
CHAPTER 5 

Decomposable Measures 

The main purpose of this chapter is to discuss the extent to which Theorem 
4.3 can be generalized to arbitrary Radon measures (rather than probability 
measures) and to cases where G is not compact. Such generalizations can be used 
in the derivation of densities of maximal invariants as well as in other areas. The 
approach here is modelled after that described in Andersson (1982). Other 
possible approaches to this problem are described in Wijsman (1986) (the global 
cross section approach using some Lie group theory) and Farrell (1985) (a 
measure-theoretic cross section approach developed by Schwartz (1966), unpub­
lished). 

The general method of averaging over a group to obtain a density of a 
maximal invariant is due to Stein (1956). However, there are mathematical 
problems to overcome. The approaches described in Farrell (1985) and Wijsman 
(1986) have their advantages and disadvantages as does the method to be 
described here. As far as I know, there are no "practical" problems where one of 
the methods can be applied but the others cannot. The ease with which the 
methods apply depends on the problem at hand and the method most familiar to 
you. It should be noted however that all of the methods require some regularity 
conditions which are essential. 

In the first section of this chapter, we treat the compact group case. A version 
of Theorem 4.3 is established for Radon measures. However the methods and the 
language are quite different here because the methods used in Chapter 4 do not 
carry over easily to the case when the group is noncompact. The noneompact 
case is discussed in Section 5.2. In Section 5.3, a representation of the density of 
a maximal invariant due to Andersson (1982) is established. This representation 
is used to provide a proof of an important result due to Wijsman (1967) on ratios 
of densities of a maximal invariant statistic. 

5.1. The compact group case. Throughout this section X is a locally 
compact Hausdorff space with a countable base for the topology (so the topology 
is a metric topology). Also, G is a compact topological group which acts 
topologically on X. Thus, the map (g, x) ~ gx from G X X to X is continuous. 
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Rather than introduce a particular measurable cross section, we will consider 
the quotient space XjG whose points are the equivalence classes {gxlg E G}. 
That is, the points in XjG are just the orbits. The natural projection 'lT on X to 
XjG given by 

'TT(x) = G · x = {gxlg E G} 
plays an important role in what follows. Observe that 'lT is a maximal invariant 
function. Thus, a real valued function I defined on X is invariant iff there exists 
a real valued function I* on XjG such that 

(5.1) f(x) = f*( 'TT(x )). 
Let v denote the unique invariant probability measure on G. Temporarily 

ignoring a host of technical considerations, look at the function 

x ~ J l(gx)v(dg). 
G 

This function is clearly G-invariant, so it can be thought of as a map which sends 
I into a function I* defined on XjG. Thus, Theorem 4.3 can be written 

1 l(x)P(dx) = 1 f*(y)Q(dy). 
X X/G 

Equivalently, if J is the invariant integral defined by an invariant P and J 1 is 
the integral defined by Q, the above is 

( 5.2) J( I ) = Jl ( T( I ) ) , 
where T( I ) = I* is the mapping which sends I into f*. Theorem 4.3 shows that 
if J is an invariant integral (corresponding to a probability measure), then there 
exists an integral J 1 (corresponding to a probability measure on XjG) such that 
(5.2) holds. The validity of (5.2) for an arbitrary invariant integral J is the 
question to which we now turn. 

Here is the general plan of attack. First, when XjG has the quotient topology 
(which makes X/G a locally compact Hausdorff space), it will be shown that the 
mapping T described above maps K(X) onto K(X/G). Thus, given an invariant 
integral J defined on K(X), we define J 1 on K(X/G) via the equation 

J(f) = J 1(T( !)), f E K(X). 

Of course, there is some work involved in showing that J 1 is well defined and J 1 

is an integral. The uniqueness of J 1 follows because T is onto and hence (5.2) 
holds. We now turn to the technical details. 

l<~irst, a few words about the quotient topology for XjG. Recall that X is a 
locally compact Hausdorff space with a countable base for the topology and G is 
a compact topological group with a countable base for its topology. The action 
(g, x) ~ gx is assumed to be continuous on G X X to X. A subset U c XjG is 
open (in the quotient topology) iff 'lT - 1(U) is open in X where 'lT is the natural 
projection on X to XjG. Because G is compact and the topology for X has a 
countable base, the quotient topology (i) is a locally compact Hausdorff topology 
and (ii) has a countable base. Thus, the quotient space XjG is of the same type 
as the space X. 
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Next, we consider the function T defined on K (X) by 

T( f) is the unique function f* defined on XjG which satisfies 

j f(gx)v(dg) = f*(7r(x)). 
G 

THEOREM 5.1. The function T maps K(X) onto K(XjG). Also, T satisfies 

T( af1 + f3f2 ) = aT( f1) + f3T( /2) 
(5.3) 

T(f) :2: 0 when f :2: 0, 

for a, f3 E R1 and f E K(X). 

PROOF. For f E K(X), the continuity of the function 

x ~ JJ(gx)v(dg) 

is easily established using the bounded convergence theorem. Thus, by definition 
of the quotient topology, f* is continuous. To show f* has compact support 
when f has compact support V c X, first note that the set 

G · V = {YIY = gx for some g E G, x E V} 

is a compact subset of X because G · V is the continuous image of the compact 
set G X V c G X X. Thus 7r(G · V) is a compact set in XjG since 7T is 
continuous. If y $. 7r(G · V), then 7T- 1(y) = G · x for some x !/:. V. Thus for all 
g E G, f(gx) = 0 because gx !/:. G · V and f vanishes outside G · V. Therefore 
f*(y) = 0 for y outside the compact set 7r(G · V). 

To show Tis onto, let f* E K(X/G) and consider 

f(x) = f*(7r(x)), xE X. 

That f is continuous is obvious. If the compact set V c XjG contains the 
support of f*, then 7T-\V) is easily shown to be compact in X. Obviously, if 
x !/:. 7T -1(V), then f(x) = 0 so 7T-- 1(V) supports f. Because f defined above is 
G-in variant, 

jf(gx)v(dg) = f(x) = f*(7r(x)), 

soT( f)= f*. Hence Tis onto. 
That T satisfies the relations in (5.3) is easily proved. This completes the 

proof. D 

The results of Theorem 5.1 provide the key technical step in the following 
generalization of Theorem 4.3. 

THEOREM 5.2. Suppose J is a G-invariant integral on K(X). Then there 
exists a unique integral J 1 on K(XjG) such that 

(5.4) J(f) = Jl(T( f)), f E K(X). 
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Conversely, for each integral J 1 on K(X/G), the integral Jon K(X) defined by 

J(f) = J 1(T(f )) 

is G-invariant. 

PROOF. Given f* E K(X/G), define J 1 by 

Jl(f*) = J(f) 

for any f such that T( f) = f*. To show that J 1 is well defined, suppose 
T( f1) = T( f2 ) = f*. With f3 = f1 - f2 , obviously T( fa)= 0. It must be shown 
that this implies J( fa) = 0. First, represent J by its associated Radon mea­
sure p.: 

J(f) = lf(x)p.(dx). 
X 

The invariance of J yields 

J(f) = fxf(gx )p.( dx ), gE G, 

so that 

J(t) = fx{f(gx)v(dg)p.(dx). 

Thus, if T( f3 ) = 0, 

T(t3)( 'IT( x)) = {fa(gx )v( dg) = 0, 

which shows that J( f3 ) = 0. Hence J1 is well defined. The linearity of J 1 and the 
inequality Jl f*) ~ 0 for f* ~ 0 are easily established. Hence J 1 is an integral 
and (5.4) holds. The uniqueness of J 1 follows from the fact that T is an onto 
map. 

For the converse, just observe that T( f)= T(Lgf) for f E K(X) and g E G. 
Hence J defined by 

is G-invariant. 0 

When the relationship (5.4) holds for f E K(X), then of course (5.4) holds for 
all integrable functions f because both sides of (5.4) are integrals. Thus, under 
the assumptions of Theorem 5.2, Equation (5.4) can be used for integrable 
functions as well as functions in K (X). 

Our first application of Theorem 5.2 involves finding the density function of a 
maximal invariant. Consider X taking values in a space X and assume that X 
has a density p with respect to a Radon measure p.. 

THEOREM 5.3. Assume that the dominating measure J-t is invariant under 
the compact group G and let J denote the integral defined by fl. Write J = J 1 o T 
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as in Equation (5.4) and let p. 1 be the Radon measure associated with J 1 defined 
on the quotient space. Then the density function of Y = 'TT(X) with respect to p. 1 

isp*=T(p). 

PROOF. Let f* be any bounded measurable function defined on XjG. It 
suffices to show that 

<B"f*(Y) = 1 f*(y)p*(y)p. 1(dy). 
X/G 

First observe that f*'TT is a bounded measurable function defined on X and 
T(( f*'TT)p) = f*T(p). Therefore, 

<B"f*(Y) = <B"f*( 'TT(X)) = J((f*'TT )p) = Jl(T((f*'TT )p )) 

= J1(t*T(p)) = J 1(f*p*) = jf*(y)p*(y)p.l(dy), 

where the third equality follows from Equation (5.4) in Theorem 5.2. This 
completes the proof. D 

The application of Theorem 5.3 requires two separate steps-the calculation 
of the induced measure p. 1 and the evaluation of p* which involves the calcula­
tion of 

In concrete problems, one often chooses a particular representation of the 
quotient space X/G [that is, some one-to-one function of 'TT(x)] to facilitate the 
discussion of the density of a maximal invariant. In symbols, suppose k: X! G ----+ Z 
is a one-to-one onto bimeasurable function. Thus Z = k( 'TT( X)) is a maximal 
invariant. Let B be the image of p. 1 under k, that is, B(B) = p. 1(k- 1(B)). A direct 
calculation shows that p(z) = p*(k- 1(z)) is the density of Z with respect to B. 

The implication of this is that the calculation of the density of any maximal 
invariant function, say k0(X) = W, involves (i) the calculation of the induced 
measure p, 0 given by p. 0(B) = p,(k01(B)) and (ii) writing the function 

x ----+ j p(gx )v( dg) 

as a function of w = k 0( x ), say p 0( w ). 
Here is the classical example of the noncentral Wishart density [Herz (1955) 

and James (1954)] to which the above argument applies. 

ExAMPLE 5.1. Let X be the space of n x p real matrices of rank p and take 
p. to be Lebesgue measure on X. The group G = On acts on X via matrix 
multiplication: 

x ----+ gx, 
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Obviously JL is an invariant measure. A standard choice for a maximal invari­
ant is 

s = ko(x) = x'x, 

so s takes values in s; -the set of p X p positive definite real matrices. To find 
the induced measure J.Lo on s; defined by 

JLo(B) = JL(k01(B)), 

first observe that J.Lo is characterized by the equation 

(5.5) jt*(k 0(x)) dx = jt*(s)JL 0(ds), 

which holds for all bounded integrable f* on sP+. To solve (5.5) for J-to, take f* to 
be of the form 

(5.6) f*(ko(x)) = ft(k 0(x))cJ>(k 0(x)), 
where 

cp(s) = (J2;)-npexp[-~trs]. 

Then cp(k 0(x)) is the density of a normal distribution on X (with mean zero and 
covariance equal to the identity). Thus, the left side of (5.5) is 

jft(k 0(X))cp(k 0(x)) dx 

which is the expectation of 

ft(k 0(X)) = ft(S), 

where S = X' X. Now, standard multivariate arguments show that the density of 
S (with respect to Lebesgue measure ds on s; ) is 

p{( s) = w(n, p )JsJ(n-p- l)/2 exp[- t tr s], 

where w( n, p) is the Wishart constant 

[w(n, p)] -1 = 7Tp(p-l)/42np/2 fir( n- j + 1 )· 
j=l 2 

Thus, the right side of (5.5) is just the expectation of ft(S) relative to the 
density p{( s ). This yields the equation 

jft(s)cp(s)p.0(ds) = jfr*(s)p{(s) ds, 

which holds for all bounded measurable ft. Therefore 

p[(s) - np 
(5.7) p. 0(ds)= cp(s) ds=w(n,p)(/2w) JsJ(n-p-l)/2 ds. 

Now, let p(x) be a density of X with respect to Lebesgue measure on X. 
Theorem 5.3 and the succeeding discussion show that the density of X' X = S 
with respect to J-to is calculated by evaluating the integral 

j p(gx )v( dg) 
on 
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and writing the answer as a function of s E s;. For this particular case, x can 
be written (uniquely) as 

x=h( 8~2 ) 
where s = x'x is in s; and hE on" Therefore the density of sis 

(5.8) p*(s) = jonp(gh( s~2))v(dg) = jonp(g( s~2))v(dg). 
The particular choice of p which leads to the noncentral Wishart distribution is 

(5.9) p 0(x) = (..fiiifnp exp[- t tr(x- 6)'(x- 6)), 

where 8 is an n X p matrix. Of course this choice of p 0 corresponds to X having 
a N( 8, In 0 Ip) distribution. Substitution of (5.9) into (5.8) yields 

(5.10) p*(s) = ({2;;fnp exp[ -ttrs- ttr6'6]j exp[trgz]v(dg), 
a. 

where 

z = ( 8 ~2) (}'. 
Thus, the difficulty is the evaluation of 

(5.11) .P(z) = j exp[trgz]v(dg). on 
It is the attempted evaluation of (5.11) which led to the development of zonal 
polynomials by Alan James and others. The reader can find an excellent discus­
sion of zonal polynomials in Muirhead (1982), Farrell (1985) and Takemura 
(1984). This subject is not discussed further here. 0 

5.2. The noncompact case. In this section, we discuss the validity of 
Theorem 5.2 when the group G is not necessarily compact. Throughout this 
section, the group G is assumed to be a locally compact, a-compact topological 
group whose topology has a countable base. The basic approach here is to make 
some modifications in the method of proof used in the compact case so that 
versions of both Theorems 5.1 and 5.2 become valid for noncompact groups. 

The first problem to overcome concerns the appropriate definition of the 
function T discussed in Theorem 5.1. Thus, consider the group G acting topologi­
cally on the space X. Let v1 denote left Haar measure on G and let ~ be the 
modular function of G. Then 

1 
vr(dg) = ~(g) Pt(dg) 

is a right Haar measure on G. First observe that for f E K(X), the function 

(5.12) 
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is an invariant function of x-assuming the integral makes sense. (We will 
discuss some conditions under which the integral is well defined a bit later, but 
for now assume everything is all right.) Thus, (5.12) provides the appropriate 
definition of the function T which supposedly maps K(X) into K(X/G) (assum­
ing the quotient space is a "reasonable" space and ignoring the continuity and 
compact support questions). Therefore T( f) is defined to be the function f* on 
XjG which satisfies 

(5.13) 

where 1r is the natural projection from X to the quotient space XjG given by 

1r(x) = G · x = {gxjg E G}. 

If J 1 is an integral defined on K(X/G), then the expression J/T( f)) should 
define an integral on K(X). But, for hE G, 

because 

T( L h f) = A- 1( h) T(f ) 

j(Lhf)(gx)vr(dg) = jf(h-Igx)vr(dg) 

= jf(h- 1gx)A- 1(g)v1(dg) 

= A- 1(h) jf(h-Igx)A- 1(h- 1g)v1(dg) 

= A- 1(h) jf(gx)A- 1(g)vz(dg) 

= A- 1(h) jf(gx)vr(dg). 

Hence, if J/T( f)) does define an integral on K(X), this integral is relatively 
invariant with multiplier A - 1• The whole point of this discussion is that the 
natural definition of Tin the noncompact case leads to integrals JiT( f)) which 
are relatively invariant with multiplier A - 1• Therefore, the only types of inte­
grals J which can possibly have the representation J( f) = JlT( f)) must be 
relatively invariant with multiplier A - 1, given our definition of T. This issue did 
not arise in the compact case because there are no nontrivial multipliers when 
the group is compact. 

Now, consider G acting on X and suppose the integral J defined on K(X) is 
relatively invariant with multiplier A - 1• We now want to discuss conditions 
under which a representation for J of the above type holds. Here is a simple 
example which shows that some additional assumptions need to be made. 

EXAMPLE 5.2. Let X = R1 and take G = R 2 with addition as the group 
operation. For g = ( a 1, a2 ) E R 2, the action of G on X is defined by 

(a1, a2 )x = x + a1• 
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Obviously Lebesgue measure on X is invariant under this group action. Because 
G is a commutative group, the modulus of G is identically 1 and Lebesgue 
measure dg on G is right- and left-invariant. The difficulty here arises with the 
definition of T. Consider f;;::: 0, f E K(X) and form 

1 f(gx) dg = J j f(x + a 1 ) da1 da 2 • 
G 

This integral is + oo as long as f is not 0, and there is just no way to patch 
things. The problem is that when f;;::: 0 is not 0, for each x, the set 

{glf(gx) ;;::: e} 
has infinite measure for some e > 0. This sort of situation must be ruled out in 
order to have a representation theorem. Because G acts transitively on X in this 
example, the trouble is not with the quotient space (or its topology), but the 
trouble is the size of the group compared to the size of the space. Indeed, for 
every interval [c, d] c R1 with c < d and for every x E Rl, 

{glgx E [c, d]} = {(a1, a2 )la1 E [c- x, d- x]} = [c- x, d- x] X R1 

has infinite measure in G. 
In order that the integral in (5.13) 

1 f(gx)vr(dg) 
G 

be well defined, it is sufficient that sets of the form 

{glgx E C} 
be compact when C c X is compact. This type of condition leads to a version of 
Theorem 5.2. 0 

Here is the condition which excludes the sort of situation encountered in 
Example 5.1. Consider the topological group G which acts topologically on the 
space X. 

DEFINITION 5.1. The group G acts properly on X if the mapping 1/; defined 
on G x X to X X X by 

1/;(g,x) = (gx,x) 

is a proper mapping, that is, if the inverse image under 1/; of each compact set in 
X X X is a compact set in G X X. 

Here is the analog of Theorem 5.1: 

THEOREM 5.4. Assume that G act..<; properly on X. Then the quotient space 
XjG with its quotient topology is a locally compact Hausdorff space with a 
countable base for open sets. The mapping Ton K(X) given by T( f)= f*, 
where f * is the unique function satisfyinf( 

jf(gx)vr(dg) = f*(w(x)), 

is well defined. Further T maps K(X) onto K(X/G) and satisfies condition (5.3). 
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The above theorem is a conglomeration of results from Bourbaki. See 
Andersson (1982) for further discussion and references to the relevant portions of 
Bourbaki. Also, see the discussion in Wijsman (1985). 

THEOREM 5.5. Assume G acts properly on X and suppose that J is a 
relatively invariant integral on K (X) with multiplier L1- 1. Then there exists a 
unique integral J1 on K(X/G) such that 

(5.14) J(f) = Jl(T(f )), IE K(X). 

Conversely, for each integral J 1 defined on K(X/G), J defined by (5.14) is 
relatively invariant with multiplier L1- 1• 

PROOF. The proof is essentially the same as the proof of Theorem 5.2 once it 
is noted that 

This relation was established earlier. The details are left to the reader. D 

Before turning to some applications of Theorem 5.5, we first discuss a useful 
sufficient condition that G acts properly on X. This condition also has the 
advantage of being a bit easier to understand than the condition of properness. 

Given two subsets A, B c X, set 

(A, B) = { g E G lgA n B * <P} . 

THEOREM 5.6. Assume that for any compact subsets A, B c X, the set 
(A, B) is a compact subset of G. Then G acts properly on X. 

This theorem, which comes from Bourbaki, is given as Lemma 1.1 in Wijsman 
(1985) where a proof can be found. The assumption that (A, B) is compact 
whenever A and B are compact has some interesting consequences. For example, 
take A= B = {x}. Then 

( {X}, {X}) = {glgx = X}, 

which is the isotropy subgroup of x. Hence all of the isotropy subgroups are 
compact under the assumption of Theorem 5.6. When G is a "nice" subset of 
some Euclidean space, then the assumption that (A, B) is compact just means 
that (A, B) is a bounded set in the Euclidean space. (A, B) is always closed 
because the group action is continuous. Thus, in this case, the compactness of 
(A, B) is equivalent to the assertion that the collection of g 's which "move" 
some point in A into B is bounded. 

Finally, we tum to the question of a representation theorem for integrals 
(Radon measures) which are relatively invariant with a multiplier Xo on G. Thus 
suppose an integral J0 on K (X) is given by 
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and 

When G acts properly on X and when Xo = ~ -1, then and only then does 
Theorem 5.5 apply directly. However, when Xo * ~- \ it is possible to change 
the measure p. 0 into a new measure to which Theorem 5.5 applies. Here are the 
details of that modification. Because the group G is assumed to be a-compact, it 
follows that given any multiplier x on G there exists a positive continuous 
function cp defined on X which satisfies 

(5.15) cp(gx) = x(g)cp(x) 

for x EX and g E G. [See Bourbaki (1963), Proposition 7, Section 2, 4°.] Now, 
define a new measure p. by 

1 
(5.16) p.(dx) = cp(x) p. 0(dx), 

where cp satisfies (5.15) with x = Xo~· The claim is that the integral J defined by 

J(f) = jf(x)p.(dx) 

is relatively invariant with multiplier ~ -l. This claim is verified as follows. For 
hE G, 

1 
J(Lhf) = jf(h- 1x)p.(dx) = jf(h-Ix) cp(x) JL 0(dx) 

1 
= jf(h-Ix) cp(hh-lx)JL 0(dx) 

1 1 
= Xo(h)~(h) jf(h-lx) cp(h--lx)JLo(dx) 

Xo(h) j 1 
= Xo(h)~(h) f(x) cp(x)JLo(dx) = ~-l(h)J(f ). 

Thus, under the assumption that G acts properly on X, Theorem 5.5 can be 
applied to J. Summarizing this discussion gives: 

THEOREM 5.7. Assume G acts properly on X and let 

be relatively invariant with multiplier Xo· Pick cp to be a positive continuous 
function on X satisfying (5.15) with x = Xo~· Then the integral 

1 
J(f) = jf(x) cf>(x) p. 0(dx) 
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is relatively invariant with multiplier A-- 1• Further J0 has the representation 

(5.17) J0(f) = J(fct>) = J1(T(fct>)) 

for some integral J 1 defined on K(XjG). 

PROOF. This follows immediately from the discussion above and Theo­
rem 5.5. D 

It should be mentioned that T(fcp) in (5.17) takes a special form because cf> 
satisfies (5.15). Recall that for f1 E K(X), T( f1) = ft is the function in K(X/G) 
which satisfies the equation 

jMgx)vr(dg) = ft(7r(x)). 

Substituting {1 = fcp and using (5.15) yields 

(fcp)*(7r(x)) = jf(gx)cp(gx)vr(dg) 

(5.18) = cf>(x) jf(gx)x0(g)A(g)vr(dg) 

= cf>(x)jf(gx)x 0(g)vz(dg), 

where Pz = Avr is a left Haar measure on G. 

5.3. The Wijsman representation. The main result in this section is a 
version of the Wijsman representation for the ratio of densities of a maximal 
invariant. The version presented here, under the assumption that G acts prop­
erly on X, is due to Andersson (1982) and is an easy consequence of Equation 
(5.18) following Theorem 5.7. 

Our first goal is to establish a version of Theorem 5.3 for the noncompact case. 
Throughout this section, G is a locally compact, a-compact topological group 
which acts topologically on X. It is also assumed that the action of G on X is 
proper, so Theorems 5.5 and 5.6 are valid. As usual 7T denotes the natural 
projection of X onto XjG. 

THEOREM 5.8. Consider a random variable X with values in X and assume 
that X has a density p with respect to a measure JLo which is relatively invariant 
with multiplier Xo· As in Theorem 5.7, let cf> be a positive continuous function 
satisfying (5.15) with x = XoA so that the equation 

(5.19) J0(f) = J1(T(fct>)) 

holds for some integral 

Jl(f*) = l f*(y)p,l(dy) 
X/G 

defined on K(XjG). Then the density function of the maximal invariant Y = 
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'IT( X) with respect to p. 1 is 

(pq,)* = T(pq,). 

PROOF. The argument is a minor variation of that given in the proof of 
Theorem 5.3. It suffices to show that for f* E K(X/G), 

Cf*(Y) = jf*(y)(pq,)*(y)p.1(dy). 

This equality follows from 

Cf*(Y) = Cf*( 'IT( X)) 

= Jo(( f*'IT)p) = Jl(T(( f*'IT)pq,)) 

= Jl( f*T(pq,)) = Jl( f*(pq,)*) 

= jf*(y)(pq,)*(y)p.l(dy). 

This completes the proof. D 

Here is Andersson's (1982) version of Wijsman's theorem: 

THEOREM 5.9. Under the assumptions of Theorem 5.8, let p 1 and p 2 be two 
possible densities of X. Then for each x E X such that the denominator is 
positive, the ratio of the densities (p2q, )* /(p1q, )*of the maximal invariant 'IT( X) 
lS 

(5.20) 

PROOF. According to Theorem 5.8, when X has density Pi, the density of 
'IT(X) with respect to p. 1 is (piq,)*. However, Equation (5.18) shows that 

(piq,)*('IT(x)) = q,(x) jPi(gx)xo(g)vtCdg). 

With division of (p2q,)*('1T(x)) by (p1q,)*('1T(x)), the result follows. D 

Applications of this result to robustness and decision theory results are given 
in later chapters. The paper of Wijsman (1985) contains some very useful 
methods of verifying that certain group actions are proper. This paper also 
contains a number of important examples to which we refer later. 


