~ ~  - AIn) = ----- (-Urn det(AB - XI.). 

(-A)" 



Therefore, the characteristic polynomial of AB, say p,(X) = det(AB - XI,), 
is related to p l ( X )  by 

Both of the assertions follow from this relationship. 

1.7. THE SPECTRAL THEOREM 

The spectral theorem for self-adjoint linear transformations on a finite 
dimensional real inner product space provides a basic theoretical tool not 
only for understanding self-adjoint transformations but also for establishng 
a variety of useful facts about general linear transformations. The form of 
the spectral theorem given below is slightly weaker than that given in 
Halmos (1958, see Section 79), but it suffices for most of our purposes. 
Applications of this result include a necessary and sufficient condition that 
a self-adjoint transformation be positive definite and a demonstration that 
positive definite transformations possess square roots. The singular value 
decomposition theorem, which follows from the spectral theorem, provides a 
useful decomposition result for linear transformations on one inner product 
space to another. This section ends with a description of the relationship 
between the singular value decomposition theorem and angles between two 
subspaces of an inner product space. 

Let ( V , ( . ,  .)) be a finite dimensional real inner product space. The 
spectral theorem follows from the two results below. If A  E C(V, V )  and M  
is subspace of V, M is called invariant under A if A ( M )  = { Axlx E M )  G M. 

Proposition 1.40. Suppose A  E C(V, V )  is self-adjoint and let M  be a 
subspace of V. If A ( M )  G M, then A ( M L )  L M I .  

ProoJ: Suppose v  E A ( M L ) .  It must be shown that ( v ,  x )  = 0 for all 
x  E M. Since v  E A ( M L ) ,  v  = A v ,  for v ,  E M L  . Therefore, 

( v ,  X )  = ( A v l ,  X )  = ( v , ,  A X )  = 0 

since A  is self-adjoint and x  E M  implies Ax E M  by assumption. 

Proposition 1.41. Suppose A  E C(V, V )  is self-adjoint and A is an eigen- 
value of A. Then there exists a v  E V ,  v  * 0, such that Av = Xu. 
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Proof: Since A  is self-adjoint, the eigenvalues of A  are real. Let { v , ,  . . . , v , )  
be a basis for V and let [ A ]  be the matrix of A in this basis. By Proposition 
1.36, there exists a nonzero vector z E a* such that [ A ] z  = Az. Write 
z  = z ,  + iz ,  where z ,  E Rn is the real part of z  and z ,  E R" is the imaginary 
part of z .  Since [ A ]  is real and A is real, we have [ A l z ,  = Az, and 
[ A l z ,  = Az,. But, z ,  and z ,  cannot both be zero as z  * 0. For definiteness, 
say z ,  * 0 and let u  E V be the vector whose coordinates in basis { v , ,  . . . , v , )  
are z , .  Then v  * 0 and [ A ] [ v ]  = A [ v ] .  Therefore Av = Av. 

Theorem 1.2 (Spectral Theorem). If A  E C(V, V) is self-adjoint, then there 
exists an orthonormal basis ( x , ,  . . . , x , )  for V and real numbers A,, . . . , A, 
such that 

Further, A, , .  . . , A ,  are the eigenvalues of A  and Ax,  = A,x, ,  i = 1,. . . , n. 

Proof: The proof of the first assertion is by induction on dimension. For 
n = 1, the result is obvious. Assume the result is true for integers 1,2,. . . , n 
- 1 and consider A  E C(V, V), which is self-adjoint on the inner product 
space (V, (. , .)), n = dim V. Let A  be an eigenvalue of A .  By Proposition 
1.41, there exists u  E V, v  * 0, such that Av = Av. Set x ,  = v/llvll and 
A, = A. Then Ax,  = A,x,. With M = span{x,), it is clear that A ( M )  c M 
so A(MA) c M L  by Proposition 1.40. However, if we let A ,  be the 
restriction of A  to the (n - 1)-dimensional inner product space ( M A  , (. , -)), 
then A,  is clearly self-adjoint. By the induction hypothesis there is an 
orthonormal basis ( x , , .  . . , x , - , )  for M I  and real numbers A, , .  . . , An- ,  
such that 

It is clear that { x , ,  . . . , x , )  is an orthonormal basis for V and we claim that 

To see this, consider v ,  E V and write v ,  = v ,  + v ,  with v ,  E M and 
v ,  E M I  . Then 

n- 1 

Avo = A v ,  + Av, = A,v, + A,v2 = A,v, + x A i ( x i 0 x i ) v 2 .  
1 



However. 

since v, E M and v, E M I .  But (v,, x,)x, = v, since v ,  E span{x,). 
Therefore A = C;AixiO xi, which establishes the first assertion. 

For the second assertion, if A = C;AixiCl xi where {x,,. . . , x,) is an 
orthonormal basis for (V, (., .)), then 

Ax, = x A , ( x i n  xi)., = x A i ( x i ,  x,)xi = A,x,. 
I i 

Thus the matrix of A, say [A], in this basis has diagonal elements A,, . . . , A, 
and all other elements of [A] are zero. Therefore the characteristic poly- 
nomial of A is 

n 

p(A) = det([A] - XI) = n ( A i  - A), 
1 

which has roots A,, . . . , A,. The proof of the spectral theorem is complete. 
q 

When A = CA,x,O xi, then A is particularly easy to understand. Namely, 
A is X i  times the identity transformation when restricted to span{x,). Also, if 
x E V, then x = C(x,, x)xi SO Ax = CA,(x,, x)x,. In the case when A is an 
orthogonal projection onto the subspace M, we know that A = C f x , ~  x, 
where k = dim M and {x,,. . . , x,) is an orthonormal basis for M. Thus A 
has eigenvalues of zero and one, and one occurs with multiplicity k = dim M. 
Conversely, the spectral theorem implies that, if A is self-adjoint and has 
only zero and one as eigenvalues, then A is an orthogonal projection onto a 
subspace of dimensional equal to the multiplicity of the eigenvalue one. 

We now begin to reap the benefits of the spectral theorem. 

Proposition 1.42. If A E C(V, V), then A is positive definite iff all the 
eigenvalues of A are strictly positive. Also, A is positive semidefinite iff the 
eigenvalues of A are non-negative. 

Proof. Write A in spectral form: 
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where {x,, . . . , 
CAi(x,, x)*. If 
> 0 and A is 
x = x, and we 
strictly positive 

x,) is an orthonormal basis for (V, (., a ) ) .  Then (x, Ax) = 

A,  > 0 for i = 1,. . . , n ,  then x + 0 implies that Chi(xi, x)' 
positive definite. Conversely, if A is positive definite, set 
have 0 < (x,, Ax,) = A,. Thus all the eigenvalues of A are 

:. The other assertion is proved similarly. q 

The representation of A in spectral form suggests a way to define various 
functions of A. If A = CAix,U xi, then 

More generally, if k is a positive integer, a bit of calculation shows that 

For k = 0, we adopt the convention that A0 = I since Cxio  xi = I. Now if 
p is any polynomial on R,  the above equation forces us to define p(A) by 

This suggests that, if f is any real-valued function that is defined at 
A,, . . . , A,, we should define f (A) by 

Adopting this suggestive definition shows that if A,,. . . , A, are the eigen- 
values of A, then f (A,), . . . , f (A,) are the eigenvalues of f ( A ) .  In particular, 
if A ,  * 0 for all i and f ( t )  = t-', t * 0, then it is clear that f(A) = A-'. 
Another useful choice for f is given in the following proposition. 

Proposition 1.43. If A E C(V, V) is positive semidefinite, then there exists 
a B E C(V, V) that is positive semidefinite and satisfies B* = A. 

Proof. Choose f ( t )  = t'/2, and let 
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The square root is well defined since A ,  2 0 for i = 1,. . . , n as A is positive 
semidefinite. Since B has non-negative eigenvalues, B is positive definite. 
That B' = A is clear. 

There is a technical problem with our definition of f(A) that is caused by 
the nonuniqueness of the representation 

for self-adjoint transformations. For example, if the first n, Xi's are equal 
and the last n - n, Xi's are equal, then 

However, C;lxiO xi is the orthogonal projection onto M I  = span(xl, . . . , 
xnl )  If y,,. . , , yn is any other orthonormal basis for (V, (., a ) )  such that 
span{x,, . . . , x,,) = span{y,, . . . , ynl), it is clear that 

Obviously, A,, . . . , A n  are uniquely defined as the eigenvalues for A (count- 
ing multiplicities), but the orthonormal basis {x,, . . . , x,) providing the 
spectral form for A is not unique. It is therefore necessary to verify that the 
definition of f(A) does not depend on the particular orthonormal basis in 
the representation for A or to provide an alternative representation for A. It 
is this latter alternative that we follow. The result below is also called the 
spectral theorem. 

Theorem 1.2a (Spectral Theorem). Suppose A is a self-adjoint linear 
transformation on V to V where n = dim V. Let A ,  > A, > . . > A, be the 
distinct eigenvalues of A and let ni be the multiplicity of A,, i = 1,. . . , r. 
Then there exists orthogonal projections PI , .  . . , P, with Pi< = 0 for i * j, 
n, = rank(P,), and CYP, = I such that 

Further, this decomposition is unique in the following sense. If p ,  > > 
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pk and Q,, . . . , Q, are orthogonal projections such that QiQ, = 0 for i * j, 
CQi = I, and 

then k = r ,  pi = Xi, and Qi = Pi for i = 1,. . . , k .  

Proof. The first assertion follows immediately from the spectral represen- 
tation given in Theorem 1.2. For a proof of the uniqueness assertion, see 
Halmos (1 958, Section 79). q 

Now, our definition off (A) is 

when A = C;A,Pi. Of course, it is assumed that f is defined at A,,. . . , A,. 
This is exactly the same definition as before, but the problem about the 
nonuniqueness of the representation of A has disappeared. One application 
of the uniqueness part of the above theorem is that the positive semidefinite 
square root given in Proposition 1.43 is unique. The proof of this is left to 
the reader (see Halmos, 1958, Section 82). 

Other functions of self-adjoint linear transformations come up later and 
we consider them as the need arises. Another application of the spectral 
theorem solves an interesting extremal problem. To motivate this problem, 
suppose A is self-adjoint on (V, (. , a ) )  with eigenvalues A ,  2 A, 2 . - . 2 A,. 
Thus A = CAixiO xi where {x,, . . . , x,) is an orthonormal basis for V. For 
x E V and llxll = 1, we ask how large (x, Ax) can be. To answer this, write 
(x, Ax) = CAi(x,(xiO xi)x) = CAi(x, x,),, and note that 0 ,< (x, and 
1 = 1 1 ~ 1 1 ~  = C;(xi, x ) ~ .  Therefore, A ,  2 CAi(x, x,), with equality for x = 

x,. The conclusion is 

sup ( x , ~ x ) = A ,  
x,llxll= 1 

where A,  is the largest eigenvalue of A. This result also shows that A,(A)-the 
largest eigenvalue of the self-adjoint transformation A-is a convex func- 
tion of A. In other words, if A, and A, are self-adjoint and LY E [0, 11, then 
A,(aA, + (1 - a)A2) < aAI(Al) + (1 - a)A1(A2). TO prove this, first 
notice that for each x E V, (x, Ax) is a linear, and hence convex, function 
of A. Since the supremum of a family of convex functions is a convex 
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function, it follows that 

A, (A)  = sup ( x ,  A x )  
x,llxll= 1 

is a convex function defined on the real linear space of self-adjoint linear 
transformations. An interesting generalization of this is the following. 

Proposition 1.44. Consider a self-adjoint transformation A defined on the 
n-dimensional inner product space (V,  (. , .)) and let A ,  > A ,  > . . . > A n  be 
the ordered eigenvalues of A. For 1 < k < n, let 3, be the collection of all 
k-tuples {v , ,  . . . , v,)  such that { v , ,  . . . , v,) is an orthonormal set in (V,  (., .)). 
Then 

ProoJ: Recall that ( . , - )  is the inner product on C(V, V )  induced by the 
inner product (., a )  on V,  and ( x ,  A x )  = ( x u  x, A )  for x  E V. Thus 

k k k 

Z ( v ; ,  AV,)  = C ( v , o  v,, A )  = j z v i o  v, ,  A  \ . 
Write A  in spectral form, A  = C;A,x,O x,. For {v , , .  . . , v k )  E a k ,  Pk = 

Cfv, q v, is the orthogonal projection onto span{v,, . . . , v,). Thus for 
{ v , ,  . . . , 0,) E a,, 

Since Pk is an orthogonal projection and Ilxill = 1, i = 1,. . . , n, 0 G 
( x , ,  P,x,) < 1. Also, 

because C;x,U xi = I  E C(V, V ) .  But Pk = CfviU vi, SO 

k k 

( P k ,  I )  = Z ( v i u  V;, I )  = C ( V , ,  0,)  = k. 
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Therefore, the real numbers a, = (x,, Pkx,), i = 1,. . . , n, satisfy 0 < a, < 1 
and C;ai = k. A moment's reflection shows that, for any numbers a , ,  . . . , a, 
satisfying these conditions, we have 

since A ,  2 . . . 2 A,. Therefore, 

for {o,, . . . , vk) E ak. However, setting v ,  = x,, i = 1,. . . , k, yields equality 
in the above inequality. 

For A E C(V, V), which is self-adjoint, define tr,A = CfA, where A ,  >, 
. . 2 A, are the ordered eigenvalues of A. The symbol trkA is read "trace 

sub-k of A." Since (E$I ,D v,, A )  is a linear function of A and trkA is the 
supremum over all {v,, . . . , 0,) E a k ,  it follows that trkA is a convex 
function of A. Of course, when k = n, tr, A is just the trace of A.  

For completeness, a statement of the spectral theorem for n x n symmet- 
ric matrices is in order. 

Proposition 1.45. Suppose A is an n X n real symmetric matrix. Then there 
exists an n x n orthogonal matrix r and an n x n diagonal matrix D such 
that A = TDr'. The columns of r are the eigenvectors of A and the 
diagonal elements of D, say A,, . . . , A,, are the eigenvalues of A. 

Proof. T h s  is nothing more than a disguised version of the spectral 
theorem. To see ths, write 

where x, E Rn, X i  E R, and {x,, . . . , x,) is an orthonormal basis for Rn with 
the usual inner product (here x,O xi is xixj since we have the usual inner 
product on Rn). Let r have columns x, , .  . . , x, and let D have diagonal 
elements A,, . . . , A,. Then a straightforward computation shows that 

The remaining assertions follow immediately from the spectral theorem. 
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Our final application of the spectral theorem in this chapter deals with a 
representation theorem for a linear transformation A E C(V, W) where 
(V, ( - ,  .)) and (W, [., a ] )  are finite dimensional inner product spaces. In this 
context, eigenvalues and eigenvectors of A make no sense, but something 
can be salvaged by considering A'A E C(V, V). First, A'A is non-negative 
definite and %(AfA) = %(A). Let k = rank(A) = rank(A'A) and let A ,  2 

- . & A, > 0 be the nonzero eigenvalues of A'A. There must be exactly k 
positive eigenvalues of A'A as rank(A) = k. The spectral theorem shows 
that 

k 

A'A = x, 
1 

where {x,,.  . . , x,) is an orthonormal basis for V and A'Ax, = Alxi for 
i = 1,. . . , k, AIAxi = 0 for i = k + 1,. . . , n. Therefore, %(A) = %( A'A) 
= (span{x,,. . . , x , ) )~  . 

Proposition 1.46. In the notation above, let w, = (1,' &)AX, for i = 

1,. . . , k. Then {w,,. . . , w,) is an orthonormal basis for %(A) 5 W and 
A = cf&wiO xi. 

Proof: Sincedim%(A) = k,{w ,,..., wk)isabasisfor%(A)if{w ,,..., w,) 
is an orthonormal set. But 

and the first assertion holds. To show A = ~ f & w , O  xi, we verify the two 
linear transformations agree on the basis {x,,. . . , x,). For 1 G j < k, Ax, 
= &wJ by definition and 

For k + 1 6 j g n ,  Ax, = 0 since %(A) = (span{x,, . . . , x,))' . Also 



58 VECTOR SPACE THEORY 

Some immediate consequences of the above representation are (i) AA' = 

C:h,wiO w,, (ii) A' = c:&xio wi and Afwi = &xi for i = 1,. . ., k. In 
summary, we have the following. 

Theorem 1.3 (Singular Value Decomposition Theorem). Given A E 

C (V, W) of rank k, there exist orthonormal vectors x,,  . . . , xk in V and 
w , ,  . . . , w, in W and positive numbers p,, . . . , pk such that 

Also, %(A) = span(w,, . . . , w,), %(A) = (span(x,, . . . , x,))l , Ax, = p,w,, 
i = 1,. . . , k, A' = Ctp,x, w,, A'A = C t p ~ x ,  x,, AA' = Cfp?w, w,. The 
numbers p:, . . . , p i  are the positive eigenvalues of both AA' and A'A. 

For matrices, this result takes the following form. 

Proposition 1.47. If A is a real n X m matrix of rank k, then there exist 
matrices r : n x k, D : k x k, and 9 : k x m that satisfy r'r = I,, 99' = 

I,, D is a diagonal matrix with positive diagonal elements, and 

Proof. Take V = Rm, W = Rn and apply Theorem 1.3 to get 

where x,, . . . , x, are orthonormal in Rm, w,, . . . , wk are orthonormal in Rn, 
and pi > 0, i = 1,. . . , k. Let r have columns w,,. . . , w,, let 'k have rows 
x;, . . . , x;, and let D be diagonal with diagonal elements p,, . . . , p,. An easy 
calculation shows that 

k 

~ p , w , x ~  = rD\k. 
1 

In the case that A E C(V, V) with rank k, Theorem 1.3 shows that there 
exist orthonormal sets {x,,. . . , x,) and (w,,. . . , w,) of V such that 

where p, > 0, i = 1 ,..., k. Also, %(A) = span{w ,,..., w,) and %(A) = 



(span{x,, . . . , x,))' . Now, consider two subspaces MI and M2 of the inner 
product space (V, ( a ,  a ) )  and let PI and P2 be the orthogonal projections 
onto MI and M2. In what follows, the geometrical relationship between the 
two subspaces (measured in terms of angles, which are defined below) is 
related to the singular value decomposition of the linear transformation 
PIP2 E C(V, V). It is clear that %(P2P,) c M2 and %(P2P,) 2 M: . Let 
k = rank(P2P,) so k Q dim(M,), i = 1,2. Theorem 1.3 implies that 

where pi > 0, i = 1,. . . , k, %(P2PI) = span{w,,.. . , w,) c M2, and 
(%(P2P1))' = span{x,,. . . , x,) c MI. Also, {w,,. . . , w,) and {x,,. . . , x,) 
are orthonormal sets. Since P2 Pix, = p j y  and (P2 Pl)'P2 PI = PI  P2 P2 PI  = 

PI  P2 PI  = Cfp:xi q xi, we have 

Therefore, for i, j = 1,. . . , k, 

since pj > 0. Furthermore, if x E MI n (span{x,,. . . , x,))' and w E M2, 
then (x, w) = (P,x, P2w) = (P2P,x, w) = 0 since P2P,x = 0. Similarly, if 
w E M2 n (span{w,,. . . , w,))' and x E MI, then (x, w) = 0. 

The above discussion yields the following proposition. 

Proposition 1.48. Suppose MI and M2 are subspaces of (V, (., .)) and let 
PI  and P2 be the orthogonal projections onto MI and M2. If k = rank(P,P,), 
then there exist orthonormal sets {x,,. . . , x,) c MI, {w,,. . . , w,) c M2 and 
positive numbers p, 2 - . . 2 pk such that: 

(i) P2P, = Cfpiw,0 xi. 

(ii) PI  P2 PI  = CfpTxi q x i .  
(iii) P2 PI P2 = C:p: wi q w,. 
(iv) 0 < pj Q 1 and (xi, w,) = Sijpj for i, j = 1,. . . , k. 
(v) If x E MI n (span{x,, . . . , x,))' and w E M2, then (x, w) = 0. 

If w E M2 n (span{w,,. . . , w,))' and x E MI, then (x, w) = 0. 
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ProoJ: Assertions (i), (ii), (iii), and (v) have been verified as has the 
relationship (x,, w,) = aijp,. Since 0 < p, = (x,, w,), the Cauchy-Schwarz 
Inequality yields (x,, w,) G Ilx,ll Ilw,ll = 1. 

In Proposition 1.48, if k = rank P2 PI  = 0, then MI and M2 are orthogo- 
nal to each other and PIP2 = P2P, = 0. The next result provides the 
framework in which to relate the numbers p1 >, . . . 2 pk to angles. 

Proposition 1.49. In the notation of Proposition 1.48, let MI,  = MI, M,, 
= M2, 

M,, = (span{x, , . . . , xi- )) ' n MI,  

and 

for i = 2,. . . , k + 1. Also, for i = 1,. . . , k, let 

and 

D2, = {wlw E M2,,llwII = 1). 

Then 

sup sup (x ,  w) = (x,,  w,) = pi 
X G D , ,  W E D , ,  

for i  = 1 ,..., k.Also, M, ( ,+ , , I  M2andM2( ,+ , , I  MI. 

Proof. Since xi E Dl, and w, E D,,, the iterated supremum is at least 
(x,, w,) and (x,, w,) = pi by (iv) of Proposition 1.48. Thus it suffices to show 
that for each x E Dl, and w E D,,, we have the inequality (x, w) < p,. 
However, for x E Dl, and w E D,,, 

since llwll = 1 as w E Dl,. Thus 

Since x E Dl,, (x, x,) = 0 for j = 1,. . . , i - 1. Also, the numbers a, = 
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(x,, x ) ~  satisfy 0 g a, g 1 and Cfa, < 1 as llxll = 1. Therefore, 

The last inequality follows from the fact that p, > . - . > p, > 0 and the 
conditions on the a,'s. Hence, 

sup sup (x ,w)  = (x,,w,) = pi, 
X E D , ,  W E D * ,  

and the first assertion holds. The second assertion is simply a restatement of 
(v) of Proposition 1.48. 

Definition 1.28. Let MI and M2 be subspaces of (V , ( . ,  .)). Given the 
numbers p, 2 2 pk > 0, whose existence is guaranteed by Proposition 
1.48, define 8, E [O, a/2) by 

Let t = min{dimM,,dimM,) and set 8, = a/2 for i = k + 1, ..., t .  The 
numbers 8, ,< 8, g . . . g 8, are called the ordered angles between MI and 
M2. 

The following discussion is intended to provide motivation, explanation, 
and a geometric interpretation of the above definition. Recall that if y, and 
y, are two vectors in (V, (., .)) of length 1, then the cosine of the angle 
between y, and y, is defined by cos 8 = (y,, y,) where 0 g 8 g T. However, 
if we want to define the angle between the two lines span{y,) and span{y,), 
then a choice must be made between two angles that are complements of 
each other. The convention adopted here is to choose the angle in [O, a/2]. 
Thus the cosine of the angle between span{ y,) and span{y2) is just I( y,, y2)1. 
To show this agrees with the definition above, we have Mi = span{yi) and 
Pi = yiO yi is the orthogonal projection onto Mi, i = 1,2. The rank of P2P, 
is either zero or one and the rank is zero iff y, I y,. If y, I y2, then the 
angle between MI and M, is ~ / 2 ,  which agrees with Definition 1.28. When 
the rank of P, PI  is one, P, P2 PI  = ( y,, y2)2y, y, whose only nonzero 
eigenvalue is (y,, y2)2. Thus p: = (y,, y2)2 so p, = I(y,, y2)l = cos dl, and 
again we have agreement with Definition 1.28. 

Now consider the case when M, = span{y,), lly,ll = 1, and M2 is an 
arbitrary subspace of (V, (., a)). Geometrically, it is clear that the angle 
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between MI and M2 is just the angle between M I  and the orthogonal 
projection of MI onto M,, say M,* = span{P, y,) where P, is the orthogonal 
projection onto M,. Thus the cosine of the angle between MI and M2 is 

If P2y, = 0, then MI I M, and cos 8 = 0 so 0 = m/2 in agreement with 
Definition 1.28. When P, y, * 0, then PI P2 PI = ( y,, P2 y,) y, y,, whose 
only nonzero eigenvalue is (y,, P2yl) = (P2y,, Ply,) = llP,~,11~ = p:. 
Therefore, p, = (IP2yll( and again we have agreement with Definition 1.28. 

In the general case when dim(M,) > 1 for i = 1,2, it is not entirely clear 
how we should define the angles between MI and M,. However, the 
following considerations should provide some justification for Definition 
1.28. First, if x E MI and w E M,, llxll = llwll = 1. The cosine of the angle 
between span x and span w is I(x, w)l Thus the largest cosine of any angle 
(equivalently, the smallest angle in [0, m/21) between a one-dimensional 
subspace of MI and a one-dimensional subspace of M2 is 

sup sup ((x,w)l= sup sup (x ,w) .  
X E D , ,  W E D , ,  X E D , ,  w e D 2 ,  

The sets Dl ,  and D,, are defined in Proposition 1.49. By Proposition 1.49, 
this iterated supremum is p, and is achieved for x = x, E Dl ,  and w = w, 
E D,,. Thus the cosine of the angle between span{x,) and span{w,) is p,. 
Now, remove span{x,) from MI to get MI, = (span{x,))' n MI and remove 
span{w,} from M2 to get M,, = (span{w,))l n M2. The second largest 
cosine of any angle between MI and M, is defined to be the largest cosine 
of any angle between MI, and M,, and is given by 

Next span{x2) is removed from MI, and span{w2) is removed from M2,, 
yielding M,, and M2,. The third largest cosine of any angle between MI and 
M, is defined to be the largest cosine of any angle between MI, and M,,, 
and so on. After k steps, we are left with MI(,+,) and M,(,+,,, which are 
orthogonal to each other. Thus the remaining angles are m/2. The above is 
precisely the content of Definition 1.28, given the results of Propositions 
1.48 and 1.49. 

The statistical interpretation of the angles between subspaces is given in a 
later chapter. In a statistical context, the cosines of these angles are called 
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canonical correlation coefficients and are a measure of the affine depen- 
dence between the random vectors. 

PROBLEMS 

All vector spaces are finite dimensional unless specified otherwise. 

1. Let K + ,  be the set of all nth degree polynomials (in the real variable 
t )  with real coefficients. With the usual definition of addition and 
scalar multiplication, prove that Vn+, is an ( n  + 1)-dimensional real 
vector space. 

2. For A E C(V, W), suppose that M is any subspace of V such that 
M a3 %(A) = v. 

(i) Show that %(A) = A(M) where A(M) = {wlw = Ax for some 
x E M). 

(ii) If x, , .  . . , x, is any linearly independent set in V such that 
span{x,, . . . , xk) n %(A) = {0), prove that Ax,, . . . , Ax, is lin- 
early independent. 

3. For A E C(V, W), fix wo E W and consider the linear equation Ax = 

w,. If w, P %(A), there is no solution to this equation. If w, E %(A), 
let x, be any solution so Ax, = w,. Prove that %(A) + x, is the set of 
all solutions to Ax = w,. 

4. For the direct sum space V, $ V2, suppose A, E C (7, y )  and let 

be defined by 

for (vl ,  v2) E Vl 63 V2. 

(i) Prove that TI is a linear transformation. 
(ii) Conversely, prove that every TI E C(Vl $ V2, Vl CB V2) has such 

a representation. 
(iii) If 
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prove that the representation of TU is 

5. Let x , , .  . . , x,, x,,, be vectors in V with x,,. . . , x, being linearly 
independent. For w,, . . . , w,, w,, , in W, give a necessary and sufficient 
condition for the existence of an A E C(V, W) that satisfies Ax, = w,, 
i = 1, . . . ,  r + 1. 

6. Suppose A E C(V, V) satisfies = CA where c * 0. Find a constant 
k so that B = kA is a projection. 

7. Suppose A is an rn x n matrix with columns a, , .  . . , a n  and B is an 
n x k matrix with rows b;,. . . , b;. Show that AB = C;a,b,[. 

8. Let x i , .  . . , x, be vectors in Rn, set M = span{x,, . . . , x,), and let A be 
the n X k matrix with columns x,,  . . . , x, so A E C(Rk, Rn). 
(i) Show M = %(A). 

(ii) Show dim(M) = rank(A'A). 

9. For linearly independent x,, .  . . , x, in (V, (., -)), let y,,. . . , y, be the 
vectors obtained by applying the Gram-Schmidt (G-S) Process to 
x,, .  . . , x,. Show that if zi = Ax,, i = 1,. . . , k, where A E O(V), then 
the vectors obtained by the G-S Process from z,,. . . , z, are Ay,,. . . , 
Ay,. (In other words, the G-S Process commutes with orthogonal 
transformations.) 

lo. In (V, (., .)), let x, , .  . . , x, be vectors with x, * 0. ~ o r m  y;, . . . , y; by 
y; = x,/IIx,II and y,' = xi - (xi, y,')y,', i = 2,. . . , k: 

(i) Show span{x,,. . . , x,) = span{y,',. . . , y,') for r = 1,2,. . . , k. 

(ii) Show y,' I span{y;, . . . , y:) so span{y,', . . . , y,!) = span{y,') @ 
span{y; ,..., y,') for r = 2 ,..., k.  

(iii) Now, form y;,. . . , y; from y;,. . . , y: as the y"s were formed 
from the x's (reordering if necessary to achieve y; * 0). Show 
span{x,,. . . , x,) = span{y,') @ span{y;) @ span{y;,. . . , y;). 

(iv) Let rn = dim(span{x,, . . . , x,)). Show that after applying the 
above procedure rn times, we get an orthonormal basis 
y,', y:,. . . , y z  for span{x,,. . . , x,). 
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(v) If x,,  . . . , x, are linearly independent, show that span{x,, . . . , x,) 
= span{y,', y;,. . . , y,') for r = 1,. . . , k. 

11. Let x, , .  . . , x, be a basis for (V,(., .)) and w,,. . . , w, be a basis for 
(W, I . ,  .I). For A, B E C(V, W), show that [Ax,, w,] = [Bx,, w,] for 
i = 1,. . . , m and j = 1,. . . , n implies that A = B. 

12. For xi E (V,(., .)) and y, E (W,[ . ,  .I), i = 1,2, suppose that x, y, 
= x 2 n  y2 t 0. Prove that x,  = cx, for some scalar c * 0 and then 
y, = c-'y,. 

13. Given two inner products on V, say (., .) and [ - ,  .], show that there 
exist positive constants c, and c2 such that c,[x, x]  < (x, x)  < c2[x, x], 
x E V. Using ths, show that for any open ball in (V,(., .)), say 
B = (xl(x, x ) ' / ~  < a), there exist open balls in (V, [., .I), say B, = 

{xl[x, x ] ' / ~  < Pi ) ,  i = 1,2, such that B, G B c B,. 

14. In (V,(., .)), prove that Ilx + yll < llxll + IIyII. Using ths, prove that 
h(x) = llxll is a convex function. 

15. For positive integers I and J ,  consider the IJ-dimensional real vector 
space, V, of all real-valued functions defined on {1,2,. . . , I )  X 

{1,2,. . . , J )  . Denote the value of y E V at (i, j) by y,,. The inner 
product on V is taken to be (y, y') = CCy,,y',,. The symbol 1 E V 
denotes the vector all of whose coordinates are one. 

(i) Define A on V to V by Ay = 7.. 1 where y, , = ( I J ) -  'LC y,, . Show 
that A is the orthogonal projection onto span(1). 

(ii) Define linear transformations B,, B,, and B, on V by 

(B,Y),,  = y,.- y.. 

(B,y),, = y,, -7,.-7., +y. .  

where 

jj . .= J - ' E ~ .  
1 J 

J 

and 

y., = I ~ ' E ~ , , .  

Show that B,, B,, and B, are orthogonal projections and the 
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following holds: 

(iii) Show that 

16. For r E O(V) and M a  subspace of V, suppose that T(M) c M. Prove 
that T(ML) c M L  . 

17. Given a subspace M of (V, (., a)) ,  show the following are equivalent: 

(i) J(x, y)l G cllxll for all x E M. 

(ii) llp,Wyll G c. 
Here c is a fixed positive constant and P, is the orthogonal projection 
onto Ad. 

18. In (V, (., a)) ,  suppose A and B are positive semidefinite. For C, D E 

C(V, V) prove that (tr ACBD')~ G tr ACBC'tr ADBD'. 

19. Show that (l? is a 2n-dimensional real vector space. 

20. Let A be an n x n real matrix. Prove: 
(i) If A, is a real eigenvalue of A, then there exists a corresponding 

real eigenvector. 

(ii) If A, is an eigenvalue that is not real, then any corresponding 
eigenvector cannot be real or pure imaginary. 

21. In an n-dimensional space (V, (., .)), suppose P is a rank r orthogonal 
projection. For a, p E R, let A = a P  + P ( I  - P). Find eigenvalues, 
eigenvectors, and the characteristic polynomial of A. Show that A is 
positive definite iff a > 0 and /3 > 0. What is A-' when it exists? 

22. Suppose A and B are self-adjoint and A - B >, 0. Let A ,  >, . . . >, A, 
and p ,  2 . . . p, be the eigenvalues of A and B. Show that X i  >, pi, 
i = 1 ,  ..., n. 

23. If S ,  T E C(V, V) and S > 0, T >, 0, prove that ( S ,  T)  = 0 implies 
T = 0. 

24. For A E (C(V, V), ( . , a ) ) ,  show that (A, I )  = tr A. 
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25. Suppose A and B in C(V, V )  are self-adjoint and write A B to mean 
A - B 2 0 .  

(i) If A >, B, show that CAC' >, CBC' for all C E C(V, V). 
(ii) Show I 2 A iff all the eigenvalues of A are less than or equal to 

one. 
(iii) Assume A > 0, B > 0, and A B. Is All2 2 IS 2 B2? 

26. If P is an orthogonal projection, show that tr P is the rank of P. 

Let x,,  . . . , x, be an orthonormal basis for (V, (., .)) and consider the 
vector space (C(V, V), ( , .)). Let M be the subspace of C(V, V) 
consisting of all self-adjoint linear transformations and let N be the 
subspace of all skew symmetric linear transformations. Prove: 

(i) {x, x, + x, x,li G j) is an orthogonal basis for M. 
(ii) {xiO x, - x,O xili < j) is an orthogonal basis for N. 
(iii) M is orthogonal to N and M @ N = C(V, V). 
(iv) The orthogonal projection onto M is A + (A + Af)/2, A E 

fxv, V ) .  

28. Consider C,, , with the usual inner product (A, B) = tr AB', and let 5, 
be the subspace of symmetric matrices. Then (S,, ( . , .)) is an inner 
product space. Show dim S, = n ( n  + 1)/2 and for S ,  T E S,, (S, T )  
= x,siitii + 2zzi<,sijtij. 

29. For A E C(V, W), one definition of the norm of A is 

where 1 1  . ) I  is the given norm on W. 

(i) Show that lllAlll is the square root of the largest eigenvalue of A'A. 
(ii) Show that IllaAlll = IallllAlll, a E R and IIIA + Blll G IllAlll + 111B111. 

30. In the inner product spaces (V, ( - ,  .)) and (W, [ - ,  .I), consider A E 

C(V, V) and B E C(W, W), which are both self-adjoint. Write these in 
spectral form as 

n 

B = ~ p , w , ~  w,. 
1 

(Note: The symbol q has a different meaning in these two equations 
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since the definition of 13 depends on the inner product.) Of course, 
x,, . . . , X, [w,, . . . , w,] is an orthonormal basis for (V, ( a ,  a))  [(W, [., .])I. 
Also, {xiD yli = 1,. . . , m, j = 1,. . . , n )  is an orthonormal basis for 
(C(W, V), ( . , . )), and A 8 B is a linear transformation on C(W, V) 
to C( W, V). 

(i) Show that (A 8 B)(x,Ow,) = A,pj(xiOw,) so Aipj is an eigen- 
value of A 63 B. 

(ii) Show that A 8 B = CCAip,(xi ?) 6 (xi w,) and this is a 
spectral decomposition for A 8 B. What are the eigenvalues and 
corresponding eigenvectors for A 8 B? 

(iii) If A and B are positive definite (semidefinite), show that A 8 B 
is positive definite (semidefinite). 

(iv) Show that tr A 8 B = (tr A)(tr B) and det A 8 B = 

(det A)"(det B)". 

31. Let x, , .  . . , x, be linearly independent vectors in Rn, set M = 

span{x,, . . . , x,), and let A : n X p have columns x,, . . . , x,. Thus 
%(A) = M and A'A is positive definite. 

(i) Show that rC, = A(A'A)-'/2 is a linear isometry whose columns 
form an orthonormal basis for M. Here, (A'A)-'/2 denotes the 
inverse of the positive definite square root of A'A. 

(ii) Show that $4' = A(A'A)-'A' is the orthogonal projection on 
to M. 

32. Consider two subspaces, MI and M2, of Rn with bases x,, . . . , x, and 
y,,. . . , y,. Let A(B) have columns x,,. . . ,x, (y,,. . . , y,). Then P, = 

A(A'A)-'A' and P2 = B(B'B)-'B' are the orthogonal projections onto 
MI and M2, respectively. The cosines of the angles between MI and M2 
can be obtained by computing the nonzero eigenvalues of P,P,P,. 
Show that these are the same as the nonzero eigenvalues of 

and of 

33. In R ~ ,  set xi = (1,0,0,O), x i  = (0, 1,0,O), y; = (1, 1, 1, l), and y; = 

(1, - 1, 1, - 1). Find the cosines of the angles between MI = 

span{x,, x2) and M2 = span{y,, y2). 

34. For two subspaces MI and M2 of (V, (., .)), argue that the angles 
between MI and M, are the same as the angles between r (M, )  and 
I'(M2) for any r E 8(V). 
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35. T h s  problem has to do with the vector space V of Example 1.9 and V 
may be infinite dimensional. The results in this problem are not used 
in the sequel. Write XI = X2 if X, = X2 a.e. (Po) for XI and X2 in V. It 
is easy to verify -- is an equivalence relation on V. Let M = {XI X E 

V,  X = 0 a.e. (Po)) so X, = X2 iff X, - X2 E M. Let L~ be the set of 
equivalence classes in V. 

(i) Show that L2 is a real vector space with the obvious definition of 
addition and scalar multiplication. 

Define ( -  , .) on L2 by ( y,, y2) = GXl X2 where Xi is an element of the 
equivalence class y,, i = 1,2. 

(ii) Show that ( - ,  .) is well defined and is an inner product on L2. 
Now, let Go be a sub o-algebra of 9 .  For y E L2, let Py denote the 
conditional expectation given Go of any element in y. 

(iii) Show that P is well defined and is a linear transformation on L2 
to L2. 

Let N be the set of equivalence classes of all go measurable functions 
in V. Clearly, N is a subspace of L2. 

(iv) Show that p2 = P,  P is the identity on N, and % ( P )  = N. Also 
show that P is self-adjoint-that is (y,,  Py,) = (Py,, y,). 

Would you say that P is the orthogonal projection onto N? 

NOTES AND REFERENCES 

1. The first half of this chapter follows Halmos (1968) very closely. After 
ths, the material was selected primarily for its use in later chapters. The 
material on outer products and Kronecker products follows the author's 
tastes more than anything else. 

2. The detailed discussion of angles between subspaces resulted from 
unsuccessful attempts to find a source that meshed with the treatment 
of canonical correlations given in Chapter 10. A different development 
can be found in Dempster (1969, Chapter 5). 

3. Besides Halmos (1958) and Hoffman and Kunze (1971), I have found 
the book by Noble and Daniel (1977) useful for standard material on 
linear algebra. 

4. Rao (1973, Chapter 1) gives many useful linear algebra facts not 
discussed here. 
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