
LECTURE 5 

Measures of 
Short-Range Dependence 

There are a number of ways of setting up conditions under which versions 
of the classical limit theorems still hold for dependent sequences. We shall be 
mainly concerned with the central theorem for partial sums of the random 
variables of the sequence. One of these ways is to consider some type of mixing 
condition. With this in mind we consider the following measures of dependence 
for two sub-<T-fields .w c .'Y-, .';{() c .'Y- of a probability space ( n, .5F, P ). They are 

a(.w, 9&) = sup[P(A n B)- P(A)P(B)I, A E .0/, BE M, 

</>( .w, /;{()) = sup[P( BIA) - P( B)l, A E .w, B E YJ, P( A) > 0, 

<f>rev(.w', .c;{()) = </>( .9&' .0/)' 

IP(A n B)-- P(A)P(B)I 
lji(A, B)= sup P(A)P(B) ··········-, A E .w', B E HiJ' 

p( .w, .9&) = sup[corr( X, Y )I, X E L 2( .w), Y E LA.!;{()), X, Y real, 

1 I ,J 

f3(.w', M) =sup- L L IP(Ai n BJ- P(AJP(BJI, 
2 . 1 . 1 !- j-

with the supremum taken over partitions {Ai, i E I} and {B1, j E J} each of n 
but with Ai E .w, B.i E /IIJ. Here L 2(.r.x/) denotes the set of square integrable 
functions measurable with respect to the <T-field .w'. 

Let us now consider a stationary sequence of random variables X1,, ll = 

... , - 1, 0, 1, ..... 9"- is the <T-field generated by the random variables of the 
process M()(_1, -oo <j < oo). Set 

.9& n = ,!;{() (X), j ~ n), 

C:J,' - (j-"(X . ) 
./ rn - ,%J .I' j ~ m . 
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We then introduce the coefficients 

a( n) - a( IJIJ c.;,-) - 'O''Jn, 

¢>( n) = 1>( .IJIJo' .'Y~)' 

1/1( n) = 1/1( M0 , .9~), 

p( n) = p( .IJIJ0 , /f~), 

f3(n) = {3(!l8o, .'Y~). 

47 

The process (Xk) is said to be strongly mixing if lim"~"' a(n) = 0, ¢>-mixing if 
limn~"' ¢>(n) = 0, 1/f-mixing iflimn -->oc 1/f(n) = 0, to have asymptotic correlation 
zero if limn ~" p(n) = 0, and to be absolutely regular if limn __. 00 {3(n) = 0. The 
absolutely regular condition is sometimes referred to as a weak Bernoulli 
condition. An extended discussion of these conditions can be found in the 
paper of Bradley (1986). 

Certain fairly obvious relations among these different mixing conditions are 
(i) asymptotic correlation zero = strong mixing; (ii) absolute regularity = 
strong mixing; (iii) ¢>-mixing = asymptotic correlation zero, absolute regular
ity; (iv) 1/J-mixing = ¢>-mixing. 

It is of some interest to see what these different mixing conditions amount 
to in the case of familiar classes of random processes. We shall first consider 
the class of Gaussian stationary sequences. It will be convenient to let cr( X;, 
i E 1) stand for the (T-field generated by the random variables X;, i E I, where 
I is an index set. First of all, the analysis of the prediction problem implies 
that a Gaussian stationary sequence ( Xk) is purely nondeterministic (in the 
sense that the backward tail field is trivial) if and only if the spectral distribu
tion function of the process is absolutely continuous with a spectral density 
f( A) satisfying 

J7T log f(A) dA > -oo. 
-7T 

The paper of Kolmogorov and Rozanov (1960) implies that the strong mixing 
condition and asymptotic correlation zero are equivalent in the case of Gauss
ian stationary sequences. For the general class of stationary sequences, asymp
totic correlation zero is a more stringent condition than strong mixing. They 
showed that a sufficient condition for strong mixing in the Gaussian stationary 
context is that the spectral density be continuous and positive. Helson and 
Sarason (1967) showed that a necessary and sufficient condition for Gaussian 
strong mixing is that the spectral density be expressible as 

( 5.1) 

where P is polynomial, u and u are continuous real functions on the unit 
circle in the complex plane and v is the conjugate function of u. 

The book of Ibragimov and Rozanov (1978) has a detailed discussion of the 
Gaussian case. One can find then! a demonstration of the equivalence of 
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absolute regularity and the representation of the spectral density f( A) as 

{(A)= IP(eiA)I 2 exp[J~ooa1 eiiA] 
with P a polynomial whose possible roots lie on the unit circle and 

00 

L IJI · Ia/ < oo. 
j 

Given these results, it is clear that a Gaussian stationary sequence with 
spectral density 

f(A) = exp[J~1 2-.1 cos(22.iA)] 

is strongly m1xmg but not absolutely regular. The spectral density of a 
strongly mixing process need not be regular as can be seen in the case of the 
spectral density f, where 

f(A) = exp{ ~ k lo;tkk~ 1)}. 

Here the conjugate function of log f(A), 

L _ sin kA 

1 k log( k + 1) ' 

is continuous and so by (5.1) the process is strongly mixing. However, 

1 1~ dt 1 
log {(A) - 1 ( ) -log log-

1 t og t + 1 A 

as A l 0. 
One can show that if a stationary Gaussian sequence is (/>-mixing, it must be 

a finite moving average of independent identically distributed Gaussian ran
dom variables, or equivalently, a finite step dependent sequence. This is a 
consequence of the observation that if U, V are jointly Gaussian with 
corr(U, V) * 0, then cf>(u(U), u(V)) = 1. This follows from the fact [if 
corr(U, V) > 0] that for a > 0, 

P( U >a IV> b) ~ 1 

as b ~ oo. 

It is also of interest to consider what can be said of these different mixing 
conditions in the context of stationary Markov sequences (real-valued). By 
using the Markov property, it is clear that 

a(n) =a(u(X0 ),u(X,)), 

cf>( n) = cf>( (r( X0 ), lT( X,)), 

t/f(n) = t/J(u(X0 ),lr(Xn)), 

p(n) =p(u(X0 ),u(X,)), 

f3(n) =f3(lr(X0 ),(r(Xn)). 
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In the case of p( n ), c{>( n ), t/J(n ), if the mixing coefficient tends to zero as 
n -~ oc, the rate of decrease must be exponential. This does not hold for a(n) 
or {3( n ). The basic convergence theorem for convergence of transition probabil
ities of an aperiodic stationary irreducible countable state Markov chain 
implies that such a chain is absolutely regular (and hence strongly mixing). 

Let the one step transition function for the Markov sequence be P(x, A) 
with x E R and A a Borel set. We assume that for each Borel set A, P(x, A) 
is a Borel function. Then the transition function induces a bounded operator T 
on the bounded Borel functions g 

(Tg)(x) = jP(x,dy)g(y) 

with 

supi(Tg)(x)l ~ suplg(x)l. 
X X 

If there is an invariant probability measure J.L on the Borel sets, 

jJ.L(dx)P(x,A) =J.L(A). 

An early sufficient condition for the existence of such an invariant measure is 
the Doeblin condition D. This is the condition that there be a finite measure cf> 
(0 < c{>( R) < oo) [see Doob (1953)] on Borel sets, an integer n ;::: 1 and a 
positive s such that [Pn( ·, · ) is the n step transition probability] 

Pn( X, A) ~ 1 - E if c{>( A) ~ E 

for all x. If the Markov sequence satisfies D and has no cyclically moving sets 
(is purely nondeterministic), we shall say it satisfies the Doeblin condition D 0 . 

One can show that this condition is equivalent to 

supiP,(x, B)- J.L(B)I ~ 0 
B 

for almost all x(dJ.L) as n ~ oo. This can in turn be shown to be equivalent to 
an L"" condition 

IIT"fll, 
sup-----~ 0. 
{L 1 II {lloc 

In an extension of Doeblin's work, Harris (1956) proposed a recurrence 
condition that implies the existence of an invariant measure (which may be 
CT-finite). It is the condition that there is a measure cf> (which one can take to be 
fmite) such that for any set B with c{>(B) > 0, 

P( xn E B for infinitely many positive integers niXo =X) = 1 

for all x. 
One can show that a strictly stationary real-valued aperiodic Markov se

quence satisfying the Harris recurrence condition is absolutely regular [see 
Bradley (1986)]. It is of some interest to note that if a stationary sequence X" 
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is strongly mixing, the partial sums 
n 

S="X n ~ J 
)~1 

when centered and normalized (Sn - aJfbn with bn ~ oo as n ····~ oo can only 
have a limit law that is stable. A simple example of a bounded function of a 
Markov chain with a stable but non-Gaussian limit law is given by Davydov 
(1973). The states of the chain are integers. The transition probabilities are 
Pn n+1 = P-n n-1 =an, n;::: 0, with Pn o = P-n o = 1- a,, n > 0, Po o = 0, 
a 0' = t 0 < ~" < 1 for n >- 1. Let { 0"0 b~ the pr;bability of first return to zero 
at time n given that one left zero at time zero. Then fJ0 = 0 and for n ;::: 2, 
fo"o = f3n __ 1 - f3n with {3 0 = {3 1 = 1, f3n = a 1 · a 2 · · · an_ 1• The chain is recur
rent if and only if f3n ~ 0 and the stationary distribution is 

rro = ( ~ f3nr 1
, j > 0, 

which exists only when '£ of3n < oo. This construction is similar to that of 
chains mentioned in Chung (1960). Let {0"0 =An - 2 - 6 , 0 < 8 < 1, and let the 
function g be given by g(O) = 0, g(j) = g(-j) = 1 + 1jj, j > 0. We consider 
the partial sums '£] ~ 1 Yj with Yj = g( X1 ) with X1 the Markov chain. One can 
show that if centered and normalized partial sums converge in distribution for 
any given initial distribution, they will converge to the same limiting distribu
tion with any other initial distribution. Let the initial distribution have all its 
mass at zero. Then 

n-1( 1)] 1 
" 1 +- = -f" ~ . 2 00 
j~ 1 J 

if the random variable T 8 is the time of s th return to zero. But then with 
Zs = '£ ./".:~,+ 1 Yj, 

n>x 

and because of the independence of the Z's, the partial sums S" when 
properly normalized converge in distribution to a symmetric stable law with 
exponent 1 + 8. It should, however, be noted that in considering probability 
density estimates, we have to deal with triangular arrays rather than with 
partial sums of a fixed stationary process. 

In the general context of a real stationary sequence, one can show that 

</>(n) = esssup[supiP(BI9?'0 )- P(B)I, BE .50~] 

and 

f3(n) = E[supiP(BI.'~0 )- P(B)I, BE .50~]. 

Let us just give a statement and brief sketch of a derivation of a central 
limit theorem for triangular arrays on the space of a strongly mixing process 
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that is a small generalization of a central limit theorem given in Rosenblatt 
(1956b). 

THEOREM. Consider {lj<n l, j = ... , -1, 0, 1, ... } , EY/" l = 0, n = 1, 2, ... , 
a sequence of strictly stationary processes defined on the probability space of a 
strongly mixing stationary process {Xm}. Assume that Y/" l is measurable with 
respect to .9')-c<nl n ,qgf+c<nl' where c(n) = o(n), c(n)jco as n -~co. Let 

hn(b- a)= El t lj(n) 1

2 

J-a 

Also given any two sequences s(n), m(n) with c(n) = o(m(n)), m(n):;;; nand 
s(n)jm(n) ~ 0, let 

hn(m(n))/h,(s(n)) ~ oo 

Further assume 

I 

m(n) 1
2 + 15 

{h,(m(n))r<2Hl/2E L Y;;") = 0(1) 
"~ 1 

as m(n) -~co for some 8 > 0. There are then sequences k(n),p(n) ~ oo as 
n ~ oo with k(n)p(n) == n such that 

j~1 lJ(n/ /kf~)hn(P(~)) 
is asymptotically normally distributed with mean zero and variance one. If 
k(n)hn(p(n)) == h,(n), the normalization of the partial sum can be replaced 

by lh--:J,;y. 
The argument proceeds by a big block, small block argument. Such an 

argument was employed by Bernstein ( 1927) many years ago and it is still 
often useful. Let r = 1, ... , k(n) with k(n)(p(n) + q(n)) = n, 

rp(n)+(r-l)q(n) 

U,.( n) = I: y<n) 
J ' 

j~(r-1)(p(n)+q(n))+ 1 

r(p(n)+q(n)) 

V,.( n) = L lj<"l, 
j -rp(n)+(r Uq(n)+ 1 

p(n), q(n) ~ oo and q(n)jp(n) ~ oo. The U,.'s are the big blocks and the V,.'s 
are the small blocks. Now 
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and k(n), p(n), q(n) can also be chosen so that the expression on the right 
tends to zero as n --+ oo. The normalized sum of the small blocks can therefore 
be disregarded. Introduce 

[ -1/2 l G,., 11(x) =P U,.(n){k(n)h,(p(n))} s;x 

and the event 

( 
U,.(n) ) 

l,.B < -!i:t::\ -- s; (l,.+ 1)8 =A(r,n,l,.,B). 
yk(n)h,(p(n)) 

Repeated use of the strong mixing condition implies that if t;, = (k(n)jt:)112 

and c(n) = o(q(n)), then 

L P( rlA(r,n,l,.,B))- L TIP(A(r,n,l,_,B)) 
(1 1 + · .. +lk)8:o;x r 1 (1 1 + .. · +l 11 M:o;x r- 1 

s; k( 2;") ka(q(n)- c(n)) +E. 

This inequality can be used to show that 

(
h(n) I ) 

P r~ 
1 

U,. /k(-;;) h, ( p ( n)) s; X 

can be approximated by G 1 , * · · · * G;, ,(x ). With appropriate choice of k(n), 
p(n), q(n) and an applica.'tion of the 'Liapounov form of the central limit 
theorem for independent random variables, as n --+ oc the distribution of 
G 1, * · · · * Gk,n(x) tends to that of a standard normal distribution. 

A type of mixing condition can also be formulated in terms of cumulants. 
Moments can be identified as the coefficients in the Taylor expansion of the 
joint characteristic function of the random variables XJ about zero. Cumu
lants are the corresponding coefficients in the Taylor expansion of the loga
rithm of the joint characteristic function (see the discussion at the beginning 
of Lecture 7) about zero. Let the k th cumulant 

ck(T 1, ... ,Tk-l) = cum(X0 ,X71 , ••• ,X711 ,). 

A summability condition on the k th cumulant function 

(5.2) 

for k = 1, 2, ... was used in Brillinger (1965) to obtain a central limit theorem. 
Strengthened versions of such conditions were employed in Brillinger and 
Rosenblatt (1967) to obtain asymptotic normality for cumulant spectral esti
mates obtained by taking smoothed and weighted versions of periodogram-like 
functions (obtained from finite Fourier transforms) computed at values of the 
argument of the form 2rrsjN with s integral and N the sample size. It would 
be appropriate to call these polynomial-type mixing conditions. The condition 
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(5.2) has the disadvantage that all moments are assumed to exist. It can, 
however, be used to prove asymptotic normality for partial sums of polynomial 
functions for classes of processes for which all moments exist but that are not 
strongly mixing and do not satisfy other related conditions of the type dis
cussed earlier. An example of such a class of processes is the set of autoregres
sive moving average stationary processes with the independent random 
sequence g k generating the process a sequence of random variables taking on 
only a finite number of distinct values. 
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