
Chapter 2 

Likelihood, Estimation and 
Testing 

2.1 Likelihood and log-likelihood. 

In this and the following section, we review briefly the basic ideas and results of 
likelihood inference: details may be found in any standard mathematical statistics 
text for beginning graduate students. A vector of data random variables, Y, whose 
value y is observed, has one of a family of probability distributions {Po; B E 8}, 
indexed by a parameter Bin parameter space e. The goals of estimation are to make 
inferences about which Po gave rise to the observed y, and to assess the uncertainty 
associated with this inference. 

The likelihood is Ly (B) = Po (y), a function of B. The likelihood provides 
the connection between the data y and the probability model Po. A statistic is a 
function of the data random variables Y, an estimator T = T(Y) is a statistic 
taking values in e, while the estimate is T(y), the value taken by the estimator 
that is used to estimate (}. 

For example, suppose Y;, i = 1, ... , n are independent identically distributed 
Bernoulli random variables, B(1, 0), the indicators of success in n independent 
trials, each with success probability B. Then P0 (y) = BY(1 - &) 1·-y (y = 0, 1) for 
each trial, and L(B) = f1~((1Yi(1- 0) 1-Yi). The log-likelihood is 

n n 

(2.1) £(&) = log L(B) = ("2:: y;) log(&) + (n- "2:: y;) log(1 -B). 

Note that the (log)-likelihood depends only on the value ofT = 2::~ Y;, the total 
number of successes, which has a binomial B(n, B) distribution. The likelihood 
based on the binomial probability of the observed value t of T is 

(2.2) 

L(B) 

e(&) = 

Po(T=t) = 

logL(B) = 

n' -:-:-;--· ....,..,..,.et(1- et··t 
k!(n- k)! 

const + t log(&) + (n- t) log( I -B). 
11 
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Up to an additive constant which does not depend on (), the log-likelihood (2.2) is 
the same as that of equation (2.1). A statistic T for which this is the case is said 
to he sufficient. It is immaterial whether one considers the likelihood based on the 
full data Y = (Y1 , ... , Yn) or that based on a sufficient statistic such as T. Log
likelihoods are defined only up to an additive constant; only ratios of likelihoods 
are relevant for inference. 

The maximum likelihood estimate (MLE) maximizes the likelihood as a function 
of (}, to give the value of(} that "best explains" the data y. To obtain the MLE, we 
maximize Po (y), or log Po (y) with respect to 0. For example, differentiating the 
log-likelihood (2.2) with respect to 0 

f'(O) = t 
(} 

n- t 

l-0 

Maximizing (2.2) by setting the derivative f.'(O) equal to 0 gives the MLE B =tin. 
In general, the equation f'(O) = 0 is known as the likelihood equation. 

An estimator, T(Y), is unbiased if, for any(} E 0, Y,..., Po ===> E(T(Y)) = 0, 
where EO denotes expectation. We rewrite this definition as Eo(T(Y)) = (} 
for all (} E 0, the subscript indicating the "true" 0-value- the value indexing the 
probability distribution with respect to which the expectations are evaluated. The 
bias of estimator T(Y) is br(O) = Eo(T(Y))- (). An unbiased estimator is "correct, 
on average", over repetitions of the experiment. For example, if T is binomial 
B(n,8), then Eo(T) = n8, so the MLE is unbiased. However, unbiasedness alone is 
a very weak criterion. Some unbiased estimators may have poor properties, while 
many "good" estimators are biased. In particular many MLEs are biased, but under 
very broad conditions the bias decreases as the sample size increases. 

A more important criterion is that an estimator should have small mean square 
error (mse). The mse of estimator T(Y) is msee(T) = Ee((T(Y)- 0)2 ). If Tis 
unbiased, mseo (T) = varo (T), while, in general, 

mseo(T) = varo(T) + (br(0)) 2 . 

For example, for the unbiased maximum likelihood estimator TIn of the binomial 
parameter (}, 

mse(Tin) = var(Tin) = var(T)In2 

(2.3) = n8(1-0)In2 = 0(1-8)ln 

Consider an n-sample y(n) = (Y1 , ... , Yn), where the components Y; are 
independent and identically distributed, and a sequence of estimators (Tn) where 
Tn = T(Y(n)). Then the sequence of estimators (Tn) is consistent for() if, for every 
0 E 0, and every f.> 0, Po(ITn- 01 >E) -+ 0 as n-+ oo. In the binomial example, 
equation (2.3), the mse of the MLE, TIn, tends to 0 as n -+ oo, and hence the 
sequence of estimators, (TIn), is consistent. 

Clearly, maximization of L(O) is equivalent to maximization of£(()) = log(L(8)). 
Moreover, if a(O) is a one-one function of (} then & = a(B). Likelihood is a 
pointwise function of 0; transformation of the parameter space e does not alter the 
likelihood. 
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2.2 Estimation, information, and testing 

In likelihood inference, a key entity is the expected log-likelihood Ee0 (log(Pe (Y))). 
This notation denotes that the true value of the parameter () is ()0 , and it is the 
distribution under Oo with respect to which expectations are taken. The expected 
log-likelihood is thus a function both of the true (}0 and the hypothesized 0. From 
the convexity of the function -log(·), it follows by Jensen's inequality that 

Ee0 (log(Pe0 (Y))) - log(Pe(Y)) ( ( Pe(Y) )) 
Eeo - log Pea (Y) 

> ( Pe(Y)) 
- log Eeo Peo (Y) 

= (~ Po(Y) ) 
- log 7 Peo (y) Peo (y) 

= -log(L Pe(y)) 
y 

(2.4) = -log(1) = 0 

Thus the expected log-likelihood is maximized with respect to (} by (} = (}0 : the 
expected log-likelihood is maximized at the true value of the parameter. The non
negative difference 

K(O; Bo) = Ee0 (log(Pe0 (Y)) - log(Pe(Y))) 

is known as the Kullback-Leibler information (Kullback and Leibler, 1951). One 
of the fairly immediate consequences of equation (2.4) is that under very broad 
conditions MLEs are consistent. 

A related result is the Cramer-Rao lower bound which says that (subject to some 
regularity conditions) no unbiased estimator can have a variance smaller than 

The quantity within the square brackets is known as the Fisher information. The 
larger the information, the smaller the variance can be. Subject to a few additional 
conditions, MLEs are asymptotically approximately Normal (Gaussian), with mean 
(}0 , the true parameter value, and variance the inverse of the Fisher information. 
This says that, in large samples, MLEs are the best estimators. The required 
regularity conditions will be satisfied for most of the e:l(amples discussed in this 
monograph. A condition which may sometimes fail is that the true value Oo should 
lie in the interior of the parameter space e. 

Of course, the value of ()0 is unknown, but at least for large samples, the MLE 
B is close to the true value Oo. Thus, B(y) may be substituted for Bo in the 
Fisher information, to obtain an estimate of the variance of the MLE. In fact, 
the expectation in the Fisher information can be hard to compute. Then, at least 
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for large samples, an alternative is the observed information 

82 
- 882 log( Pe0 (Y)) 

evaluated by substituting the observed y for Y and O(y) for 80 . The theoretical 
details and justification may be found in a mathematical statistics text. 

To provide an example which should be familiar to readers, we return to the case 
of a binomial random variable: Tis B(n, 8). As before (equation (2.2)) 

£(()) = const + T log(()) + (n - T) log(1 - 8) 

and the MLE is T/n which has expectation() and variance 8(1- 8)/n. Now, 

e''(()) = _ T _ (n- T) 
()2 (1 - 0)2. 

Since Ee(T) = n(), and Ee(n- T) = n(1- 8), the Fisher information is n/8(1- 8). 
Thus in this example, the MLE has the smallest possible variance. 

In practice, we estimate the variance as 

0(1- 0)/n = t(n- t)jn3 

where t is the observed value ofT. In fact, the same result is given by substituting 
0 = t/n for() in -1/£"(8), without going through the expectation step. It is not in 
general true that the two methods of obtaining an estimated variance of the MLE 
give identical formulae. 

Just as the maximum likelihood estimate is the value of the parameter that best 
explains the observed data, the maximized value of the likelihood is a measure of 
how well this parameter value is supported by the data, relative to how well other 
parameter values are supported by the observation of these data. Accordingly, we 
define 

L((~o) = max(£(8)) 
6E8o 

as a measure of support for the hypothesis () E e 0 c f-), and 

as a measure of the relative support for the two hypotheses () E e1 and (} E eo. 
In the case when 0o ~ 81, A 2: 1, and 2loge A 2:0. Again subject to regularity 

conditions, asymptotically, if () E eo is true, then 2loge A is approximately 
distributed as a chi-squared (x2 ) random variable, with degrees of freedom equal to 
dim(81)- dim( Go). If the true value Bois not in the hypothesis space 0 0 but is in 
81, then 2loge A ~ oo at a rate which depends on the minimum Kullback-Leibler 
information: 

inf K(8;Bo) = inf (Ee0 (1og(Pe0 (Y)) - log(Pe(Y)) )) 
eeeo eee0 
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The regularity conditions in order that these results hold are essentially the same 
as the ones needed for the asymptotic results about MLEs. They will hold in the 
examples we discuss. 

In particular, much of the data in genetics is multinomial, consisting of counts of 
outcomes of various types. It is therefore useful to consider the case of the general 
multinomial model. Suppose there are r possible outcomes, having probabilities 
Pi, i = 1, ... , r, and a vector of parameters(), so Pi is Pi(B). The log-likelihood is 

(2.5) 
r 

e = const + 2:: n; logp; 
i=l 

For the general model, L~=l Pi = 1 with no other constraints: 

r r-1 r-1 

e L n; logp; L ni logp; + nr log(1- LPi) 
;,~,1 i=1 i=l 

{)£ n; nr 

8p; Pi Pr 

for i = 1, ... ,r- 1, giving the MLE Pi 
log-likelihood is 

n;jn. The maximized value of the 

r r 

(2.6) L n; logj)i = L n; logn; - n logn 
i=l i=1 

The dimension of the general hypothesis space is r - 1 since the p; are constrained 
to sum to 1. 

Under a constrained model, the outcome probabilities p; will be functions of 
some parameters () j, where normally the dimensionality of () is less than r - 1. To 
estimate () we must solve the equations 

~ n; 8p; 
~ p· {)(). for all j 
i=1 • 3 

It is also possible to find the Fisher information: 

= 

Now E(n;) = np;, so 
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(2.7) 
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r 1 8p; 8p; 
n L p· 80· 8()k 

i=l 1 J 

since I:~= I p; = 1. Equation (2. 7) is sometimes known as Fisher's formula. 

2.3 Population allele frequencies 

In this section, we consider three examples of the above formulation, in the context 
of estimation of population allele frequencies. Consider a single genetic locus, 
with k alleles Ai and having population frequencies Qj, j = 1, ... , k. Now in a 
random-mating population, the allelic types of the maternal and paternal genes in 
an individual are independent. Thus the probability an individual is homozygous 
Ai Aj is q], while the probability the individual is heterozygous Ai At (j < l) is 
2qjq1• These genotype frequencies are known as Hardy-Weinberg proportions, and 
a population exhibiting genotypes in these proportions is said to be in Hardy
Weinberg equilibrium. 

First suppose the alleles AJ are codominant, and a random sample of 
n individuals is taken from a population assumed to be in Hardy-Weinberg 
proportions. Suppose that n11 (j :::::; l) individuals are observed to be of genotype 
AjAl. As above (equation (2.5)), the log-likelihood is 

k 

f = const + L niilog(q}) + 
j=l 

k 

const + L mjlog(qj) 
j=l 

L njtlog(2qjqt) 
l~j<l~k 

where mj = 2nii + L:t<i ntj + L:i<l njt, is the number of Aj alleles among the 
2n alleles of th n sampled individuals. Hence the MLE of qi is mj j2n, the sample 
proportions of the allelic types. The MLE has variance qj(1- qi)/2n. 

Most natural populations show some degree of subdivision or structure, and so 
do not exhibit Hardy-Weinberg equilibrium. The deviation from Hardy-Weinberg 
proportions may be small and detectable only from large samples. Testing 
Hardy-Weinberg proportions is straightforward in the case of a random sample 
of individuals typed at a locus with codominant alleles. Under the general model, 
there are ~k(k + 1) genotypic counts nit with the maximum log-likelihood given by 
equation (2.6), while assuming Hardy-Weinberg proportions, there are k allelic 
counts mi with the same multinomial form of maximum log-likelihood. The 
dimension of the larger hypothesis space is ~k(k+1)-1, and of the smaller is k-1. If 
Hardy-Weinberg proportions do hold in the population, then twice the difference in 
log-likelihoods is distributed as a chi-squared random variable on ~k(k- 1) degrees 
of freedom (x~k(k-I)). 
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A locus with two alleles is said to be diallelic, although the alternative biallelic 
is now used increasingly in the literature. As an example of the use of Fisher 
information, consider the case of a diallelic trait locus, with a recessive allele 
with allele frequency q. Assuming Hardy-Weinberg proportions, there are two 
phenotypic categories (r = 2), with population frequencies p 1 (q) = q2, p2 (q) = 
1 - q2 . Suppose n individuals are sampled, and t are found to be of the recessive 
phenotype. Since P1 (q) is a 1-1 transformation of q, over the parameter space 
0 :::; q :::; 1, the MLE of q is q = v'(P0 = .;t{n. This may also be verified by direct 
differentiation of the log-likelihood 

f(q) = t log(q2) + (n- t) log(1 - q2) 

Now also 

8p2 = 2q and = 
8q 

- 2q, 

so using Fisher's equation (2. 7) 

E (- 82£) 
8q2 

-- n (q12 (2q)2 + _1_, ( -2q)2) 
1 - q2 

4n 

(1 - q2) 

Thus the large-sample variance of the MLE is (1- q2)/4n, which is (1 + q)/2q times 
larger than the variance q(1- q)j2n obtained if the genotypes were observable. Of 
course, when there are only two phenotypes, there are no degrees of freedom to test 
for Hardy-Weinberg proportions. 

As another example, consider the estimation of allele frequencies at a diallelic 
locus, when, instead of random individuals, we sample parent-offspring pairs. This 
might arise, for example, if our sample was of mothers with new-born infants. 
Table 2.1 shows the conditional and joint probabilities of feasible mother-child 
combinations. 

--...--
Pr(childlparent) for Pr(parcnt, child) for 

parent probab- child genotype child genotype 
genotype ility AiAi AiAi AiAl AiAi AiAi AiA1 

AiAi qf Qi Qj Ql qt qfqj qfql 
AiAi 2qiQj ~Qi ~(Qi + Qj) 

1 
'jQl qfqj QiQj(Qi + Qj) QiQjQl 

TABLE 2.1. Conditional and joint probabilities of feasible mother-child genotype combinations 

In the case k = 2, let nij be the number of mother-offspring pairs in which the 
mother has genotype 9i and the offspring has genotype 9i• where 9o = A1 A1 , 91 = 
A 1 A 2 and 92 = A2A2 • Since Ql + Q2 = 1, every term in Table 2.1 is a product of 
allele frequencies, and the multinomial log-likelihood reduces to 

e = L nij log Pr(9i, 9i) 
( i,j) 
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== noo log(qr) + no1log(qiq2) + n10 log(qrq2) + nnlog(qiq2) 

+ n12log(qtq~) + n21log(q1qD + n22log(q~) 
(3noo + 2(not + n10) + nn + n12 + n21) log Q1 + 

(3n22 + 2(n21 + n12) + nn + n10 +not) logq2 

(2.8) == m1 log Ql + m2 log qz 

where m1 is the number of distinct A1 alleles, and m2 is the number of distinct 
A2 alleles, in the set of pairs. (By "distinct" we mean that we do not count both 
copies of an allele which segregates from parent to offspring.) The MLE of Q1 is 
thus ml/(m1 + m2). Note that 

3(noo + no1 + n10 + n21 + n12 + n22) + 2nll 

= 3n - nn 

where n is the number of parent-offspring pairs. Although finding the MLE is a 
matter of "gene-counting", the total number of distinct genes to be counted is not 
4n, since parent and offspring share one gene, nor even 3n. For each (gl, g1) = 
(A 1A2, A 1 A2 ) pair, one gene of allelic type A1 and one of type A2 can be counted, 
but the third distinct gene may be of either type, and does not contribute to the 
likelihood. 

factor freq. phenotype frequencies 
A B A B AB 0 

Data 0.422 0.206 0.078 0.294 
H1 theory p q p(1 - q) p(1- q) pq (1-p)(1-q) 
H1 fitted 0.500 0.284 0.358 0.142 0.142 0.358 
H2 theory p q p2 + 2pr q2 + 2qr 2pq r2 
H2 fitted 0.295 0.155 0.411 0.194 0.091 0.303 

TABLg 2.2. Data and estimated frequencies for Bernstein's analysis of ABO blood type 
determination 

As a final example in this section, we consider the classic analysis of Bernstein 
(1925) who established the mode of determination of the ABO blood types using 
data on population phenotype frequencies. The development in terms of likelihood 
ratio tests is due to Edwards (1972). Bernstein reported ABO blood types on 
a sample of 502 individuals: 42.2% type A, 20.6% type B, 7.8% type AB and 
29.4% type 0 (Table 2.2). It is a minor mystery of Bernstein's data that these 
proportions do not give integer counts with a sample of n = 502; however we ignore 
that question here. 

Now there were two prevailing hypotheses for the determination of the ABO 
blood types, the first, Jl1 being that A and B are independently inherited factors, 
The frequency of individuals in the sample having the factor A is 0.500 (blood 
types A or AB), and B is 0.284 (blood types B or AB). As pointed out by 
Bernstein, independence of the factors would give an AB frequency of 0.500 x 
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0.284 = 0.142 much larger than the 0.078 observed. More rigorously, we can perform 
a likelihood ratio test of H 1 against the general multinomial alternative. For the 
general alternative, the fitted frequencies are the observed frequencies, and the 
log-likelihood is 

e 502( .422log .422 + .206log .206 + .078log .078 + .294log .294) 

= -626.71 

Under the hypothesis H 1 the estimated frequencies are as shown in Table 2.2, and 
the log-likelihood is 

£1 = 502(.422log .358 + .206log .142 + .078log .142 + .294log .358) 

= -647.50 

Twice the log-likelihood difference is 41.58, and would be the value of a xr random 
variable if H 1 were true. Clearly, H1 is rejected. 

The second hypothesis, H 2 is that A and Bare the two non-null alleles of a single 
system. If the three alleles A, B and 0 have frequencies p, q and r (p + q + r = 1), 
and if Hardy-Weinberg proportions hold, then the frequencies of the four blood 
types are p2 + 2pr, q2 + 2qr, 2pq and r 2 (Table 2.2). Bernstein pointed out that 
the sum of the A and 0 blood type frequencies is (p + r )2 , or one minus the square 
root of this frequency is (1 - p- r) = q. Similarly one minus the square root of 
the sum of the B and 0 blood type frequencies is p, and the square root of the 0 
blood type frequency is r. The sum of these three numbers should be one. For his 
data 

(1 - v'0.422 + 0.294) + (1 - v'0.206 + 0.294) + v'0.294 = 0.99 

which is close to one, suggesting a good fit. Again, more formally, we may perform 
a likelihood ratio test. However, finding the MLEs of the parameters p, q and r is 
not simple; in fact, we shall discover in section 2.5 that these MLEs are p = 0.2945 
and q = 0.1547, with the resulting fitted frequencies given in Table 2.2. The fitted 
frequencies are all close to the observed ones, and the log-likelihood is 

£2 502(.422log.4114 + .206log.1942 + .078log.0911 + .294log.3033) 

-627.52 

Twice the log-likelihood difference between this and the general alternative is now 
only 1.62. Again, this is the value of a xr random variable if Hz is true, and this 
hypothesis is not rejected. 

Of course, there is also evidence on the ABO blood type determination in 
the transmission of genes from parents to children. For example, under Hz an 
AB parent cannot have an 0 child, while under H1 this may happen. Both 
inheritance patterns and population frequencies can provide information on genetic 
mechanisms. Bernstein's analysis is perhaps the first example of determination of 
the genetic model underlying a trait from population frequency data, rather than 
from the inheritance patterns in pedigrees. 
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2.4 The EM algorithm; general formulation 

Many of the problems in genetic analys1. fall within the classical missing data or 
latent variable framework. Many data r .ty be missing, in the sense that some 
pedigree members may be unobserved, >r not all marker phenotypes observed 
even for some available pedigree membf ~s. We therefore prefer the term latent 
variables for unobservable features, such as the multilocus haplotypes of individuals 
(equation (1.5)), or the meiosis indicators that specify the descent of genes in 
pedigrees (equation (1.2)). An important approach to likelihood analysis, and 
specifically to maximum likelihood estimation, in such latent variable problems was 
provided by Dempster et al. (1977). Although their approach had been developed 
previously in many special cases, they provided the overall framework, giving it the 
name the EM algorithm, or expectation-maximization algorithm. 

For generality, we denote latent variables by X, bearing in mind that for 
our examples, these will generally be meiosis indicators, genotypes, indicators of 
genotypic status or linkage phase, or genotypic or allelic counts. For simplicity, we 
use summation rather than integration over latent variables, since for the majority 
of our examples, the latent variables are discrete. The structure of any latent 
variable problem is that the likelihood L(B) from observed data values y of the 
data random variables Y is 

L(B) = Po(Y = y) LPo((X, Y) = (x,y)) 
X 

Now the joint probability of data and latent variables is 

Po((X, Y) = (x,y)) = Po((X = x/Y = y))Po(Y = y). 

This joint probability, considered as a likelihood of parameter (), is known as the 
complete-data likelihood. Taking logs and rearranging, 

(2.9) logL(B) = logPo((X, Y) = (x,y)) - logPo((X = xiY = y)). 

Now define 

lly(B; B*) 

Gy (B; B*) 
= Eo• (log Po(X, Y) I Y = y) 

= Eo.(logPo(X I Y = y) / Y = y) 

The function H y ( B; ()*) is the expected complete-data log-likelihood, while the 
Kullback-Leibler information (section 2.2) in the conditional distribution of X given 
Y =y is 

Ky(B; B*) = Gy(B*; B*)- Gy(B; ()*). 

Taking expectations over X, under model ()*, conditional upon Y = y, in equation 
(2.9) we obtain 

logL(B) = Hy(B;B*) - Gy(B;B*) 
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since L(fJ) does not depend on the random variable X. Now suppose that jj 
maximizes Hy(fJ; ()*) over(), and consider 

log L(B) -log L(fJ*) 

(2.10) 

(Hy(B; fJ*) - lly(B*; B*)) + 
(Gy(B*;fJ*)- Gy(B;fJ*)) 

Now jj maximizes Hy(B; ()*). Also, for any probability distributions Pe(·) indexed 
by parameter(), EII·(Pe(X)) is maximized by()=()* (equation (2.4)). Thus 

(2.11) 

(2.12) 

Hy(B; fJ*) ~ Hy(B*; fJ*) and Gy(B*; fJ*) ~ Gy(B; fJ*) 

so log L(B) > log L(fJ*) 

with equality only if Band()* provide the same conditional distribution for X given 
Y=y. 

Thus we have the EM algorithm for finding MLEs (Dempster et al., 1977). 
E-step (expectation): 

At the current estimate ()* compute H y ( fJ; ()*) = E9 • (log Pe (X, Y) I Y = y) 
M-step (maximization): 

Maximize Hy(B; ()*) with respect to() to obtain a new estimate iJ. 
E-steps and M-steps are alternated, and, in accordance with equation (2.12) the 
likelihood is non-decreasing over the process. Where the likelihood surface is 
unimodal, convergence to the MLE is assured, although it may be slow. 

In the case when the complete-data joint probability Pe((X, Y) = (x,y)) is an 
exponential family of full rank, the EM equations take a particularly simple form. 
If T1 (X, Y), j = 1, ... , k are the natural sufficient statistics, with corresponding 
natural parameters a1 (0), j = 1, ... , k, 

Pe((X, Y) = (x,y)) 

Hy(O; 0*) 

k 

c(O) exp(LT1 (x,y)a1 (fJ)) 
J=l 

k 

logc(O)- l:Ee.(T1 (X,y) I Y = y)a1 (fJ) 

8Hy 8l~gc(O) _ Eo·(T1 (X,y) I y = y) 
aaJ aJ 

Eo(T1 (X, Y)) - Eo· (T1 (X,y) I Y = y). 

Thus to implement EM in this case we compute the conditional expectations of the 
natural sufficient statistics Tj, give the data Y, under the current estimate ()* and 
set them equal to their unconditioned expectations to obtain the new estimates 
B. Thus the EM algorithm is often discussed in terms of the E-step "imputing" 
the latent variables conditional upon the data Y under the currrent estimates ()*, 

and the M-stcp being the maximization of the complete-data log-likelihood, using 
these imputed variables. Although for many practical cases this is so, some care 
is needed. Only in the case of an exponential family of full rank is the expected 
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complete-data log-likelihood a linear function of the natural sufficient statistics T1 • 

Even in this case, 1~ may not be linear in the latent variables X, so that 

Eo· (T1 (X, y) I Y = y) 1 T1 (Eo· (X I Y = y), y) 

An example is given in section 2.6. 
This monograph will take a likelihood approach to inference, but some of the 

methods are closely related to those of Bayesian inference. In Bayesian inference, 
parameters (} are given a prwr probability distribution 1r(8) which expresses 
information or belief about parameter values before data Y are observed. After 
data are observed, beliefs about (} are expressed via the posterior· distribution 

,[0 1r(8)Pr(Y; 8)de 
1r(eiY) 

1r(e)Pr(Y; 8) 

Bayesian inferences are based on the posterior probability distribution for 
parameters of interest. Clearly the likelihood L(8) = Pr(Y; 8) is closely related 
to the Bayesian posterior. 

Bayesian inference is often useful where there are many parameters, only a 
few of which are of interest. The nuisance parameters are integrated over to 
provide a marginal posterior distribution for a parameter of interest. This is thus 
often a convenient way to view a multi-parameter likelihood surface, integrating 
over nuisance parameters with respect to some prior distribution, rather than 
maximizing over them to obtain a profile likelihood. From the Bayesian viewpoint, 
there is no difference between latent variables X and parameters 8, and the 
conditional probability distribution of X given observed data Y would be referred 
to as a posterior distribution for X, whereas the probability unconditioned on data 
would be the prior distribution for X at a given value of e. To avoid confusion, 
we shall refer to the distribution of X given Y, indexed by parameter (} as the 
conditional distribution, and reserve the word posterior for a Bayesian posterior for 
model parameters e. We shall, however, refer to the model-based distribution for 
latent variables X as a przor distribution for X. This should not be confused with 
a Bayesian prior distribution for model parameters 8. 

2.5 Gene counting and the ABO blood types 

We have seen in the examples of section 2.3 that, where genotypes arc observable, 
estimating allele frequencies is just a matter of counting the genes. In a slightly more 
general sense, the same is true when genotypes cannot be fully observed. "Counting 
methods" have been used to estimate allele frequencies since the approach was 
first introduced by Ceppelini et a!. (1955). In fact, these methods are particular 
instances of the EM-algorithm (section 2.4). 

Given a sample of n individuals, the phenotypic counts n1 , i = 1, ... , r, are 
multinomial, with probabilities p,(q), where q = (q1, ... ,qk) is the vector of 
underlying allele frequency parameters to be estimated: 

r 

(2.13) f = logPr(n1, ... ,nr) L n, logp,(q) 
•=1 
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The complete-data, consisting of the counts mi of allelic types of all distinct genes 
in the sample, are also multinomial: 

k 

log Pr(m1 , ... , mk) = 2: mi log Qj. 

j=l 

Determining the conditional expected complete-data log-likelihood (E-step), is 
simply a matter of determining the expectations ei of allele counts mi given the 
phenotypic counts n; and current estimates of the allele frequencies Qj. TheM-step 
is even simpler: the new estimate of Qj is the proportion ei/m*. Here, m* is the 
number of distinct genes in the n individuals: for the case of samples of unrelated 
individuals, m* = 2n. 

current current recessive dominant 
q 2q/(1+q) phenotype phenotype new q = 

tl = 36 t2 + t3 = 64 (2tl + t2) /2n 
AA AB BB 

0.5 0.667 36 42.67 21.33 0.573 
0.573 0.729 36 46.64 17.36 0.593 
0.593 0.745 36 47.66 16.34 0.598 
0.598 0.749 36 47.91 16.09 0.600 
0.600 0.750 36 48.00 16.00 0.600 

TABLE 2.3. Sequence of EM iterates for the example of estimation of the frequency of a recessive 
allele 

We consider two examples of the above, the first being the case of a recessive 
allele, with allele frequency q. Suppose in a sample size n = 100 there are n 1 = 36 
of the recessive type AA. As seen in section 2.3, the MLE of q is J[36 = 0.6. 
Although the EM algorithm is unnecessary here, it provides a useful example. 

The three genotypes are AA, AB and BB, with counts say t;, (i = 1, 2, 3). Now, 
n 1 = t1 , but the counts of AB and BB are unobservable since B is dominant to A. 
If these counts, t2 and t3, were known, then the number of A alleles is m1 = 2t1 +t2, 
and the MLE of q would be (2tl + t2)/2n. Further, 

Pr(AB I AB or BB) 

so 

2q(1 - q) 
1 - q2 

2q 
= 

1+q 

So now the EM-algorithm implements the sequence of iterates shown in Table 2.3. 
Starting from an arbitrary initial value q = 0.5, the proportion 2q/(1 + q) is 
computed, and the 64 individuals of dominant phenotype divided into the expected 
numbers t 2 and t3 that are that are AB and BB, respectively (E-step). Then a 
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current values phenotype A phenotype B ... 
p q 2r 2r Pr(A) = 0.422 Pr(B) = 0.206 p+2r q+2r ... 

AA AO BB BO ... 
0.3 0.3 0.73 0.73 0.115 0.307 0.056 0.150 ... 

0.308 0.170 0.77 0.86 0.096 0.326 0.029 0.177 ... 
0.298 0.156 0.79 0.87 0.091 0.331 0.026 0.180 ... 
0.295 0.155 0.79 0.88 0.089 0.333 0.025 0.181 ... 

phen AB phen 0 new values 
... Pr(AB) = 0.078 Pr(OO) = 0.294 p q 
... AB 00 
... 0.078 0.294 0.308 0.170 
... 0.078 0.294 0.298 0.156 
... 0.078 0.294 0.295 0.155 
... 0.078 0.294 0.295 0.155 

TABLE 2.4. EM zterates for the estzmatzon of ABO allele frequencies. The zterates of allele 
frequencies, and the resultzng condztzonal probabzlztzes of genotype AO and BO, gzven phenotypes 
A and B, respectzvely, are shown zn the upper left panel. Then are shown the resultzng expected 
genotype frequenczes, gzven the observed phenotype frequenczes and current allele frequency 
estzmates (E-step). Fznally, zn the lower rzght are shown the new iterates of the allele frequenczes 
(M-step) 

new value of q is estimated as (2t1 + t2)/2n (M-step). The process is repeated, and 
convergence to the MLE q = 0.6 is obtained within five steps. 

The second example provides the MLEs of the ABO blood group allele 
frequencies discussed in section 2.3. Here the EM-algorithm is in fact one of the 
easiest ways to find the MLEs, since there is no explicit solution of the likelihood 
equation. Now, we must partition both the count of A phenotypes into expected 
counts of AA and AO genotypes, and the B phenotype into BB and BO genotypes: 

Pr(AO I type A) = 

Pr(BO I type B) = 

2pr 
p2 + 2pr 

2qr 
q2 + 2qr 

2r 
p+ 2r 

2r 
q+ 2r' 

Once the counts are partitioned, according to current estimates of allele frequencies, 
the new estimate of the A allele frequency pis Pr(AA) + (Pr(AO) + Pr(AB)) /2, and 
the new estimate of the B allele frequency q is Pr(BB) + (Pr(BO) + Pr(AB))/2. 
Recall, Bernstein (1925) reported a sample of 502 individuals, with frequencies 
of the four types, A, B, AB and 0, 0.422, 0.206, 0.078, and 0.294, respectively. 
Table 2.4 shown the sequence of EM-iterates, with convergence being obtained, 
from starting values p = q = 0.3 in four iterations. Again, the details of this 
example are due to Edwards (1972). 

One interesting feature of the sequence of iterates in this example is that the 
value of p does not change monotonely; there is no reason why it should. What is 
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guaranteed to change monotonely is the value of the log-likelihood, which, for given 
allele frequencies may be easily evaluated (section 2.3 and equation (2.13)). For 
this example, over the iterations, the values of the log-likelihood are -687.1242, 
-628.9991, -627.5693, -627.5262, -627.5246. Note that, typically of the EM 
algorithm, the log-likelihood increases rapidly in the first steps, and the parameter 
values move rapidly to the neighborhood of the MLE, whereas the final convergence 
is much slower. In examples such as this, where evaluation of the log-likelihood is 
possible, this provides a better check on convergence than a criterion based on the 
changes in parameter estimates. 

2.6 EM estimation for quantitative trait data 

For simple qualitative or quantitative traits, were genotypes observable, estimation 
of penetrance parameters would also be primarily a matter of "counting". However, 
even in the simplest cases, explicit EM equations are not readily obtained. There 
may be no single statistic; the complete-data sufficient statistics may be functions 
of the genotypes G; of every individual i. Consider, for example, the simplest 
possible model for a quantitative trait determined by alleles at a single diallelic 
locus. (For example, the trait value might be an enzyme level.) The phenotypic 
value is assumed to have a Gaussian distribution, with mean depending on the 
genotype at the locus, and variance a;. The penetrance parameters are the three 
genotypic means, and the residual variance a;. The only additional parameter is 
the allele frequency at determining the trait-locus genotype frequencies. The model 
for the phenotype Yi of individual i having genotype G; may be specified as 

(2.14) 

If sampling unrelated individuals, then the Y; are independent and identically 
distributed and this is a simple mixture estimation problem, which can be addressed 
by EM (see for example, Redner and Walker (1984)). Of greater interest, in the 
context of genetic analysis, are data observed for members of a pedigree structure. 
To implement an EM algorithm, we would need to estimate the conditional 
probabilities that each member of the pedigree is of each of the three genotypes, 
given current parameter values and the data Y. For related individuals, estimation 
of the conditional probabilities of genotypes, G, given the observed phenotypic data 
Yon the pedigree, is a complex computation equivalent to computation of the total 
likelihood Pr(Y). We return to this problem in section 7.4. 

Estimation for a genetically more complex model turns out to be simpler, 
statistically. We consider briefly the classical polygenic model, where discrete 
genotypes G; are replaced by Gaussian random effects Z;, known as polygenic 
values. Rather than a single-locus trait, we are now considering a phenotype such 
as height, probably influenced by a very large number of genes throughout the 
genome. The genotype configuration G becomes a vector of polygenic values z, 
and sums become integrals. The founder probabilities Pr(G;) of equation (1.4) are 
replaced by N(O, a~) population densities for Z;, where the parameter a~ is known 
as the additive genetic variance. The transmission probabilities Pr( G; IG M,, G FJ 
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(equation (1.4)) become a transmission density for z, given ZM; = ZM; and 
ZF; = ZF;: 

(2.15) 

where the rJ; are independent, identically distributed segregation residuals, TJi 
N(O, v'TI), independent of ZM, and ZF;. If ZM; and ZF, are uncorrelated, then 

var(Z;) (1/4)(var(ZMJ + var(Zp.)) + v'TJ 

so to maintain constant population variance a~ of the Z; over the generations 
v'TI = a~/2. The transmission equation (2.15) for the offspring value Z;, given 
the parental values, may then be rewritten as Z; "' N((zM, + ZJ<J/2, a~/2). The 
joint probability of Z is Gaussian, with mean 0 and varianee-eovariance matrix 
cr~A, where A is a matrix determined by the pedigree structure, and known as 
the numerator-relationship-matrix (Henderson, 1976). In fact, A is the matrix 
2'11, where the (i,k) component W;,k is the coefficient of kinship 'lj;(i,k) between 
individuals i and k (section 3.2). 

The simplest penetranee model for a quantitative phenotypic value Y; of 
individual i is that it is a direct refl.eetion of the polygenic value Z;. Ignoring 
all other possible fixed/random effects, the penetrances Pr(Y; I G;) become the 
density Y; "'N(z;,cr;), given Z; = z;, or 

(2.16) Yi = Z; + t;. 

The variance a; of the independent, identically distributed residuals E; is known as 
the residual or (individual) environmental variance. In this simplest version of the 
model, there are just two parameters, cr; and cr~. In a pedigree (or a collection of 
pedigrees), suppose there are a total of ntot individuals, and that for nabs of them a 
value of the quantitative phenotype is observed. The complete-data log-likelihood 
is 

logPr(Y = y, Z = z) = log Pr(Y = y I Z = z) + log Pr(Z = z) 

+ (y -- z)'(y- z)/cr; = 1 ( 2 - 2 nabs log(27ra e) 

+ ntat log(27rcr~) + log(IAI) + z' A - 1 z/cr~). 

This is again of exponential family form, with two complete-data sufficient statistics 
(y- z)'(y- z) and z' A - 1z, which leads to EM equations 

cr;• Ea~,u~((Y- Z)'(Y- Z) I Y = y)/nobs 

(2.17) cr~* = Eu;,u~(Z'A- 1 Z I Y = y)/ntot· 

If Eu;,a~ (Z I Y = y) = a and Varu;,u~ (Z I Y = y) = V, the equations reduce to 

= 

= 
(nobs)- 1((y- a)'(y- a) + tr(V)) 

(ntat)-1 (a'A-1a + tr(VA- 1)). 
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We do not pursue this further here. There is a large literature on the use of EM in 
polygenic models, particularly in plant and animal breeding. For additional details 
in the context of simple models on complex pedigrees, see Thompson and Shaw 
(1990; 1992). For more general work in this area, see the references therein. The 
point of this example is to show that, even in an exponential family of full rank, the 
natural sufficient statistics may not be linear functions of latent genotypic counts 
or values. Estimation of a= Eo-2 u2 (Z I Y = y) is straightforward but insufficient. 
Since the sufficient statistics are •qt;adratic functions of Z, the conditional variances 
V are also needed to implement the EM equations. 
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