
Chapter 5 

Modeling and inference using 
GLMMs 

5.1 Introduction 

In this chapter I continue the prescription of Section 4.4 and present a number of 
examples and consider the inferential goals. 

5.2 Chestnut blight (gene effects) 

Recall the model we developed in the first chapter (1.1) for the chestnut blight 
example, now modified to include random effects: 

Yi = 1 if the virus is transmitted and 0 otherwise, 

(5.1) 
Yilu"' indep. Bernoulli(pi), 

Pi = <I> (It+ ~ ,BsMCHis + ~ !sASYis + z~,i u1 + z~,i u2) , 

where z~ i and z~ i are the ith rows of the model matrices for the donor and recipient 
random ~ffects, r~spectively, and we assume 

(5.2) 
u1 "'N(O, Io-~) independent of 

u2 "'N(o, Io-;). 

One inferential goal might be to test if gene 4 had an effect. To do so we could fit 
the model described by (5.1) and (5.2) and evaluate the log likelihood. We would 
next fit the same model, but with ,84 and 14 set equal to zero and compare the 
value of the log likelihood. A large sample likelihood ratio test could be used to 
test Ho : ,84 = 1'4 = 0. The inferential goal in this case is to form a hypothesis test 
of parameters from the linear predictor. 

34 
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TABLE 5.1. 
The progabidejseizure data set 

Number of seizures per 
Baseline Period Period Period Period 

Patient 1 2 3 4 Trt 
1 11 5 3 3 3 -0-

2 11 3 5 3 3 0 
3 6 2 4 0 5 0 
4 8 4 4 1 4 0 

57 13 0 0 0 0 1 
58 12 1 4 3 2 1 

5.3 Progabide and seizures 

A well studied example is the Progabide and seizures data set, reproduced in, for 
example, Diggle et al. (1994). Epileptics were randomly allocated to a placebo 
group or an drug (Progabide) group. The number of seizures was recorded for a 
baseline period of 8 weeks and during consecutive two-week periods for 4 periods 
after beginning treatment. The main question of interest is whether the drug is 
effective at reducing the number of seizures. Table 5.1 gives a portion of the data. 
Our outcome variable would be the number of seizures for individual i at time t 
for t = 1, 2, 3, 4, 5. For a distributional assumption we might entertain the Poisson 
and we would want to incorporate the following predictors: period, treatment, 
period x treatment (all fixed) and random effects for individuals. We will need to 
accommodate the fact that the baseline period is 8 weeks long, while the observation 
periods are 2 weeks long: 

Yit = number of seizures in period t for subject i, 

Yit[.A"' indep. Poisson(Ait), 

(5.3) ln(.Ait) = J.L + Bi + ,B1POSTit + ,B2TRTi + ,B3POST x TRTit, 

+ ln(TIMit), 

Si "' i.i.d. N(O, O";ubj), 

where si are the random subject effects, POSTit is 1 if the observation is post­
baseline and 0 otherwise (none of the post-baseline periods were found to be dif­
ferent), TRTi is 1 if the subject is in the treatment group and zero otherwise, and 
TIMit is 8 for the baseline period and 2 for all the other periods. 

The role of the ln(TIMit) term on the right-hand-side of the equation (called 
an offset) is to be able to accommodate the differing time periods and model the 
number of seizures per week. Taken over to the left-hand-side of the equation, it 
is clear we are modeling ln(.Ait/TIMit) (i.e., the log of the rate per unit time) as a 
function of the remaining variables. 

We are are mainly interested in (33 since that measures the differential change 
over baseline between the control and treatment groups (in case there is a placebo 
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effect, we would like to show that the drop in the treatment group is larger). So 
our primary hypothesis is H0 : (33 = 0 versus the alternative HA : (33 < 0. 

5.4 Chestnut blight (isolate effects) 

I return to the chestnut blight example and the model given by (5.1) and (5.2). If 
there are no other genes affecting the transmission of the virus, then all isolates 
with a given set of fixed effects will behave the same. On the other hand, if other 
genetic factors are at work, isolates with the same values of the pre-identified genes 
will behave differently. To test for the presence of other genetic factors, we will be 
interested in testing the null hypothesis 

(5.4) 

which we might attempt using a likelihood ratio test. Namely, we would compare 
the maximized value of the log likelihood for the full model and the model with both 
the donor and recipient variances restricted to zero. A p-value would be defined by 

(5.5) p-value = Pr{W ~ 2L\ log L }, 

where W is the (log) likelihood ratio statistic and 2L\ log L is the observed value 
of the log likelihood ratio. Large p-values would support the null hypothesis of no 
other genetic effects. A difficulty is that the large sample distribution of W is hard 
to deal with since it is a mixture of independent x2 s with degrees of freedom "0," 
1 and 2. 

5.5 Potomac River Fever 

Potomac River Fever (equine monocytic ehrlichiosis) is a blood-borne rickettsial 
disease whose transmission mechanism is unknown. Both arthropod (e.g., blackfly) 
and direct oral transmission have been suspected but not verified. Identification 
of risk factors of horses in New York State might give clues to the spread of this 
disease and help with reducing its frequency. In Atwill et al. (1996) 511 farms were 
studied, each with several social groups of horses, for a total of 2,587 horses. The 
outcome was whether or not a horse tested positive for the presence of the disease, 
so the outcome is binary. We might construct a model as follows: 

(5.6) 

Yijk = 1 if horse k in social group j on farm i 

tests positive and 0 otherwise, 

Yi}k Is, f,...., indep. Bernoulli(Pijk), 

logit(Pijk) = x~jk{3 + Bj(i) + li, 
s "-' N(O, lo-~roup) independent of 

f ""'N(O, lo-farm), 

where x~jk{3 is the fixed effects portion of the model, Bj(i) are the social group 
effects, and fi are the farm effects. To assess the primary question of mode of 
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transmission, the fixed effects included predictors such as frequency with which the 
stall was cleaned, frequency with which fly spray was applied, distance to water 
and a number of others. In the analysis, none of the predictors related to possible 
modes of transmission was statistically significant. 

Next I consider the random effects. The estimated variances of the random 
effects were &~roup = 0 and &farm = 1.26. So the difference in loglikelihood for 
testing &~roup = 0 is zero and hence not statistically significant. After dropping it 
from the model, a test of &farm = 0, was statistically significant at the 0.05 level. 
The lack of significance of the social group variance component suggests that the 
transmission mechanism is not directly from horse to horse, but instead is related to 
farm location or management practices at the farm level. Here, as in the previous 
example, inference focused on testing for the presence of a non-degenerate random 
effects distribution. 

5.6 Neotropical migrants 

In the Breeding Bird Survey, counts of number of birds "sighted" has been made 
each June at thousands of locations across the U.S. and Canada. Many of the 
locations have been surveyed since the mid 1960s. In James et al. (1996) responses 
were summarized by estimating whether the trend in population size was positive 
within each of 37 physiographic strata. So the outcome for this analysis was whether 
or not species i in stratum j was estimated to have increased. A model for this 
situation might be: 

Yij = 1 if the estimated population trend is upward 

for species i in stratum j and 0 otherwise, 

(5. 7) Yij Is rv indep. Bernoulli(Pijk), 

logit(pij) = p + Si + Spj, 

s "'N(O, IO";trata), 

with the Si being the stratum effects and the spj being the species effects. The 
stratum effects serve to build in a correlation for all data collected on a species in 
a stratum; a good idea since the data are collected all on the same day and by the 
same observers. 

The analysis concerned a subset of 26 of the species, called neo-tropical migrants. 
These birds overwinter in Central and South America and come back to the United 
States to breed in the summer. The primary question was whether destruction of 
overwintering habitat was causing neo-tropical migrant bird populations to decline 
on a continent-wide basis. 

Since not all the species occur in each of the 37 physiographic strata (in fact about 
2/3 of the data are "missing") fitting the two-way model of (5. 7) can be thought of 
as a ."smoothing" method. That is, an attempt to understand the overall increase or 
decline in species populations, irrespective of the locations at which they are found. 
Interestingly, no overall declines were found, with about half the species showing 
increases and about half showing decreases. So the evidence was not supportive 
of continent-wide declines. There were some interesting conclusions related to the 
random effects however. 
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In testing the hypothesis of no stratum effects (Ho : a:trata = 0) the likelihood 
ratio test was equal to 11.88, which, when compared to a 50:50 mixture of a x5 and 
XI is highly statistically significant. More interesting was looking at the empirical 
best predicted values of the stratum effects, namely E[sj IYJ, where the hat signifies 
that the ML estimates of the mean, the species effect and the stratum variance have 
been inserted. When the strata effects were assessed with respect to their geographic 
location the most negative ones (i.e., locations with the largest probabilities of 
decline) were all located in high-altitude locations in the eastern United States. This 
was highly suggestive of pollution effects taking place in the ecologically sensitive, 
high altitude locations. 

5. 7 Photosynthesis in corn relatives 

Consider an experiment in which two species of corn relatives (an annual and peren- . 
nial) were compared with respect to photosynthetic physiology. Seeds from two 
populations of each species were collected and grown in the greenhouse. The ex­
perimental design was a randomized complete block design with four blocks and 
three seeds from each population in each block (for a total of 12 seeds per block). 
After 24 days, photosynthesis was recorded at nine different light levels from full 
sunlight to darkness on one individual from each population in each block (N=16). 
Measurements on the same 16 plants were repeated after 48 days. From these data, 
photosynthesis versus irradiance (PAR) response curves reflecting the change in 
photosynthetic rate with light level were derived. 

The traits of interest are the maximum photosynthetic rate, dark respiration, 
the light compensation point, and the quantum yield. The maximum photosyn­
thetic rate measures the maximum amount of carbon dioxide the plants are able to 
assimilate in full sunlight, the dark respiration indicates how much carbon dioxide 
they respire in the dark, the light compensation point is the light level at which 
photosynthesis overcomes respiration and carbon assimilation becomes positive, and 
quantum yield is the efficiency of carbon assimilation at low light levels, or the slope 
of the light response curve as it crosses the light compensation point. 

The main question of interest is to compare the two species with respect to their 
photosynthetic traits. To do so, a equation was hypothesized for the relationship 
between photosynthetic rate and light of the following form: 

(5.8) E[PHOTO] =a+ ,8(1 - e-"fLIGHT). 

Clearly, we have not yet incorporated the effects of species, block, seed or time of 
measurement. Presumably, species and block should be random factors, making a 
mixed model. 

This example was introduced to make two points. First, this is not a generalized 
linear mixed model. There is no (link) function of E[PHOTO] in (5.8) that will make 
it a linear model in the parameters a, ,Band 1'· Second, it is not at all clear how the 
effects of species, block, seed or time of measurement should enter the model. At the 
most complicated extreme, we might have to build a separate model (of unknown 
form) for each of the parameters in (5.8). In a generalized linear mixed model, the 
modeling is much simpler since all the effects are assumed to enter through the 
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linear predictor. This is a significant advantage in cases where the more restrictive 
form of a generalized linear mixed model is adequate to describe the process being 
modeled. 
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