
LECTURE 2 

Local Asymptotics 

Historically, the greatest attention in the statistical literature has been paid 
to parametric problems. This is especially so in the case of independent 
identically distributed observations. In most of this development, a very 
detailed assumption is made about the common distribution of the observa
tions, for example, a Gaussian distribution. The typical result is that under 
appropriate smoothness assumptions on the common distribution, reasonable 
estimates of the parameters converge at the rate n -l/2. There are, of course, 
non parametric problems of some vintage, for example, that are concerned with 
estimation of the common distribution function of the observations. In that 
context one still has convergence at the rate n -l/2 . In estimating the distribu
tion function, one is estimating what one might call a global function. In 
recent years, there has been considerable interest in function estimation with 
a local character, for example, of a probability density, a regression function or 
a spectral density. There, typically the rates of convergence are slower. There 
is by now an enormous literature and we shall by no means try to cover it. 
Unfortunately we may not be fully accurate in attributing ideas or develop
ments to those most responsible. Perhaps the best we can do is to follow a few 
suggestive ideas that touch on many developments and give some insight into 
typical results and directions. It should also be noted that when one tries to 
extend results for such local curve estimates to dependent observations with 
short-range dependence, many of the asymptotic results have the same charac
ter as in the case of independent observations. A basic motivation for investi
gations of this type is a skepticism or doubt relative to the usual assumptions 
in the classical finite parameter theory. The usual assumption of a specific 
finite parameter family of densities is regarded as unconvincing. The idea is 
that the data should be used to estimate or test the distributional or regression 
form. Practically all results have an asymptotic character and before applying 
such results one should try to get an idea of the extent to which such 
asymptotics provide useful finite sample approximations. We cannot pursue 
this difficult but important question here. Our exposition will mainly center on 
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the asymptotic results. An interesting discussion of the applicability of such 
results can be found in the book of Silverman (1986). 

Let us first consider estimates of the density function. Let X1, X2 , ... , Xn 
be independent identically distributed random variables with density function 
f(x ). There are many possible types of estimates of f(x ), each based on a 
different representation of f as, for example, in terms of an orthogonal or 
Fourier representation. For the sake of simplicity, we consider a kernel 
estimate 

1 n (x-X) f~(x) = -·d L w --·!_ 
nb(n) J=l b(n) 

given in terms of a weight function w(u) integrable with 

J w( u) du = 1. 

Here the random variables are assumed to be d-dimensional. The mean of the 
estimate 

= J w( v) f( x - b( n) v) dv 

if w is also bounded and the variance 

1 
d [J w(v) 2 f(x- b(n)v) dv 

nb(n) 

-- b( n) d ( J w( v) f( x - b( n) v) dv f]. 
If the density function f is bounded and is continuous at x and b(n) ~ 0 as 
n ~ oo, the bias 

Efn( X) - {(X) = f w( V) [ {(X - b( n) V) - {(X)] du = b,.( X) 

tends to zero as n ~ oo. Later we shall see that in an essential way density 
estimates are biased and there is an interest in getting estimates on the rate at 
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which the bias tends to zero as n ~ oo. The variance (r;( fn(x )) tends to zero as 
n ~ oo iff is bounded and nb(n)d ~ oo, b(n) ~ 0. Iff is continuous at x and 
f(x) > 0 

1 f 2 u 2 ( fn( X)) "" d {(X) w( V) dv 
nb(n) 

as n ~ oo. The mean square error of the estimate at x 

Elfn(x)- f(x)l 2 = bn(x) 2 + u 2(fn(x)). 

If w is bounded and nb(n)d ~ oo, 

1/2 
{nb(n)d} [ fn(x)- Efn(x)] 

is asymptotically normal with mean zero and variance 

f(x) J w(v) 2 dv 

if f is continuous at x [see Rosenblatt (1971)]. That implies that under these 
circumstances 

EJlJnlp ~ 2P12f((p + 1)/2)/j,;, 

where Un = {nb(n)d}il2{f(x)jw(v)2 dv}- 112[ fn(x)- Efn(x)] if p > 0. If w has 
finite moments of second order 

(2.1) 
d 

jlw( u )I 0 iujJI du < oo, 
j~l 

d 

"n-=2 L.... J ' 
j ~ 1 

and zero first order moments 

(2.2) J w ( u) u 1 du = 0, j = 1, ... ,d, 

with f continuously differentiable up to second order with bounded deriva
tives, one can show that the bias 

bn(x) =~b(n) 2 L D"f(x)jw(u)u"du+o(b(n) 2 ). 

lal=2 

Here D" represents the derivative with respect to x of order a, that is, if 
a = (av ... , ad), lal = a 1 + · · · +ad, is the d-vector with nonnegative integer 
entries, D" = (Cijox 1)" 1 • • • (ajaxd)a<~. Also ua = u~1 • • • u':l. With finite mo
ments of w up to k th order, moments of order up to k - 1 zero and bounded 
continuous differentiability of f up to order k, an appropriate use of Taylor's 
formula with remainder shows that 

1 k f k bn(x)"" klb(n) L D"f(x) w(u)u" du + o(b(n) ). 
· Ia I =k 

However, this condition with k > 2 forces us to use negative weight functions. 
The best one can do with positive weight functions is O(b(n)2 ) for the bias 
when one has sufficient smoothness (with bounds on the derivatives). A global 
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measure of approximation is given by the integrated mean square error 

jEifn(x)- f(x)l 2 dx = Jbn(x) 2 dx + J u 2(fn(x)) dx. 

The asymptotic expression for local mean square error under the smoothness 
conditions assumed up to second order and the conditions (2.1) and (2.2) on 
the weight function is 

Elfn(x) -{(xt"" ~b(n) 4 ( L, D"f(x)jw(u)u"du)
2 

lal=2 

1 f 2 ( 4 1) + df(x) w(u) dv + o b(n) + J . 
nb( n) nb(n) 

It is clear that one gets the most rapid rate of decay to zero if 
b( n) = Cn -l/(4+dl 

with 

= { Bd} l/(4+dl 

C A ' 

where 

and 

Then 

Elfn(x)- f(x)l2"" n-4/(4+d)Ad!(4+d)B4!(4+dJd4/(4+d)(1 + _d4 )-41 
(2.3) 

+ o(n-4/(4+dl). 

Notice that already in the one-dimensional case the magnitude of the locally 
optimal b( n) is n -l/5 , a power that decreases rather slowly to zero as n ~ oo. 

Let us now look at the integrated mean square error assuming that w, f are 
also in L 2 . Then 

f E lfn (X) - f (X) 12 dx = f { f W ( U) ( f ( X - b ( n) U) - f (X)] du r dx 

+ [-1-d J w2(u) J f(x- b(n )u) dxdu 
nb(n) 

1 2 l --;; J ( J w( u) f( x - b( n) u) du) dx · 

=(1)+(2). 
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Notice that 

(1) = J jw(v)w(v')j[f(x-b(n)v)-f(x)][f(x·-b(n)v')-f(x)] dxdvdv'. 

The inner integral in x tends to zero as b( n H 0 and is bounded in absolute 
value by a function integrable with weight function lw(v)w(v')l. 

The suggestion of Epanechnikov (1969) was that one ought to look for a 
weight function (in the case d = 1) that minimizes 

Jw 2(v)dv 

subject to the restraints (i) f w( v) dv == 1; (ii) w( v) = w(- v ); (iii) f v2w( v) dv = 1. 
It is easy to see that the solution to this simple variational problem is the 
weight function 

(2.4) { ~5 
112(1 - v2 j5) 

(u 0 ( v) = ~ 
if lui .:;; 5112 , 

otherwise. 

This variational problem was resolved by Hodges and Lehmann (1956) in a 
nonparametric context. It is interesting to compare this optimal weight func
tion with others like the uniform and Gaussian weight functions (see Table 
2.1) by computing the ratio r = fw 2(u) duj fw~(u) du, where w0 is the weight 
function (2.4). It is clear that there is not much of a difference. Thus, the 
shape of the weight function does not make much of a difference on asymptotic 
grounds relative to the mean square error. However, in multidimensional 
problems, the shape of the weight function may be of greater importance. One 
should note, however, in the one-dimensional case, that from a visual perspec
tive, continuity of the weight function is important. By the Lebesgue conver
gence theorem, it is clear that (1) ~ 0 as b(n) ~ 0. Also 

1 
(2)::::: djw 2(v)dv 

nb(n) 

as n ~ oo, b(n) ~ 0. It is clear from these simple estimates that if w, f E L, L 2 

TABLE 2.1 

A comparison of weight functions 

w L = fw 2(u)du r 

Wo 3-s-·3;2 1 

{ ~/6 112 - lyl/6 if lyl :s; 611 2, 61/2/9 1.015 
otherwise 

(27T) ·I/2e -y 2 ;2 2 -·17T -1/2 1.015 

{ 1.3-1/2 if lyl :s; 311 2, 2' ~3 -1/2 1.076 
0 otherwise 
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and b( n H 0, nb( n )d --> oo as n --> oo, then 

( 2.5) E jlfn(x)- f(x)/ 2 dx--> 0. 

Other global measures of deviation such as 

E jlfn(x) - {(x)l dx 

that may under some circumstances appear to be more natural [see Devroye 
and Gyorfi (1985)] have been proposed. However, detailed estimates are usu
ally easier to obtain for (2.5) and in part for that reason much research has 
focused on it. 

In fact, if w is a bounded symmetric integrable weight function 

w( u) = w( -u) 

with 

jlw( u )llu/ 2 du < oo 

and f is a bounded density function with continuous partial derivatives up to 
second order and second order partials in L2 , one can show that 

E jlf,(x) - {(x)l' dx ~ ~b(n l'JI,£, D"f(x) J w( u )u" du I' dx 

1 f 2 ( 4 1) + ---d · w(u) du + o b(n) + --d 
nb( n) nb( n) 

as n --> oo, b(n)--> 0, nb(n)d--> oo. This can readily be seen by making use of 
the fact that 

f(x- b(n)u) - f(x) = -b(n) L u.iD_J(x) 
j 

for some 8, IBI < 1, with D_1 = (cljax). 
One can construct estimates of a regression function patterned on the 

kernel estimate of a density function. Assume that one has independent 
identically distributed random variables (X.i, ~), j = 1, ... , n, with X's 
d-dimensional and the Y's one-dimensional. Let g(y, x) be the joint density of 
Y and X with f(x) the marf,rinal density of X. Let r(x) be the regression 
function of Y on X, 

r(x) = E(Y/X = x). 
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As before, let w( u) be a weight function on R d with jw( u) du = 1. Then a 
plausible kernel estimate of the regression function r(x) would be given by 

1 11 
( x -X )/ a (X) 

r,(x) = nb(n)" jr.l Yjw b(n-) {,(x) = f~1(x)' 

where f~,(x) is the kernel estimate of the density function {(x) based on the 
weight function w [see Nadaraya (1964) and Watson (1964)]. Here it is not so 
convenient to directly talk about the mean and variance of r,(x). We shall 
consider very good approximations to r,(x) and determine estimates for the 
bias and variance of these approximations. Let us first note that 

rn(x) = [Ea,(x) + {a,(x)- Ea,(x)}]{E{,(x)r- 1 

x{1 + [f,(x) --Ef~(x)j(Ef,(x)) 1r1 

( 2 -6 ) = Ea,(x){Ef,(x)r 1 + {a,(x)- Ea,(x)}{Ef"(x)r- 1 

-{f~,(x)- E{11 (x)}Ea"(x){Ef,(x)r 2 

-+ O[(a,(x)- Ea"(x)) 2 + ( fn(x)- Ef"(x)) 2 j. 
It is the expression on the right side of (2.6) aside from the order of magnitude 
term that is the approximation to r 11(x) that we shall consider in some detail. 
Now 

Ea,(x) 1 
-E--f- = (r(x)f(x) + {Ea,(x)- r(x)f(x)})--

,(x) f(x) 

(2.7) 
( 

E{,( X) - {(X) 2) 
X 1 - f( X) -- + 0{ E{,( x) - {(X)} 

=,= r(x) + {Ea,(x)- r(x)f(x)}f(x) -I- r(x)(E{11(x)- f(x)) 
f(x) 

+ O({Ef"(x) -- f(x)} 2 + {Ean(x)- {(x)}} 

The second and third terms on the right of (2. 7) are analogous to the bias. If 
the weight function w( u) is symmetric and of compact support with {( x) and 
r(x) continuously differentiable up to second order and f(x) positive, 

1 r( x) 
{ Ea n( X) - r( X) {(X)} {(X)- - {(X) ( Efn( X) - {(X)) 

(2.8) 1b(n)2
[ l = 2 f(x) L {D"(r(x)f(x)) -r(x)D"f(x)}jv"w(v)dv 
1"1~ 2 

+o(b(n) 2 ) 
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as b(n) --~ 0. Let us assume that EY 2 < oo and set 

r( 2 >(x) =E(Y:l!X=x). 

If lu( u) is bounded and has bounded support, r(:l>(x ), r(x ), f(x) are continuous 
and nb(n )" --4 oo as n --4 oo, b(n) --4 0, the expression 

(2.9) {a,(x)- Ea,(x)}{Ef,(x)r- 1 - {f,(x) - El,(x)}Ea,(x){Ef,(x)r 2 

can be shown to be asymptotically normal with mean zero and variance 

1 
{ (2) ) 2 } f - I f 2 - ·---- r ( x - r ( x) ( x) w ( v) dv 

nb(n)" 
(2.10) 

to the first order. Expressions (2.8) and (2.10) are corrections of the formulas 
(3.2) and (3.3) in Rosenblatt (1969). Formula (2.10) follows directly from the 
fact that 

( x-X) (x-u) EYw b(;) = jyw b(~ g(y, u) dudy 

= jyw(v)g(y,x --- vb(n)) dvdyb(n)" 

~" jr(x- vb(n)) f(x- vb(n))u)(v) dvb(n)d, 

where g(y, x) is the joint density of Y, X. The formula is obtained by using a 
Taylor expansion with error for r( x) f( x ). Given finite moments of w up to 
h th order with moments up to order h -- 1 zero and bounded continuous 
differentiability of r and f up to order k, the formula (2.8) is replaced by 

I r( X) 
{Ea 11(x)- r(x) f(x)}f(x) - /(x)(Ef,(x)- f(x)) 

1 b(n) 1
' [ l = -·-- L_ {D"(r(x)f(x)) -r(x)D"f(x)}jv"w(v)dv 

k! f(x) l<rl-h 

+o(b(n)"). 

The estimate (2.3) obtained for kernel density estimates is concerned with 
local convergence at a point. If we look at the global measure when d = 1 we 
have 

2 1 2 ( • ):2 Ejif,(x) -f(x)l dx= 4b(n)j{f"(x)} dx jw(u)u 2 du 

1 f 2 ( 1 ) + --d u)( u) du + o b( n) + --,i . 
nb(n) nb(n) 
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Here again one would have an optimum rate if b( n) = en- 1/ 5 with c = 

(BjA) 115 but now A= f{f"(x)} 2 dx(fw(u)u 2 du) 2 , B = jw(v)2 dv. Then 

If we could locally optimize b(n) (so it depends on x) and then integrate we 
would get, conjecturally, 

2/5 4/ii 

= n - 41 5 jl f"(x) 1
215 {(x) 415 dx(J w( u )u 2 du) (J w(v) 2 dv) 5/4 

+ o( n 4!5), 

while if we use the optimal b( n) independent of x we obtain 

The inequality 

( ) 
1/5 

jl f"(x) 1
215 f(x) 415 dx::::;; jl f"(x) 1

2 dx 

is a special case of the Holder inequality. The contrast might be large when 
there are ranges with f" large but f small. 

In our discussion of kernel estimates, we have assumed implicitly either 
that one is interested in estimating over all of R, or if the density function is 
defined only on interval [a, c], that estimation is carried out at a point well 
away from the boundary points. If the point of estimation is at the boundary 
or too close to it, one can no longer make use of a weight function symmetric 
about zero. This suggests that one ought to investigate the existence of 
nonsymmetric weight functions that will allow one to obtain the same asymp
totic properties as in the case of symmetric weight functions. Such weight 
functions will be useful in estimation at a boundary or close to it. We construct 
a simple family of weight functions that are useful in the estimation of density 
functions continuously differentiable up to second order. Our object is to 
consider a weight function 

p( t; X) = ( i 1 - ( t - X) 2] ( 0' + /3{ t - X}) 

with the property that 

f l+x 
p (t; X) dt = 1, 

l+x 
f l+x 

~~~~ 1 +x 

if -1 +X::::;; t::::;; 1 +X, 

otherwise, 

tp ( t; X ) dt = 0 . 
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Now 

f l+x 
p(t; x) dt 

-l+x 

'3 2 411 +x (t-x)' (t-x) (t-x) 
o=a(t -- x)- a---+ {3 - {3---

3 2 4 -1 +x 

4 
=-a= 1 

3 

and 

f 1 + x tp ( t ; X ) dt = f 1 + x [ ( t - X ) p ( t; X ) + Xp ( t; X ) ] dt 
-l+x -l+x 

(t -- x)'3 (t- x) 5 /l+x 
={3 - {3---- +X 

3 5 --l+x 

= 2{3 ( !_ - !_) + X = 0 
3 5 

or 1~{3 = --x, {3 = -- 1d~x. 'l'herefore on the interval [ -1 + x, 1 + x] 

p(t;x) = [1- (t--x) 2](t -- lfx{t-x}). 

The use of this type of weight function is suggested in Muller's [(1988), page 
73] study when too close to the boundary. If estimating at y with bandwidth 
b11 , when a + bn :'S, y :'S, c - b", one can just make use of 

_2-_P(~_!_, o) 
bn b, 

as weight function. However, if a :'S, y <a + bn :'S, c -- b,, the suggestion is 
that one use weight function 

1 (t-y a--y+b"). --p --
bn b, ' bn 

The adjustment to interior behavior is smooth. However, it should be noted 
that if x is too large (greater than } ), the weight function will take on negative 
values. 

In the paper of Boneva, Kendall and Stefanov (1971), they generated what 
they called a histospline estimate of a density function. Basically they did this 
by considering the histogram corresponding to the bins and carrying out an 
area matching procedure relative to the histogram. The partial sums of the 
histogram were fitted by a cubic spline with appropriate boundary conditions. 
The fitted cubic spline was then differentiated and the derivative was taken as 
an estimate of the underlying density. We consider the procedure in the 
formulation of Lii and Rosenblatt (1975) where certain asymptotic local prop
erties were obtained in the interior of the interval considered. 
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Assume l is a continuous density on [0, 1] . X 1, ... , X, are assumed to be 
independent identically distributed with density f'. For convenience, we as
sume uniform bin size. Let 

1 
k = 0,1, ... ,N= h' 

where F)x) is the sample distribution function and h = 1/N the bin size. 
Consider s 11 (X) the cubic spline interpolator of F11 with knots at x.i = j / N, 
j = 0, 1, ... , N, with boundary conditions j'(O) = s;,<O) = y;>, /'(1) = s;,(l) = y;,. 
The results mentioned below are still valid for other conventional boundary 
conditions for cubic splines such as 

s~(O) = 0 = s~(1) 

or with periodic boundary conditions. The estimate of the density j'(x) IS 

s ;,(x ). 

PROPOSITION. Jf'f' E C 3[0, 1], the bias if' h l 0 is 

(3) 

f' (X) "1{ · 4 4 2 2 } b,(x) = Es;,(x) -l(x) = · .4T--h· (1- r) - r - (1- r) + r + o(l) , 

where 0 < x < 1, x E [x;_ 1, X;] with xi- I= [Nx]/N and r = (1jh)(x- X;_ 1). 

Here [y] is the greatest integer less than or equal toy. 

Let (T = 13 - 2. One can then give a comparable estimate for the variance. 

PROPOSITION. Let l E C[O, 1]. The variance of' the estimate s ;,( x) oj'j'(x) is 

/'(x) A(r) + o(!!:_) 
nh n 

if' 0 < x < 1 is fixed and nh --> oo, h --> 0, where 

3( 1 - (T) ( 1 ) 9 ( 1 - (T) 2 

A( r) = 1 - , 2r 3 -- 2r + ;- + -- --
2+(r 3 4 2+(T 

Clearly h plays the role of a bandwidth. From these propositions it seems 
clear that the histospline has a local oscillation in bias and variance in the 
interior that is a reflection of the binning. An unpleasant feature of the 
histospline as an estimate of the density is the possibility, unlikely though it is, 
that the estimate might be negative. A density estimate that does not have this 
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feature is the version of a maximum penalized likelihood estimate considered 
by Silverman (1982). 

We exhibit estimates of a density function made in analyzing readings of the 
turbulent wind velocity in a fixed direction obtained in Kansas and supplied by 
Dr. Wyngaard. The data were sampled 3200 times per second for about an 
hour. The data have been discussed in an article of Tennekes and Wyngaard 
(1972). Figures 2.1, 2.2 and 2.3 correspond to different sections of the left tail. 
These figures are from Lii and Rosenblatt (1975). (Thanks are due the editor 
of Computing and Mathematics with Applications in which they appeared for 
giving permission for reproduction of the figures here.) The data were already 
binned. Estimates are graphed for the left tail of the density of --((!uji!t) (with 
u velocity and t time). Three figures cover adjoining sections of the tail. The 
vertical scale is in terms of a logarithmic transform of the data. The kernel 
type of fit is in terms of a piecewise linear curve. The weight function used is 

{ 

1 
2 

lu(x) = ~ 

iflxl :s:; L 
. 1 :l 1f 2 :s:; lxl :::; 2, 

otherwise. 

The bandwidth is three bins. There are two spline fits, one with a cell width of 
one bin and the other with a cell width of two bins. It is already clear that 
determination of the bandwidth is an important issue. But here it seems to be 
clear that the range is so wide that different values of the bandwidth should be 
taken over different sections. The boundary conditions used for the his
tosplines is y 0 = yfV. The data were also fitted with an exponential f(x) = 

A exp(- B lx j") using least squares from - 32nd bin to - 192nd bin. The 
estimated values of A, Band C were A= 0.74, B = 4.2, C = 0.41. In the 
past the proposal was made that the rate of energy dissipation in high 
Reynold's number turbulence should have a lognormal distribution. The ex
perimental data fitted here suggest a slower rate of decay in the tail. One 
should note here that the data analyzed are dependent and this in a particular 
example provides a motivation for looking at properties of density estimates 
when one has dependence. 

In Lecture 1, smoothing splines were briefly mentioned. We shall at this 
point discuss some results that have been obtained when the errors Ei in (1.1) 
are orthogonal random variables with 

Et:f = a- 2 > 0. 

In Rice and Rosenblatt (1983), a measure closely related to (1.2), 

2_[~{Yo + Yn- f(O)- {(1)}2 + 't.- 1 {Y;- f(x;)} 2] + A.f[ [< 2>(t)j 2 dt, 
n 4 k- 1 o 

was considered for the case m = 2 where the points X; = ijn, i = 0, 1, ... , n. 
The function f(x) = { 11(X, A) minimizing this functional is taken as an esti
mate of the unknown smooth regression function g(x ). It is clear that as the 
sample size n - oo, one should let A = A( n) ~ 0 at an appropriate rate. The 
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FIG. 2.1. Estimation of left tail of the probability density of turbulent wind velocity derivative. 
Turbulent Reynold's number ""8000. Histogram, kernel and two spline estimates. Reproduced 
by permission from Computing and Mathematics with Applications. 
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FIG. 2.2. Estimation of left tail of the probability density of turbulent wind velocity deriuatiue. 
Turbulent Reynold's number = 8000. Histogram, heme/ and two spline estimates. Reproduced 
by permission from Computing and Mathematics with Applications. 

1-2·9 

~3·2 

~3-7 

r~ 
146 

'-5.0 
t 
:-54 . 
I 

:-5-9 

t' -6-8 

-7·2 

1·1 

r 
0 
Q 
> r 
> 
U1 
><: 
E::: 
'"0 ..., 
0 ..., 
(=3 
U1 



FIG. 2.3. Estimation of left tail of the probability density of turbulent wind velocity derimtit·e. 
Turbulent Reynold's number = 8000. Histogram, kernel and two spline estimates. Reproduced 
by permission from Computing and Mathematics with Applications. 

t .... 
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paper was concerned with the estimation of 

11 2 
E [fn(x;A(n)) -g(x)] dx 

0 

= 1\r2 (f"(x;A(n)))dx + {{Ef,(x;A(n)) -g(x)}2 dx 
0 0 

as n---> oc. If g E C 2 and Aa(n)n8 ---> oo, A(n)---> 0 as n---> oc it was shown that 

(f2,t-l/4 

1\r 2 ( fn( t, A(n))) dt"" -----3 · 2- 712 • 
o n 

(2.11) 

If one makes the stronger assumption that f E C 4 and f< 2 l(O) or f< 2 l(1) * 0 

j[Ef"(x) -g(x)] 2 dx"" [{f< 2l(0)} 2 + {f(2)(1)}2],t5142 3 / 2 

and if f< 2 l(O) = r:<l(l) = 0, but f<:ll(O) or f< 3 l(1) * 0, then 

j[Ef,(x) --g(x)]zdx"" [{f<:J\0)}2 + {t<3)(1)}2]A7142-312. 

This shows that stronger smoothness assumptions than f E C 2 can lead to 
bias effects dominated by the boundary behavior at 0 and 1. These results were 
obtained by detailed estimation using Fourier analysis. 

A sketch of an argument given by Speckman (1981) as it relates to (1.2) for 
positive integral m is now given. Let 

The points X;= X;,, i = 1, ... , n, are assumed to satisfy the following condi
tion. Let p(t) be a' continuous function bounded away from zero on [0, 1] and 
such that 

Assume that 

2i - 1 lxi,n 
-- = p(t) dt. 

2n o 

It is then suggested that for f, g E WJ" l, 

1 11 1 -I: f(x;)g(x;)---> 1 f(t)g(t)p(t) dt 
n i~ 1 o 

as n ---> oc and so it is reasonable to approximate 

( 2.12) min -- I: ( h ( X;) - g ( X; ) ) + A 1 (I~<"' ) ( X ) ) dx [
-1 11 2 1 2 ] 

h n i 1 o 
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by 

(2.13) [fl 2 fl 2 ] min 0 (h(x) -- g(x)) p(x) dx + 0 (h<ml(x)) dx . 

We consider the case of just uniform density p(x) = 1 of knots. One actually 
wants to obtain the random function fn(x; A(n)) that minimizes (1.2). But 

can be shown to be the solution of (2.13). On considering local variations of the 
functional in (2.13), one finds that the minimizing function is characterized by 
the following equation and boundary conditions (the Euler equations for the 
problem) 

(2.14) 
tE(0,1), 

j = m, m + 1, ... , 2m- 1. 

The integrated squared bias 

for m ~ 2 can be shown to be well approximated by 

as A(n)~O, n ~ oo, n 2A(n) ~ oo with hA the solution of the system (2.14). The 
solution h A of (2.14) is given in terms of the Green's function G/t, s) of the 
system by 

Let 

D;D./GA(t, s) = G~·i(t, s). 

GA is determined by the conditions [refer to Coddington and Levinson (1955) 
for a discussion]: 

(i) G/t, s) is a symmetric function of (t, s) and satisfies the differential 
equation of (2.14) for t =t- s in [0, 1]. 

(ii) Gj· 0(0, s) = Gj- 0(1, s) = Ofor j = m, m + 1, ... ,2m- 1 and s E (0, 1). 
(iii) G/", s) E c<2m-Zl[O, 1] if s E [0, 1]. 
(iv) a;m-I,O(S + ,s)- a;m-l(S- ,s) oo~ (-l)m,t-l 

for s E (0, 1) with appropriate one-sided derivatives understood here. Using 
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the properties just for the Green's function, integration by parts with g E wy·) 
leads to 

h A ( t) = g ( t) + A ( - 1) "'j 1 G ~' 2"' - \ t, S ) g ' ( S ) ds 
0 

=g(t) -.Aj 1G~·"'(t,s)g<m)(s)ds. 
0 

Remarks of Messer and Goldstein (1989) on an approximation to the Green's 
function for m = 2, 3 enable one to get good estimates of the integrated 
squared bias. 

One can show that the estimate for the integrated variance as given in 
(2.11) for m = 2 is still valid in this formulation. 


	rcsps_vol3_14_of_104
	rcsps_vol3_15_of_104
	rcsps_vol3_16_of_104
	rcsps_vol3_17_of_104
	rcsps_vol3_18_of_104
	rcsps_vol3_19_of_104
	rcsps_vol3_20_of_104
	rcsps_vol3_21_of_104
	rcsps_vol3_22_of_104
	rcsps_vol3_23_of_104
	rcsps_vol3_24_of_104
	rcsps_vol3_25_of_104
	rcsps_vol3_26_of_104
	rcsps_vol3_27_of_104
	rcsps_vol3_28_of_104
	rcsps_vol3_29_of_104
	rcsps_vol3_30_of_104
	rcsps_vol3_31_of_104

