
CHAPTER 3 

Invariant Statistical Models 

In this lecture, invariant statistical models are introduced and a variety of 
examples is given. Invariant testing problems and equivariant estimators are 
introduced. Univariate and multivariate linear models provide a host of standard 
examples. 

3.1. Invariant models. Given a measurable space (X, .04), a family of proba
bility measures f!i' defined on !14 is a statistical model. If the random variable X 
takes values in X and .P(X) E f!i', then we say .ClJ is a model for .P(X). 

DEFINITION 3.1. Suppose the group G acts measurably on X. The statistical 
model f!i' is G-invariant if for each P E f!i', gP E f!i' for all g E G. 

When the model .9 is G-invariant, G acts on f!lJ according to Definition 2.1. 
Further, when f!i' is a model for .P(X), then f!i' is G-invariant means that 
.P(gX) E f!lJ whenever .P(X) E .9 for all g E G. 

EXAMPLE 3.1. Consider X= Rn with the Borel a-algebra and let fo(llxll 2 ) be 
any probability density on Rn. Then the probability measure P0 defined by 

is orthogonally invariant as described in Example 2.6. That is, for each g E On, 
the group of n X n orthogonal matrices, gP0 = P0 • Thus f!i' = { ~>} is On
invariant. 

Of course, there are other orthogonally invariant probabilities than those 
defined by such a density. In fact, given any probability measure Q on Rn, define 
Pby 

P(B) = j (gQ)(B)v(dg) = jQ(g- 1B)v(dg), 
On 

where v is invariant probability measure on On. Clearly Pis On-invariant. Thus, 
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42 INVARIANT STATISTICAL MODELS 

averaging gQ over g with respect to the Haar measure on On always produces an 
On-invariant probability. 

It is easy to see that this procedure is valid for any compact group G acting 
measurably on a space (X, 88). That is, let Q be a probability on (X, .OA) and 
define P by 

P= jgQv(dg), 

where v is the Haar probability measure on G. The above equation means 

P( B) = f (gQ)(B)v( dg) 

forB E 88. That Pis G-invariant follows from 

(hP)(B) = P(h- 1B) = j(gQ)(h- 1B)v(dg) = jQ(g- 1h 1B)v(dg) 

= f Q((hg) 1B)v(dg) = f Q(g- 1B)v(dg) = P(B). o 

More detail concerning the structure of probabilities invariant under compact 
groups is given in the next lecture. Here is a standard parametric example where 
the group is not compact. 

EXAMPLE 3.2. Consider Xl, ... ' xn iid N(JL, o 2 ) on R1• Then the random 
vector 

X~ ( 1:) E R" 

has the distribution 

£'(X) = Nn(JLen, <r 2In), 

where en is the vector of l's in Rn. A statistical model for £'(X) is 

g; = { N(JLen, a2In)IJL E R\ o 2 > 0}. 
The appropriate group G for this example has group elements which are triples 
(y, a, b) with a> 0, bE R1 and y E on such that yen= en. The group action 
on Rn is 

x ~ ayx +ben 

and the group operation is 

( Yt, at, bl)( Y2, a2, b2) = ( YtY2, ala2, alb2 + bl). 

That 9 is G-invariant follows from the observation that when 

£'(X) = N(JLen, a2In), 
then 

2'((y, a, b)X) =£'(ayX +ben)= N(aJL + b)en, a2a2In) 

which is an element of the model 9. D 
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Example 3.2 is one instance of a standard method of generating an invariant 
model. Given a fixed probability Q0 on (X, !Jd) and a group G acting measurably 
on (X, B), let 

.C!P = {gQ0 Jg E G}. 

Obviously Pi' is G-invariant because h(gQ0 ) = (hg)Q0 which is in Pi' for gQ0 E Pi'. 
In the previous example, Q0 is the N(O, I,) distribution on R", G is the group 
given in the example and Pi' is just the family {N(p.e,, a 2I)IJL E Rl, a 2 > 0}. 
Here is a slightly more complicated linear model example. 

EXAMPLE 3.3. On R", fix a distribution Q0 which we think of as a standard
ized error distribution for a linear model [e.g., Q0 = N(O, I,)]. Let M be a linear 
subspace of R" which is regarded as the regression subspace of the linear model. 
Elements of a group G are pairs (a, b) with a =f- 0, a E R 1 and b E M. The 
group operation is 

(all bl)(a2, b2) = (ala2, alb2 + bl) 

and the action on R" is 

x--'> ax+ b. 

The G-invariant statistical model is 

Pi'= {gQ0 Jg E G}. 

To describe this model in more standard terminology, let £ 0 have distribution 
Q0 so .P(e0 ) = Q0 • For (a, b) E G, 

.P((a, b)e0 ) =.P(b + ae0 ). 

Hence an observation from this model can be written 

Y = b + ae0 , 

where b E M. Assuming e0 has mean 0, the mean of Y is b E M and the 
covariance matrix of Y is 

a 2 Cov( e0 ), 

where Cov( £ 0 ) is the covariance matrix of e0 • Setting £ = ae0 and f.L = b, the 
model for Y is 

Y=p.+e 

which is the standard "Y equals mean vector plus error" model common in linear 
regression. When Cov(e0 ) =I,, we are in the case when Cov(Y) = a 2I, for some 
a 2 > 0. Thus, the usual simple regression models are group generated models 
when it is assumed that the error distribution is some scaled version of a fixed 
distribution on R". D 

In many situations, invariant statistical models 9 are parametric statistical 
models having parametric density functions with respect to a fixed a-finite 
measure. The proper context to discuss the expression of the invariance in 
terms of the densities is the following. Consider a topological group G acting 
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measurably on (X, !!tl) and assume that p, is a a-finite measure on (X, !!tl) which is 
relatively invariant with multiplier x on G. That is, 

/f(g- 1x)p,(dx) = x(g) /f(x)p,(dx) 

forgE G and p,-integrable f. 

THEOREM 3.1. Assume the group G act<; on the parameter space e and that 
{p( ·/8)/8 E 8} is a family of densities with respect to p,. If the densities satisfy 

(3.1) p(x/8) = p(gx/g8)x(g), 

then the parametric family of probability measures 9 = {P0 /8 E 8} defined by 
the densities is G-invariant. Further, gP0 = Pgo· 

PROOF. For each 8 E e and g E G, it suffices to verify that 

gPo= Pgo 

since this implies 9 is G-in variant. For B E !!tJ, 

(gP0 )(B) = P0(g- 1B) = JIB(gx)p(x/O)p,(dx) 

= x(g) JIB(gx)p(gx/g8)p,(dx) 

= x(g)x(g- 1 ) JIB(x)p(x/g8)p,(dx) 

= Pg0(B). D 

A converse to Theorem 3.1 is "almost true." That is, consider a parametric 
family 9 = {P0 /8 E 8} which is G-invariant and satisfies 

gPo = Pgo' g E G' 8 E e. 
If each P0 has a density p(x/8) with respect to a a-finite measure p, which is 
relatively invariant with multiplier x, then the argument used in Theorem 3.1 
shows that (3.1) holds a.e. for each g E G and 8 E e. Unfortunately, the null set 
where (3.1) does not hold can depend on both g and 8. However, in all of the 
interesting cases that I know, a version of the density exists so that (3.1) holds 
for all x, 8 and g. When (3.1) holds for the density p( ·/8), we say that the family 
of densities is invariant (the multiplier x is understood to be given by the 
context), although a better word might be x-invariant. 

EXAMPLE 3.4. Consider a random vector X E RP which is multivariate 
normal with mean vector p, E RP and positive definite covariance ::E = Cov(X) E 
s;. The density of X with respect to Lebesgue measure dx is 

/::E/-1/2 
(3.2) p(x/p,,::E) = ..j2; Pexp[-Hx-p,)'::E- 1(x-p,)j. 

( 27T) 
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Thus, the sample space is RP and the parameter space is e = RP X s: 0 The 
affine group AlP acts on RP by 

x ~ gx +a, 

where (g, a) E AlP with g E GlP and a E RP. When 2(X) = N(p., };), then 

2((g, a)X) = N(gp. + a,g};g'), 

so the appropriate action on (} is 

(p., };) ~ (gp. +a, g};g'). 

An easy calculation shows that dx is relatively invariant with multiplier 

x(g, a)= ldet(g)l, (g, a) E AlP. 

The direct verification of (3.1) entails showing that 

p(xlp., };) = p(gx + algp. +a, g};g')ldet(g)l, 

which is routine. 
The parametric family of this example is 

&' = { N(p., };)IP. E RP,}; E s;}. 
With Q0 = N(O, Ip), it is clear that AlP acting on Q0 generates the family &', 
that is, 

&'= {(g, a)Q0 I(g, a) E AlP}. 

Notice that AlP does not give a one-to-one indexing for this parametric family. 
There is nothing special about the normal distribution in the example above. 
Given any fixed density f1 (with respect to dx) on RP, let Q1 be the probability 
measure defined by {1• Then the parametric family 

&'I= {(g, a)Q1I(g, a) E AlP} 

is generated by AlP acting on Q1• A direct calculation shows that (g, a)Q has a 
density 

p(xl(g, a))= f1(g- 1(x- a))ldet(g)l- 1, 

which clearly satisfies (3.1). Again, the group AlP ordinarily does not provide a 
one-to-one indexing of the parametric family &'1. That is, it is usually the case 
that 

(gl, al)Q1 = (g2, a2)Q1 

does not imply that (g1, a1) = (g2, a 2). 
In the case of the normal distribution, the mean and covariance provided a 

one-to-one indexing of&'. However, this is not the case in general, but when the 
density {1 has the form {1(x) = k1(llxll 2), then the distribution (g, a)Q1 depends 
on (g, a) only through gg' and a, as in the normal case. D 

3.2. Invariant testing problems. In this section, invariant testing prob
lems are described and invariant tests are discussed. The setting for this 
discussion is a statistical model &' which is invariant under a group G acting on 
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a sample space (X, !!d). Thus, the observed random variable X satisfies 2'(X) E 

f!JJ. Consider a testing problem in which the null hypothesis H 0 is that a 
submodel f!JJ0 of f!lJ actually obtains. In other words, the null hypothesis is that 
2'(X) E f!JJ0 E f!lJ as opposed to the alternative that 2'(X) E f!lJ- f!JJ0. 

DEFINITION 3.2. The above hypothesis testing problem is invariant under G 
if both f!JJ0 and f!lJ are G invariant. 

When the testing problem is invariant under G, then it is clear that the 
alternative f!lJ- f!JJ0 is also invariant under G. 

Following standard terminology [e.g., Lehmann (1986)], a test function cp is a 
measurable function from (X, !!d) to [0, 1] and cp(x) is interpreted as the condi
tional probability of rejecting H0 when the observation is x. The behavior of a 
test function cp is ordinarily described in terms of the power function 

f3(P) = Epcp(X), P E f!JJ. 

Ideally, one would like to choose cp to make {3(P) = 0 for P E 9 0 and {3(P) = 1 
for P E 9 - 9 0. 

When a hypothesis testing problem is invariant under a group G, it is 
common to see the following "soft" argument to support the use of an invariant 
test function, that is, a test function cp which satisfies cp(x) = cp(gx) for x EX 
and g E G. This argument is: 

Consider x E X and suppose X = x supports H0. Then we 
tend to believe 2'(X) E 9 0 • If we had observed X= gx 
instead, then x = g- 1X and 2'(g- 1X) E 9 0 when 2'(X) E 

9 0 • Hence we should also believe H 0 if gx obtains. In other 
words, x and gx should carry the same weight of evidence for 
H 0 • Exactly the same argument holds if x supports H 1• 

We now tum to a discussion of two ways of obtaining an invariant test in the 
special case that 9 is a parametric family 9 = {P010 E E>}, G acts on E> and 
there is a density p( ·10) for P0 with respect to a a-finite measure ll· It is assumed 
further that !l is relatively invariant with multiplier x and the density p( ·10) 
satisfies Equation (3.1), i.e., 

p(xiO) = p(gxlgO)x(g ). 
In this notation, the invariance of the hypothesis testing problem means that 

9o = {PolO E E>o} 
is G invariant so the set E>o E e is G invariant. The likelihood ratio statistic for 
testing Ho: 0 E E>o versus Hl: 0 E e - E>o = el is ordinarily defined by 

SUPoEe p(xiO) 
A(x)= 0 • 

sup8 Eep(xlli) 

This statistic is then used to define a test function cp via 

cp(x) = {1, 
0, 

if A(x) < c, 

if A(x) :2': c, 
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where c is some appropriately chosen constant. Because of our assumptions on 
p( ·18) and the invariance of e0 and e, it is readily shown that A(x) = A(gx) 
and hence that cp(x) = cp(gx). In other words, the test defined by the likelihood 
ratio statistic is invariant under any group for which the testing problem is 
invariant. 

A second method which can sometimes be employed to define an invariant 
test involves the use of relatively invariant measures defined on 8 0 and 8 1• More 
precisely, assume we can find measures ~0 and ~ 1 on e0 and 8 1, respectively, 
which are relatively invariant with the same multiplier Xt· Assuming the follow
ing expression makes sense, let 

Then T can be used to define a test function cp via 

ct>(x) = {1, 
0, 

if T(x) < c, 

if T(x) ~ c, 

where c is the omnipresent constant. The assumed invariance of the density 
p( ·18) and the relative invariance of ~0 and ~1 combine to imply that T(x) = 

T(gx) and hence that the test cp is an invariant test. 
The main reason for introducing the invariant tests described above is to raise 

some questions for which answers are provided in later lectures-in particular, 
how to select ~0 and ~ 1 • Under some rather restrictive conditions, it is shown in a 
later lecture how to choose the measures ~0 and ~1 so that the test defined by the 
statistic T is a "good" invariant test. It is also shown that the likelihood ratio 
test does not necessarily yield a "good" invariant test when one exists. 

3.3. Equivariant estimators. As in the last section, consider a group G 
which acts on a sample space (X,/?./) and a parameter space e in such a way that 
the parametric model f?IJ = {P018 E 8} is invariant. A density p(xiO) is assumed 
to exist and the invariance condition (3.1) is to hold throughout this section. 
Thus, the dominating measure p, is relatively invariant with multiplier X· In this 
context, a point estimator t mapping X to e is equivariant if 

(3.3) t( gx ) = gt( x) . 

A soft argument leading to the consideration of equivariant estimators is: 

Consider t0 as an estimator of 0. When .P(X) = P0 , then 
t0(X) is supposed to estimate 0. But, when .P(X) = P0 , 

.P(gX) = Pgo so t0(gX) should estimate gO. However, t 0(X) 
estimates 0, so gt0(X) estimates gO. Equating these two 
estimators of 0 leads to t0(gX) = gt0(X) and hence estima
tors satisfying (3.3). 

The method of maximum likelihood leads to an equivariant estimator when 
the maximum likelihood estimator is unique. This result is a consequence of the 
following constructive method for finding a maximum likelihood estimator. 
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THEOREM 3.2. Consider X with G-invariant density p( ·jO) and fix x 0 EX. 
Assume that Bo E e uniquely maximizes p(xoi8) as 8 varies over e, so 
p(x0 j8) .::;; p(x0 j80 ) with equality iff 0 = 80• For x E Oxo' the orbit of x 0 , write 
x = gxxo for some gx E G and set 

O(x) = gx80 • 

Then for x E Oxo' 0 is the maximum likelihood estimator of 8, is unique and is 
equivariant. 

PROOF. The proof is not hard and can be found in Eaton [1983, page 
259-260]. D 

The import of Theorem 3.2 is that, in invariant situations, the maximum 
likelihood estimators can be found by simply selecting some convenient point x 0 

from each orbit in X and then calculating the maximum likelihood estimator, say 
80 , for that x 0 • The value of O(x) for other x 's i~ the same orbit is calculated by 
finding a gx such that gxxo = x and setting 8(x) = gx80 • This orbit-by-orbit 
method of solution arises in other contexts later. 

The result..<; of Theorem 3.2 are valid for other methods of estimation also. For 
example, certain nonparametric methods can be characterized as choosing an 
estimator t 0(x) so as to maximize a function 

H(xjO) 2: 0 

as 0 ranges over e. If the function H satisfies 

H(xj8) = H(gxjg0)x 0(g) 

for some multiplier x0 , then Theorem 2.3 applies [just replace the density p(xjO) 
by H(xjO) in the statement of Theorem 3.2]. In other words, the orbit-by-orbit 
method applies and the resulting estimator is equivariant and unique. 

In a Bayesian context, inferential statements about 0 are in the form of 
probability distributions on e which depend on x. These probability distribu
tions are often obtained from a measure ~ on e. The measure ~ is a prior 
distribution if 0 <~(e) < + oo and is an improper prior distribution if ~(e) = 

+ oo. Given g, let 

m(x) = J p(xjO)g( dO) 

and assume that 0 < m( x) < + oo for all x E X. Then define 

q( Ojx) = P~~~o/ 
so that 

Q(Bjx) = ji8 (0)q(Ojx)g{d0) 

determines a probability measure Q( ·lx) on e. For B fixed Q( Bi · ) is a 
measurable function defined on (X, B). Thus Q is a Markov kernel (randomized 
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decision rule, posterior distribution, etc.) as discussed in Example 2.19. In this 
context, the appropriate notion of invariance is that defined in Example 2.19, 
namely Q is invariant if gQ = Q. That is, if 

(3.4) 

for measurable sets B c 8, x E X and g E G. Here is a condition which implies 
that (3.4) holds: 

THEOREM 3.3. Assume the measure ~ on 8 i...;; relatively invariant with some 
multiplier x1• Then Q satisfies (3.4). 

PROOF. For g E G, 

Q(g- 1Big-I_x) = J IB(gO)q( Oig- 1x )HdO) 

f IB(gO )p(g- 1xl0 )H dO) 

fp(g- 1xiO)g( dO) 

Using (3.1), we have 

( 
_ 1 _ 1 ) _ flB(gO)p(xlgO)g(dO) 

Q g Big x - fp(xlgO)g(dO) · 

The assumed invariance of ~ now yields (3.4). D 

Again, the question of how to choose ~ from the class of all relatively 
invariant measures naturally arises. This is discussed in later lectures. 

Finally, the relationship between the equivariance of a point estimator and 
(3.4) requires a comment. Given any point estimator t 0(x), the natural way to 
identify t 0 with a Markov kernel Q0 is to let Q0( ·lx) be degenerate at the point 
t 0(x) E 8, that is, 

Q0(Bix) = { 1' 
0, 

if t 0(x) E B, 

otherwise. 

With this identification, it is routine to show that (3.4) holds iff t0 is equivariant. 
Here is a simple example. More interesting and complicated examples appear 

in later lectures. 

EXAMPLE 3.5. Suppose X E R1 is N(O, 1), so e = R1• Obviously the model 
fY! = {N(O, 1)10 E R1} is invariant under the group G = R1 acting on X and 8 
via translation. For this example t is an equivariant point estimator iff 

t( X + g) = t( X) + g 

for all x, g E R1• Setting g = -x, we see that tis equivariant iff 

t(x) = x +a, 

where a is some fixed real number. The choice a = 0 gives the maximum 
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likelihood estimator. To generate invariant distributions on e, consider the 
relatively invariant measure 

~(dO)= e 0b dO, 

where b is a fixed real number. (These are all the relatively invariant Radon 
measures on R1 up to positive multiples.) For x given, this ~ gives 

Q(-lx) = N(x + b,l) one= R 1• 

In words, the formal posterior distribution is normal with mean x + b and 
variance 1. Of course, the "usual" choice is b = 0 in which case ~(dO) = dO is 
the Haar measure on G =e. In more complicated examples where G is not 
unimodular, the choice is not so obvious. D 

3.4. Linear models. In order to motivate our discussion of linear models, 
first consider what is commonly called the multivariate analysis of variance 
model (the MANOVA model) 

(3.5) Y= XB +E. 

Here, X: n X k is a known matrix of rank k, B: k X p is a matrix of unknown 
regression parameters and E: n X p is a matrix of random variables (errors). A 
standard assumption concerning E is that the rows of E are iid multivariate 
normal with mean 0 and common positive definite covariance, say C: p X p. 
This assumption on E is often written 

(3.6) .P(E) = N(O, In® C), 

where In ® C denotes the Kronecker product of the n X n identity matrix In 
and C. Thus the n X p error matrix has a normal distribution (with mean 0 and 
the specified covariance) on the vector space of n X p real matrices !Ep, n- The 
standard coordinate inner product on .Pp, n is 

(x, y) = trxy' = L LXiJYiJ• 
i j 

where tr denotes the trace. That E has covariance In® C means that 

cov{ (x, E), (y, E)} = (x, (In® C)y), 

where cov denotes ordinary covariance between real random variables. As usual, 
the Kronecker product In® C is the linear transformation on .Pp, n to .Pp, n 
defined by 

(In® C)x = InxC' = xC'. 

An alternative way to write (3.5) is 

(3.7) Y = p, + E, 

where E is the error vector as before and p, = XB is the mean vector for Y. 
Thus, the space of possible values for p, is the linear subspace of .P , p,n 

(3.8) M = {JLIIL = XB, B: k X p} c !Ep, n· 

When the distributional assumption (3.6) holds, then 

(3.9) !E(Y) = N(p,, In® C), 
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where p. EM and Cis some p X p positive definite covariance matrix. Thus the 
parametric model for £?(Y) is 

Y'= {N(p., In® C)jp. EM, C ESP+}. 

To describe the invariance of this model, let M0 c Rn be the linear subspace 
spanned by the columns of the matrix X and set 

G0 = {gig EOn, g(M0 ) C M0 }. 

Elements of G0 are orthogonal transformations on Rn to Rn which have M0 and 
hence the orthogonal complement M0J.., as invariant subspaces. Note that if 
p. E M, then the matrix product gp. is also in M for g E G0 , because the columns 
of p. are elements of M0 • 

Now, let G have elements which are triples (g, a, a) with g E G0 , a E GIP 
and a EM. The action of (g, a, a) on 2p, n is 

(g, a, a)x = gxa' +a 

and the group composition is 

(gl, al, al)(g2, a2, a2) = (glg2, ala2, gla2a{ + al). 

When (3.9) holds, then 

2((g, a, a)Y) = N(gp.a' +a, In® (aCa')), 

which is again in 9. Thus the MANOVA model f!JJ is invariant under G. It is 
well known that the maximum likelihood estimator for p. in this model is 

P, =Po¥, 

where P0 : n X n is the orthogonal projection onto M0 c Rn. Further, P, is the 
unique unbiased estimator of p. based on the sufficient statistic for f!JJ and P, is 
the best linear unbiased estimator of p.. The invariance of the model .9 implies 
that P, is an equivariant estimator of p. where the action of G on M is 

p. ---+ gp.a' + a. 

It should be mentioned that the linear transformation on 2p, n to 2p, n defined 
by 

x-+ P0x 

is just the orthogonal projection onto Min the inner product space ( 2p, n• ( • , ·) ). 

The aspect of the MANOV A model with which the rest of this section deals is 
the equivariance of the estimator of the mean vector. For this discussion, we first 
describe the Gauss-Markov theorem for the so-called regular linear models. 
Consider finite dimensional inner product space (V, ( ·, · )). By a linear model for 
a random vector Y with values in V, we mean a model of the form 

(3.10) y = p. + E, 

where 

(i) the random vector E has mean 0 and covariance L = Cov( E) assumed to lie 
in some known set y of positive definite linear transformations; 
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(ii) the mean vector JL of Y lies in a known subspace M of V which is called 
the regression subspace. 

Thus, the pair ( M, y) determines the assumed mean and covariance structure for 
Y taking values in (V, ( ·, · )). In what follows it is assumed that the identity 
covariance I is in y. This assumption is without loss of generality since any pair 
(M, y) can be transformed via one element of y to another pair (Mp y1) with 
IE Yl· 

DEFINITION 3.3. 
y if 

(3.11) 

The pair (M, y) (with IE y) is a regular linear model for 

L(M) c M, LEy. 

In other words, the model is regular if the regression subspace is an invariant 
subspace under each possible covariance L E y. That the MANOVA model is 
regular is readily verified. The condition (3.11) is equivalent to the condition 

(3.12) LA0 = A 0 L, LEy, 

where A 0 is the orthogonal projection onto the subspace M. 
Consider any linear unbiased estimator A Y of JL E M, that is, A is a linear 

transformation from V to V which satisfies 

(3.13) Ax =x, xEM. 

Here is one version of the Gauss--Markov theorem which compares linear 
unbiased estimators in terms of covariance: 

THEOREM 3.4 (Gauss-Markov theorem). Assume the pair (M, y) determines 
a regular linear model for Y and let A 0 be the orthogonal projection onto M. 
Then, for any linear unbiased estimator A Y of JL E M, 

Cov(A0Y) :o:; Cov(AY), 

where :o:; is in the sen.~e of nonnegative definiteness. That is, Cov(AY) -
Cov(A0Y) is nonnegative definite. 

PROOF. With L = Cov(Y), 

Cov(AY) =ALA' 

= A 0LA0 +(A- A 0 )LA0 

+A0L(A - A 0 )' + (A - A 0 )L(A - A 0 )'. 

However, the term (A - A 0 )LA0 is 0. To see this, first notice that LA0 = A 0 L 
due to the regularity of the linear model. But (3.13) implies that (A - A 0 )A0 = 0, 
so 

(A - A 0 )LA0 = (A - A 0 )A0 L = 0. 

Thus A 0L(A - A 0 )' is also 0 as it is the transpose of (A - A 0 )LA0 . Hence 

Cov(AY) = A 0LA0 +(A- A 0 )L(A- A 0 )' 

= Cov(A 0Y) + (A - A 0 )L(A - A 0 )'. D 
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Now consider a linear model 

Y= f.L + E, 

where again p. E M, the error vector E has mean zero and satisfies the following 
invariance assumption: 

where 
g0 =I- 2A0 . 

As usual, A 0 is the orthogonal projection onto M, so gg = I and g0 1 = g 0 • This 
model for Y is invariant under the transformations 

x- gx +a, X E V, 

where g is either g0 or I and a EM. In other words when Y = p. + e, 

g Y + a = ( gp. + a) + ge = p. * + e*, 

where p.* EM and e* has the same distribution as E. Hence the mean of gY +a 
is still in M and the error vector has the same distribution for gY + a as for Y. 
The group in question, say G, has elements which are pairs (g, a) with a EM 
and g is g 0 or I. The group operation is 

(gl, al)(g2, a2) = (glg2, gla2 + al). 

The appropriate equivariance of a point estimator t of p. is 

(3.14) t(gx + a) = gt(x) + a 

because p. is mapped into gp. + a by the group element (g, a). The following 
result shows that an equivariant estimator of p. is just the Gauss-Markov 
estimator A 0Y of Theorem 3.4. 

THEOREM 3.5. Suppose t: V ~ M satisfies (3.14) for (g, a) E G. Then 
t(x) = A 0x for x E V. 

PROOF. For x E V, write x = x1 + x 2 where x1 E M and x 2 E M _L • Here, 
M j_ is the orthogonal complement of M. Choosing g =I and a = -x1 in (3.14) 
yields 

so that 
t(x1 + x 2 ) = x 1 + t(x2). 

Now, in (3.14) pick a = 0, x = x 2 E M j_ and g = g 0 • From (3.14) we have 

t(g0x2) = g0t(x2). 

But g0 x 2 = x 2 as x 2 E M ·1 , and g 0t(x2 ) = - t(x 2) because t takes values in M. 
Thus, 

t(x 2 ) = -t(x2 ) 

so t(x2) = 0 for all x2 EM j_. Therefore 

t(x) = t(x1 + x2 ) = x1 + t(x2) = A 0x. 0 
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The invariance argument used to characterize the equivariant estimator A 0Y 
depends on the assumption 

.sf( e)= 2(g0e), 

where g 0 =I- 2A0 • Hence, if e has a covariance, say ~ = Cov(e), this invari
ance assumption on .sf( e) implies that 

(3.15) ~ = go~go. 

However, this condition is exactly the same as the regularity assumption which 
led to Theorem 3.2. To see this, (3.15) is 

~ = (I- 2A0 )~(I- 2A0~) 

= ~- 2A0~- 2~A0 + 4A0~A0 , 

which yields 
2A0~A0 = A0~ + ~A0 • 

Now, multiplying this on the left by A0 gives 

Ao~Ao = Ao~ 

while multiplication on the right gives 

Ao~Ao = ~Ao 

so that ~A0 = A0~. This is just (3.12) which is equivalent to (3.11). Thus, the 
invariance assumption on .sf( e) is very closely connected with the assumption on 
y in the definition of regularity. 


