
Chapter 4 

Semi-Parametric 
Estimation in the Linear 
Model for Correlated Data 

In this chapter we consider inference for the parameters of the LMCD 
without the assumption of multivariate normal errors. We will present a 
general theory for weighted least squares (WLS) estimators of (3, which 
are consistent and asymptotically normal (CAN), using only the assump
tion that E(Yi) = Xif3· The estimators will be asymptotically efficient as 
well, provided a consistent estimate of var(Yi) is available. We discuss the 
asymptotic distribution of WLS (and also ML) estimators when var(Yi) 
is misspecified. For simplicity, we will first consider the case where any 
imbalance is by design so that the expectation E(Yi) = Xif3 holds for 
the observed data and each ni is fixed. We will discuss imbalance due 
to missingness at the end of this chapter. We also assume that each 
var(Yi) = :Ei is a function of a finite parameter vector e. Furthermore, 
to simplify the presentation we restrict attention to the setting in which 
the covariates are stochastic, although most of the results described in 
this section are valid under appropriate regularity conditions when the 
covariates are assumed to be fixed numbers. 

64 
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4.1 Weighted Least Squares Estimators of j3 

A weighted least squares estimator jj is defined as the value of {3 that 
minimizes the objective function 

N 

Qw ({3) = L (Yi - Xif3f Wi (Yi - Xif3) 
i=l 

where Wi = W (Xi), i = 1, ... , N, is an arbitrary positive definite and 
symmetric ni x ni matrix chosen by the investigator. If a minimum of 
Qw ({3) exists, it must solve 

N 
aQw ({3) ""' r 

af3 = -2 ~xi wi (Yi- Xif3) = o. 
i=l 

This equation has a unique solution at 

(4.1) 

Because each Wi is positive definite, Qw ({3) has a positive definite Hes
sian at jj, and Qw ({3) achieves its global minimum at jj. 

The structure of jj simplifies for special choices of weight matrices. 
For example, if Wi <X I for any constant CY, then 

N n 

Qr ({3) = L L (Yij- Xijf3) 2 

i=l j=l 

and therefore jj minimizing Q I ({3) is the ordinary least squares estima
tor of {3 based on the data (Yij, Xij), i = 1, ... , N, j = 1, ... , ni. If in 
addition, Xi= X for all i, such as for example in the polynomial growth 
curve model of Examples 3 and 4 in Section 1.2, then jj simplifies to 

where Y = 'EYi/N. Thus, jj agrees with the ordinary least squares 
estimates of the parameters in the regression of the sample means at 
each occasion on the rows of X. 
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4.2 Properties of the Weighted Least Squares 
Estimator 

The estimator 73 is unbiased for any choice of weight function because its 
conditional expectation given X 1, ... , XN satisfies 

(4.2) 

Furthermore, by the Gauss-Markov Theorem the weighted least squares 
estimator that uses Wi = :Ei1 has the smallest conditional variance given 
the covariates (in the positive definite sense) among the conditional vari
ances of all estimators that are solutions of equations of the form (4.1) 
for arbitrary choices of Wi· That is, letting 73 (W) and 73 (:E-1) denote 
the solutions of the estimating equation ( 4.1) with Wi arbitrary and with 
wi = :Ei 1 respectively, we have that 

var {73 (:E-1)} ~ var {73 (W)} (4.3) 

where for any squared matrices A and B, A ~ B if and only if B- A 
is semipositive definite. The proof of this is straightforward; it involves 
using the fact that var[73(:E-1) - 73(W)] 2: 0. 

Notice that the conditional variance of 73 given X 1, ... , XN is 

it reduces to 

when Wi =I and it reduces to 

( 
N )-1 

var (73) = £; X[:E-;1 Xi 

when wi = :E-;1. 

By (4.2), the estimator that uses Wi = I, i.e., the ordinary least 
squares estimator of (3, is unbiased. However, with correlated data, its 
variance no longer agrees with the one obtained under independence of 
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the repeated observations made on each subject and it depends on the 
~i's. Calculating the variance of /3 incorrectly assuming independence 
can, of course, result in Wald tests of f3 that do not preserve their nom
inal level. The Gauss Markov Theorem implies that the choice Wi = I 
may not be optimal. The optimal choice depends on the unknown co
variance matrices ~i· This suggests that for optimality purposes one 
could replace the unknown optimal weight ~i by an estimator of it and 
warrants the study of weighted least squares estimators calculated using 
weight functions that are computed from the data. 

4.3 Weighted Least Squares with Data-Dependent 
Weight Functions 

Suppose that the dependence of the weights Wi on Xi can be written as 

for some fixed q x 1 parameter vector e. In Section 4.2 we have assumed 
that wi was a known function of xi so that e was fixed and known. 
In this section we investigate the properties of weighted least squares 
estimators that use data-dependent weight functions where e is replaced 
by a value e computed from the sample. Notice that this formulation 
includes, but is not restricted to, estimators that use as weight Wi an 
estimator i:i1 of ~i1 . This particular application is obtained by taking 
W (B; Xi) a constant function of Xi and taking e to be equal to the 
unknown parameters indexing the model for the covariance of Y;. 

Henceforth, let /3 be the solution to the equation 

(4.4) 
i=l 

where Wi = W(e; Xi)· (Occasionally, when needed to stress the depen
dence of the estimator on the weights we will denote the solution of ( 4.4) 
by /3(W).) The estimator /3 is no longer necessarily unbiased because of 
the dependence of Wi on the entire sample. However, under mild regu
larity conditions that include that ehas a probability limit B*, W(B*; Xi) 
is positive definite and W(B; x) is a smooth function of e and x, /3 is a 
consistent estimator of /3. Furthermore, ..Jii(/3- !3) converges as N goes 
to oo to a normal distribution with mean zero and variance Cw given by 

(4.5) 
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where 

and 
Dw = E { X[W (B*; Xi) ~iW (B*; Xi) Xi}. 

See, for example, Newey and McFadden (1994), Theorems 6.1 and 6.2. 
The last result implies, in particular, that if ;3(W) denotes the solution 
of (4.1) using Wi = W(B*; Xi), then the estimators ,6(fV) and ;3(W), 
appropriately normalized, have the same asymptotic distribution. This 
has the following interesting consequence. By (4.3), we have that 

var [ VN {,6 (~)- {3} J ::; var [ VN {,6 (W)- {3} J 

or equivalently, 

Now when Wi = ~i 1 , Cr;:-1 = E{X[~-1Xi}· Thus, taking probabil
ity limit as N goes to infi~ity on both sides of the last inequality, and 
invoking the Law of Large Numbers we obtain 

Cr;-1 ::; Cw. 

We conclude that the choice of weights Wi = ~i1 gives an asymptot
ically most efficient weighted least squares estimator, i.e., an estimator 
with asymptotic variance no greater than the asymptotic variance of any 
weighted least squares estimator. Furthermore, since ,6(W) and ;3(W) 
have the same asymptotic distribution, then the estimator that uses as 
weights a consistent estimator of var(}i) is also an asymptotically effi
cient weighted least squares estimator. 

This theory insures that for sufficiently large N, the effect of esti
mating the weight parameter e is negligible. In particular, the weighted 
least squares estimate of {3 has the same asymptotic variance regardless 
of whether or not the weights are estimated or they are fixed known 
constants. However, in practice, if N is not too large, estimation of 
the weights may have an important effect on the actual variance of 
N 112 (,8- {3). Many theoretical studies for the case of Yi a scalar outcome 
support this assertion. See, for example, Freedman and Peters (1984), 
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Carroll, Wu and Ruppert (1988), and reference therein. Carroll et al. 
(1988) examined in detail a special case in which W(B; Xi) is the inverse 
of a correctly specified model for the variance function, W(B; Xi) that 
does not depend on the mean, the errors have a symmetric distribution 
and e is estimated by maximum likelihood assuming normal errors. They 
showed that in this case, Cw is an underestimate of the actual variance 
of N 112 (iJ - (3) if the kurtosis of the error distribution is less than or 
equal 2 but it is an overestimate otherwise. This is in accordance to the 
results of Freedman and Peters (1984) who noted the decrease in vari
ance for heavy tail error distributions. Carroll et al. (1988) showed that 
the bootstrap variance estimate provides a more refined approximation 
to the actual variance of N 112(j3- (3). 

REMARK 1. Notice that the ML estimate takes exactly the same 
form as ,8(W), where 0 = OML, and var(Yi) = Wi(O,Xi)-1 . Hence ,8ML is 
asymptotically optimal, provided var(Yi) is correctly specified. Otherwise 
,BML is an ordinary WLS estimate with estimated weight matrix, and the 
asymptotic normal distribution previously given holds, i.e., 

where Cw is given in (4.5). 

REMARK 2. If the conditions given in Kackar and Harville (1981) 
hold, i.e., the variance-covariance component estimators are even and 
translation invariant and the error distributions for (Yi - Xi/3) are sym
metric, then WLS estimates with data-dependent weight functions are 
also unbiased for (3 in small samples. 

4.4 Estimation of the Optimal Weight Function 

Suppose we have complete data and I;i = I;. A consistent estimator 
of the optimal weight I;-1 can be obtained as follows. Suppose that 
jj = ,8 (W) is a weighted least squares estimator of (3 for an a~itrary 
(but fixed and known) choice of weight function. For example, (3 is the 
ordinary least squares estimator obtained from the choice Wi =I. Then, 
under mild regularity conditions on the weight function 

(4.6) 
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is a consistent estimator of :E (see, e.g., Newey and McFadden, 1994, 
Lemma 4.3). Note that :Eisa one-step EM estimate, away from ~0 =I. 
See equation (3.11) and following. 

The estimator~ separately estimates n(n -1)/2 non-diagonal and n 
diagonal elements. If n is large then a large sample size N is typically 
required for the asymptotic distribution of ,8(~1 to be a good approxi
mation of its finite sample distribution, and ;3(:E) may have poor small 
sample behavior. Asymptotically efficient weighted least squares esti
mators with better small sample properties can be obtained under a 
parsimonious model for cov(Yi), i.e., when :E is a known function :E(O) 
of a parameter vector e of dimension q ~ n(n + 1)/2. We now describe 
consistent estimators of e under_other models :E(O) that were introduced 
in Section 1.3. In what follows ;3 is the weighted least squares estimator 
calculated using an arbitrary, but fixed and known, weight function. 

Compound Symmetry. Recall from Section 1.3, Example 1, that :E 
has a compound symmetry structure when :E = O"f I+ td 1 T. Thus, letting 
01 = O"f+/'1; and 02 = /'\;, e = (Ot, 02), :E = :E (B) is a symmetric matrix with 
all its diagonal elements equal to 01 and all its non-diagonal elements 
equal to /'\;. A consistent estimator of 01 is obtained by averaging the 
diagonal elements of~ defined in (4.6). Similarly, a consistent estimator 
of /'\; is obtained by averaging its non-diagonal elements. Thus, 

~ = ~ [tsjj] 
J=l 

and 

(j2 = n (n2- 1) [ L Sjk] ' 
l~j<k~n 

where Sjj and Sjk are elements of S defined in (4.6). 

Banded. Recall from Section 1.3 that :E has a banded structure if 
its (j, k)th and (j', k')th entries are equal when j'- j = k'- k. Thus, 
here :E = :E (0) where e = (Ot, 02, ... , On) are the entries of :E that vary 
freely. Using the notation of Section 1.3, B1 = 0"2 and el+I = 0"2p1, 

1 :S l :S n - 1. These can be consistently estimated by averaging the 
elements of ~ defined in ( 4.6) over the entries known to be identical 
under the banded structure. Thus, for example, e1 is the same as for the 
compound symmetry model, while for 1 :S l::::; n- 1, 

(4.7) 



N. M. LAIRD 71 

REMARK. Maximum likelihood or REML estimates of e will also be 
consistent for e in this setting, even without the assumption of normality. 
They can be computed as described in 3. 

4.5 Locally Optimal Weighted Least Squares 

Once the estimator ~(B) of~ is obtained, estimation of (3 proceeds by 
solving the weighted least squares equation using the weight matrices 
~i(B)- 1 . The estimation procedure is then a three stage procedure sum
marized as follows: 

1. Obtain a preliminary weighted least squares estimator jj (e.g., the 
ordinary least squares estimator), 

2. Estimate~ with any consistent estimate~ (as defined in (4.6) for 
example) or with ~i = ~i (B) where e is a consistent estimator of e 
under a model for cov(Yi), 

3. Obtain the solution ,8(~) to the weighted least squares estimating 
equation (4.4) with weights wi = ~i· 

The estimator ,8(~) is consistent and asymptotically normal. We say 
that this estimator is a locally optimal weighted least squares (LOWLS) 
estimator because it has asymptotic variance that is equal to the lower 
bound for the variances of all weighted least squares estimators when 
the model for cov(Yi) is correctly specified and ,8(~) remains consistent 
and asymptotically normal even if the model for cov(Yi) is misspecified. 
Notice that the LOWLS makes no reference to the distribution of the 
error terms. In general, ,8(~) will be close to the ML estimate of (3 
obtained by assuming normality, and the ML estimate has the same 
properties in this setting. 

4.6 Model Based and Robust Variance Estima
tion 

In this section we consider estimation of the asymptotic variance of 
,8(~- 1 ). By the results of Section 4.3, JN{,B(~- 1 )-/3} has an asymptot~ 
mean zero normal distribution with variance equal to C:E-1 provided ~ 
is a consistent estimator of~' i.e., provided the model used to estimate 
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cov(Y;) is correctly specified. When this is the case, a consis~n_! estima
tor of Cr;-1, and therefore of the asymptotic variance of VN {,B(:E-1)- ,8} 
is given by 

(4.8) 

If the model for c~v(Yi) was incorrectly specified, then by the results 
of Section 2.3, JN {,B(:E-1) - ,8} has the same asymptotic variance as 
JN {,B(:E*- 1 )- ,8} where :E* is the probability limit of~. This asymptotic 
variance is equal to 

A consistent estimator of r r:·-1 is given by 

and a consistent estimator of nr;.-1 is given by 

Thus, a consistent estimator of Cr;.-1 is given by 

(4.9) 

The variance estimator ( 4.8) is often referred to as a model based vari
ance estimator to remind the user that its consistency relies on the correct 
specification of the model for cov (Y;). The variance estimator (4.9) is 
often referred to as a robust variance estimator since it is consistent even 
under misspecification of the model for cov(Y;). It has also been referred 
to as the sandwich or empirical variance estimator (Liang and Zeger, 
1986). The usual trade off between bias and variance applies to these 
two choices. The sandwich variance estimator is asymptotically unbiased 
regardless of model specification. However, even with large samples it 
will typically have bigger fluctuations around the true asymptotic vari
ance than the model based variance estimator unless the assumed model 
is far from the true variance. Also, under correct model specification the 
model based variance estimator will typically have smaller mean squared 
error than the robust variance estimator. 
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The variance estimators can be used to construct Wald tests of con
straint null hypotheses of the form 

T Ho: Q (3 = 0. 
qxp pxl 

Specifically, let 1J denote 1J (i:-1). Under the null hypothesis, we have 

then 

(4.10) 

has an asymptotic X~ distribution. A test that rejects when (4.10) ex
ceeds the a point of the x~ distribution is a valid asymptotic a level test 
of Ho. 

REMARK. The results in this section can be applied straightforwardly 
to obtain var(lJML) when the form of var(li) is unknown, and some user
specified model has been selected for ~i (B). 

4. 7 Joint Estimation of (3 and () 

The development in Sections 4.1-4.6 was aimed at inference about the 
parameter (3. In Section 4.4 the emphasis was on estimation of cov(li) for 
improvement of the efficiency of the weighted least squares estimator of (3. 
Notice, for example, that although easy to obtain, in the cases described 
in Section 4.4, we have not given formulas for consistent estimators of 
the variance of e. In fact, nowhere in the derivation of consistency and 
asymptotic normality of the weighted least squares estimators of (3 is 
it required that a model for cov (li) be specified. That is, the WLS 
estimators are consistent and asymptotically normal (CAN) under the 
sole assumption that the conditional mean of li is linear in the covariates, 
i.e., that 

E (li) =X[ (3. (4.11) 

This has the advantage that inferences about (3 are robust to misspec
ification of the model for cov(}i). However, even if inference about (3 
was the sole primary goal of the analysis, the WLS approach described 
above has the drawback that under most error distributions, knowledge 
of the model for cov(Yi), when available, can be used to improve the effi
ciency with which (3 is estimated. We can obtain efficiency improvements 
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over the weighted least squares estimators described above by further 
enlarging the class of estimating equations and calculating the optimal 
estimator under the larger class. This can be effectively done for many 
distributions, by solving joint estimating equations for (3 and e. In addi
tion, as a by-product of jointly estimating (3 and e, consistent variance 
estimator formulae for e can be readily derived from the standard theory 
of estimating equations, therefore providing the possibility of conducting 
inference about e as well. We postpone the discussion of semi-parametric, 
joint estimation of the mean and second moment parameters to Chapter 
6, where we will discuss the generalized linear multivariate model. 

4.8 Efficiency of OLS Estimators 

It is often suggested that using Wi = I (or using OLS) leads to an 
estimator with nearly the same efficiency as the optimal estimate using 
L:i1 , in many cases. The claim can be justified by considering simple 
forms for I:, eg compound symmetry, or banded, with constant variance, 
and/or simple forms for each Xi. Bloomfield and Watson (1975) gave a 
general formula for relative efficiency of jj(I) and jj(I:-1 ), by comparing 

with 

(t, (X[Ei1 X;)) -l 

We consider some examples given in Diggle et al. (1994). 

Example 1. 

N = 10 n = 5 tj = (-2, -1,0, 1,2) 

E(Yij) = f3o + (31tj. 

~ If there ~re no missing observations and I: = 0'2 ( (1 - p )I+ pJ), then 
f3(L:- 1 ) = f3(I) and OLS is optimal. This requires a common design, 
no missing data and compound symmetry. As the next example shows, 
efficiency of OLS in this case is still high with an autoregressive structure. 
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Example 2. 

Suppose the design on time remains the same, but :E is of the form 

1 p p2 p3 p4 
1 p p2 p3 

:E = (72 1 p p2 

1 p 
1 

75 

(still equal spacing and equal variances on diagonal). It is straightforward 
to show (Diggle et al., 1994) that 

var fj _ [10(5+8p+6p2 +4p3 +2p4 ) 0 ] 
OLS- 0 20(5 + 4p- p2- 4p3- 4p4) 

and 

var (J(:E-1) = (72(1- 2) [ 0.1(5- 8p + 3p2)-1 0 ] 
p 0 0.05(5 - 4p + p2)-l . 

The relative efficiencies can be obtained by looking at the ratio of the 
diagonals. They are computed for a range of p's below (taken from Diggle 
et al., 1994): 

p 0.1 0.2 0.3 0.4 0.5 
e(f3o) 0.998 0.992 0.983 0.973 0.963 
e(/31) 0.997 0.989 0.980 0.970 0.962 

p 0.6 0.7 0.8 0.9 0.99 
e(f3o) 0.955 0.952 0.956 0.970 0.996 
e(/31) 0.952 0.955 0.952 0.955 0.961 

These are all very close to 1, because ni = n, Xi =X, and var(Yij) 
is constant. 

Example 3. 

A crossover design where carryover may be present (Fitzmaurice et al., 
1993). Here n = 3 and there are 2 treatments; subjects are assigned 
in equal numbers to all possible 23 sequences: AAA, AAB, ABA, ABB, 
BAA, BAB, BBA, BBB. Here 



76 LONGITUDINAL AND CLUSTER-CORRELATED DATA 

where tij = 1 if ith subject gets A in the jth period. Note that there 
are eight distinct Xi's, one for each sequence. Assuming I; has an auto
correlation structure, Diggle et al. (1994) obtain the following efficiency 
ratios: 

p 0.1 0.2 0.3 0.4 0.5 
e(;Jo) 0.993 0.974 0.946 0.914 0.880 
e(/31) 0.987 0.947 0.883 0.797 0.692 

p 0.6 0.7 0.8 0.9 0.99 
e(/3o) 0.846 0.815 0.788 0.766 0.751 
e(/31) 0.571 0.438 0.297 0.150 0.015 

The efficiency for estimating the treatment effect declines substan
tially for p > 0.2. An intuitive explanation for this is as follows. To 
estimate a treatment contrast, some individuals provide more informa
tion than others; eg., a person in sequence 1 and another in sequence 8 
provide the contrast Yi1 - Yi'1 to estimate A - B, with variance equal to 
2o-2 . Now consider within subject contrasts: 

Yi2- Yi3 

Yi1 - Yi2 

Yi1- Yi2 

etc. 

for sequence 2 
for sequence 3 
for sequence 4 

Each has variance 2a2(1- p), so if p is large, these within subject 
contrasts have much more information and should be weighted more 
heavily. Here correlation is important because of the design, variance is 
less so. The OLS ignores the design and weights all possible contrasts 
equally. 

4.9 Remarks 

The asymptotic properties of extremum estimators that minimize some 
objective function have been widely studied, among others by Fisher 
(1925), Wald (1949), Huber (1967), Jenrich (1969) and Amemiya (1973, 
1985). White (1980) specialized these results to obtain robust variance 
estimators for the LOWLS estimators of Section 2.5. The LOWLS es
timators are sometimes also referred to as the Generalized Estimating 
Equations (GEE) estimators after the papers of Liang and Zeger (1986) 
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and Zeger and Liang (1986). These papers considered estimating equa
tions for a more general class of mean models that include generalized 
linear models. These authors call the model for cov (Yi) a "working co
variance model" as it is indeed not needed for consistency and asymptotic 
normality of the LOWLS estimator. The GEE methodology will be taken 
up in Chapter 6. 

The weighted least squares estimators are semiparametric estimators 
because they are CAN without requiring a full parametric description 
of the law of the data. In fact, they are CAN provided only that the 
model ( 4.11) for the conditional mean of the outcome vector is correctly 
specified. That is, consistency and asymptotic normality is obtained 
without specifying any restriction on the error distribution besides the 
conditional mean zero restriction. 

4.10 Studies with Clusters of Random Size or 
Missing Data 

In some designs, the cluster size may not be fixed in advance. Suppose 
for example N units are randomly drawn from a specific population. 
Each unit i, i = 1, ... , N, is composed of ni members. On each mem
ber j, j = 1, ... , ni, of each unit i, we observe an outcome Yij and an 
associated vector of covariates Xij. The covariates Xij may be cluster
specific, i.e., Xij varies across units but not across members of the same 
unit so that Xij is the same for all j, subject-specific, i.e., Xij varies 
across members of the same unit, or both. Thus, Yi = (Yil, ... , YinJ' 
and Xi = (Xil, ... XinJ' record the full data on the ith sampling unit. 
As another example, suppose we randomly sample N units from the pop
ulation and intend to make n observations on each subject with n x p 
design matrix Xf. Suppose in fact we are able to obtain only ni ob
servations for each subject, but the missing observations are MCAR, so 
that for the observed data vector, E(Yi) = Xi/3, where the rows of Xi 
are the subset of rows of Xf corresponding to the observed Yi. 

The LMCD (1.1.2) specifies that the conditional mean of each obser
vation Yij depends linearly on functions of cluster-specific and subject
specific covariates. It also specifies the functional dependence of the 
covariance between each pair of observations on covariates. Thus, I;i 

depends on i through its dimension ni x ni, and through its postulated, 
if any, dependence on the covariate matrix Xi· Often the values of ni 

are unknown to the investigator prior to the collection of data. In such 
settings, cluster size is also a random variable. It can be shown that 
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the asymptotic results given for fixed ni also hold provided we assume 
each ni < some fixed value n*. Although it was not explicitly stated in 
section 2, when ni is random, the LMCD is a model for the conditional 
mean and covariance of Yi given the covariates Xi and the cluster size ni. 

Notice, however, that as formulated, the LMCD does not allow for the 
mean and covariance of Yij to depend on cluster size other than through 
dimensionality, nor for covariate effects to change with cluster size. It 
is therefore inappropriate for analyzing studies where such relationships 
are of interest. An illustration of this scenario would be a study of birth 
weight in animals in which the primary sampling units are litters and the 
effect of litter size on birth weight is of scientific interest. The LMCD 
can be easily extended to allow for the dependence of the mean and co
variance of Yi on ni beyond dimensionality but such extension will not 
be elaborated in this monograph. 

Because the WLS estimate is only consistent when E(Yi) = Xi/3, 
when the lack of balance is due to missingness, an MCAR mechanism is 
required for the validity of the WLS estimate. Because ~ML is a WLS 
estimate, it too is automatically consistent for (3 even if the error dis
tributions are not normal, provided we have E(Yi) = Xif3· The same 
is true for ML or REML estimates of e, i.e., normality of the error dis
tributions is not required for consistency. With missingness due to an 
MAR mechanism, then it generally no longer holds that E(Yi) = Xif3, 
and WLS estimates are no longer valid. ML estimates for both (3 and 
e are consistent in the MAR setting, although now the distributional 
assumption of the error terms is now crucial, as is the assumption that 
var(Yi) = :Ei is correctly specified. 
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