
Chapter 8

Random Partition Models

8.1. Introduction

In earlier chapters we discussed nonparametric Bayesian priors p(G) for random
probability measures. The most commonly used model is the DP prior and its
variations and extensions. One of the many interesting properties of the DP is the
almost sure discrete nature of a random probability measure G with DP prior,
G ∼ DP(M,G0). The discrete nature of G naturally induces a prior on random
partitions, as we have seen many times before in earlier chapters. Consider a random
sample, xi | G ∼ G, i = 1, . . . , n, generated from a probability model with DP
prior, G ∼ DP(M,G0). The discreteness of G implies a positive probability of ties
among the xi. We can use these ties to define a partition of the experimental units
{1, . . . , n} as

{1, . . . , n} =
k⋃

j=1

{i : xi = x�
j}︸ ︷︷ ︸

Sj

defined by the unique values x�
1, . . . , x

�
k. In other words, the DP prior induces a

prior on clusters defined by the k ≤ n unique values of the random sample.
Many applications of nonparametric Bayesian models focus on this implied clus-

tering. The inference on the unknown probability measure G is often of less interest
than the implied clustering. In this chapter we focus on this aspect of nonparamet-
ric Bayes models and introduce some alternative models for random partitions. We
start by introducing useful notation. Let S = {1, . . . , n} denote the experimental
units that are being clustered. Let ρn = {S1, . . . , Sk} denote a partition with non-
overlapping subsets Sj that cover S. When the sample size n is obvious from the
context we drop the subindex n. Sometimes it is technically more convenient to use
alternative equivalent notation with cluster membership indicators si = j if i ∈ Sj .
Let y�j = (yi, i ∈ Sj) denote outcomes arranged by clusters. For some models we
will make use of available covariates xi and use x�

j to denote covariates arranged by
clusters. In this chapter we discuss probability models p(ρn) for random partitions
and extensions of such models that include a regression on covariates by defining
p(ρn | x).

8.2. Random Partition Models

Product Partition Model

Hartigan (1990), Barry and Hartigan (1993), and Crowley (1997) propose and de-
velop the product partition model (PPM) for random partitions. In contrast to
the prior on clustering that is implied by the DP prior, the PPM explicitely de-
fines a probability distribution p(ρn) over alternative partitions. The PPM uses a
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non-negative function c(Sj), known as the cohesion function to define a product
partition probability

(8.1) p(ρn) = K

k∏
j=1

c(Sj).

Conditional on a given partition, the PPM assumes independent sampling across
clusters,

(8.2) p(y | ρ) =
∏
j

p(y�j | μ�
j ),

where μ�
j are cluster specific parameters. Applications of the PPM often use ex-

changeability of yi across i ∈ Sj by assuming that yi, i ∈ Sj are independent
given μ�

j . One of the attractions of the PPM is the conjugate nature. The poste-
rior p(ρn | y) is again a product partition model, with updated cohesion functions
c(Sj)p(y

�
j ), where p(y�j ) is the marginal sampling model for yi, i ∈ Sj under parti-

tion ρn.
The Pólya urn implied by the DP prior, DP(M,G0), is a special case of a PPM,

with cohesion function c(Sj) = M(nj − 1)!. Another example of a PPM are Gibbs
type priors. Recall from §7.3 the format of the EPPF for Gibbs type priors. Let
nj = |Sj | denote the cardinality of the j−th cluster. The EPPF of a Gibbs type
prior takes the form (8.1) with cohesion function c(Sj) = (1 − σ)nj−1. Here ak =
Γ(a+ k)/Γ(a) denotes a rising factorial.

Some applications use constrained partition models. For example, when obser-
vations are ordered in time it might be desireable to restrict clusters to contiguous
sequences of objects (Barry and Hartigan, 1993; Monteiro et al., 2010; Yao, 1984).

Species Sampling Model

We already discussed the species sampling model (SSM) as a large class of prior
models for random distributions (Ishwaran and James, 2003; Pitman, 1996) that
includes many popular models as special cases. One of the characterizations of the
SSM is through the EPPF, the implied probability model for the induced parti-
tion of {1, . . . , n}. Recall that the EPPF is a symmetric function f(n1, . . . , nk),
symmetric in its arguments,

p(ρn) = f(n).

Again the partition that is implied by i.i.d. sampling from a random probability
measure with DP prior is a special case with f(n) ∝ ∏n

j=1 M(nj − 1)!.

Model-Based Clustering

In data analysis, when formal probability models are used for clustering, perhaps the
most commonly used approach is model-based clustering. Model-based clustering
defines a prior p(ρn) implicitly through a mixture model for the observed data.
Let yi, i = 1, . . . , n, denote responses for n experimental units. A mixture model
p(yi | k, (θj), (πj)) =

∑k
j=1 πjfj(yi | θj) can be equivalently written as a hierarchical

model with latent indicators si ∈ {1, . . . , k},
p(yi | k, (θj), si = j) = fj(yi | θj), Pr(si = j) = πj .(8.3)
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When the latent indicators si are interpreted as cluster membership indicators,
then (8.3) implicitely defines p(ρn). Inference for such models is discussed, among
others, in Fraley and Raftery (2002), Richardson and Green (1997) and Green and
Richardson (2001).

Pólya Urn

Recall the predictive rule for cluster allocation under i.i.d. sampling xi | G ∼ G
from a random probability measure G with a DP prior, G ∼ DP(M,G0). Let si = j
when the i-th observation is equal to the j-th unique value, i.e., when xi = x�

j . The
Pólya urn (Chinese restaurant process) specifies

(8.4) p(sn+1 | s1, . . . , sn) =
{
nh with prob 1/(M + n)

kn + 1 with prob M/(M + n).

The prior p(ρn) implied by (7.1) is a special case of the PPM, a special case of
the SSM, as well as a special limiting case of model-based clustering. We already
mentioned the earlier two special cases. The Pólya urn arises as a limiting case
of model-based clustering when p(π1, . . . , πk) is assumed as a symmetric Dirichlet
distribution, Dir(δ, . . . , δ) and one considers the limiting case δ → 0 and k → ∞
subject to kδ → M (Green and Richardson, 2001). The nature of the DP as a
special case of many other models is one of the reasons for the undying popularity
of the model.

8.3. Covariate-Dependent Clustering

Covariate-Dependent PPM

The previously discussed clustering models are useful for inference about clusters
and subpopulations in observed data, but of little use for predictive inference. In
Example 24 we are interested in predicting overall survival time yn+1 for a future
patient i = n + 1 on the basis of data for n = 763 patients in a clinical trial. Let
y = (y1, . . . , yn). Clustering patients on the basis of the outcome would allow us to
predict survival time for a future patient in the same population of patients who
were eligible for this trial as

(8.5) p(yn+1 | y) =
∫

p(yi+1 | sn+1, ρn,y)dp(sn+1 | ρn)dp(ρn | y),

where integration with respect to sn+1 is simply averaging over the kn1 +1 possible
choices and integration with respect to ρn is averaging with respect to the posterior
distribution on possible cluster arrangements of the first n patients. This is density
estimation for the survival time of women in this population. We would report
the same inference for any future patient, independently of the patient’s baseline
characteristics. This limits the use of (8.5) for prediction in this scenario.

More relevant would be inference of overall survival for a woman with particular
baseline covariates xi. A convenient and often used implementation is to consider
an augmented outcome vector zi = (yi, xi), implement clustering on the basis of zi
and report

(8.6) p(yn+1 | xn+1,y,x)
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as the desired inference. The problem is that the covariate vector xi often involves
a mix of data formats, complicating the specification of a sampling model. Also,
some of the covariates such as treatment assignment are not random at all, making
it awkward to model a distribution for these variables.

Müller et al. (2011) propose to instead use a model p(ρn | x), together with a
sampling model p(y | ρn). Here p(ρn | x) is a regression of the random partition ρn
on the known covariates x. The idea is to specify a probability model for random
partitions that favors clusters that are homogeneous in the covariates xi. Predicting
the outcome for a future subject is then based on averaging over all clusters, with
the weights determined by the respective probability of cluster membership p(sn+1 |
xn+1, ρn,x). In words, the prediction weighs clusters of earlier patients with similar
covariates higher than others.

Formally, let x�
j = (xi, i ∈ Sj) denote covariates of experimental units in the j-th

cluster, and let g(x�) denote a non-negative function that formalizes homogeneity
of a cluster with covariates x�. For example, g(x�) could be the determinant of the
empirical precision matrix of the xi. For a categorical covariate x the similarity
function could be related to the number of distinct values in a cluster. For example,
a cluster with all women with the same prior treatment history is clinically more
meaningful than a cluster that includes a large diversity of prior treatment histories.
A simple application of the PPM provides the desired random partition model

(8.7) p(ρn | x) ∝
k∏

j=1

g(x�
j )c(Sj).

The choice of the similarity function depends on the application. As a generic
choice, Müller et al. (2011) define g(x�) on the basis of an auxiliary probability
model q(·):

g(x�
j ) ≡

∫ ∏
i∈Sj

q(xi | ξj) q(ξj)dξj .

Chosing q(xi | ξj) and q(ξj) as a conjugate pair simplifies analytic evaluation of
g(x�).

Example 24 (Survival Time Model with Clustering) Müller et al. (2011)
consider data from a high-dose chemotherapy treatment of n = 763 women with
breast cancer. The response of interest is overall survival yi. Let y = (y1, . . . , yn) de-
note the observed data. There are six patient-specific covariates xi = (xi1, . . . , xi6),
including a binary indicator for high dose chemotherapy, age in years, number of
positive lymph nodes, tumor size, indicator for estrogen or progesterone receptor
positive tumor, and an indicator for the woman’s menopausal status. indicator. Let
x�
j,� = (xi�, i ∈ Sj) denote the values for the �-th covariate in cluster j. Müller

et al. (2011) define a similarity function g(x�
j ) =

∏6
�=1 g�(x

�
j,�) using default sim-

ilarity function g� for each data format, including a beta-binomial for the binary
covariates, a normal-normal for continuous covariates and a poisson-gamma model
for the count covariate. Figure 8.1 summarizes prediction for a future patient as a
function of baseline covariates.
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Fig 8.1. Posterior predictive summarized by survival functions S(t | x) ≡ p(yn+1 ≥ t | xn+1 =
x, data). In the legend TS− and TS+ indicates tumor size equal to the first and third empirical
quantile, ER+ indicates ER-positive tumor, and HI indicates high dose.

.

Alternative Constructions

Model-based clustering (8.3) allows an easy extension to include covariates in the
implied prior on random partitions. Consider

yi | xi ∼
k∑

j=1

πj(xi; αj) fj(· | θj).

The generalization is the explicit inclusion of covariates in the weights of the com-
ponent models. As before, rewriting the mixture as a hierarchical model with latent
indicators defines the desired covariate-dependent random partition model:

p(yi | k, (θj), si = j) = fj(yi | θj), p(si = j | xi) = πj(xi; αj).(8.8)

The regression πj(xi; αj) could be, for example, a logistic regression. This is essen-
tially the hierarchical mixture of experts model (Bishop and Svensén, 2003; Jordan
and Jacobs, 1994). The model is very useful for flexible non-parametric regression,
especially when the focus is prediction. The limiations of the approach are the use
of a fixed number of component models k, which becomes an upper bound for the
number of clusters, and the restriction of covariate dependence to the particular
parametric form chosen for πj(xi; αj).
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Dahl (2008) defines another interesting probability model for covariate-based
clustering. Let s−i = (s�, � 	= i) denote the partition of all but the i-th object. He
defines the desired p(ρn | x) by modifying the complete conditional probabilities
p(si | s−i,x). The modification of complete conditionals needs care to assure the
existence of a well defined probability model.

Clustering with DDP and Related Models

We earlier introduced the dependent DP model as prior for families of random
probability measures G = {Gx, x ∈ X}. In particular, recall the definition of the
DDP, here with common locations and variable weights

(8.9) Gx =

∞∑
h=1

πhxδmh
.

Note that here the locations mh of the point masses are common across x, and only
the weights vary.

Similar to how the DP induces implicitely a prior for random partitions p(ρn), the
DDP can be used to implicitely define a prior p(ρn | x) for random partitions with
a regression on covariates. In particular, assume yi | xi = x,G ∼ Gx, independently
for experimental units i = 1, . . . , n, with known covariates xi. In addition, let
y�j , j = 1, . . . , k denote the k ≤ n unique values among the yi and define clusters
Sj = {i : yi = y�j }. The construction is almost identical to before, when we used the
DP to define a random partition. However, the probabilities for cluster membership
now depend on x, as desired. To our knowledge, this construction itself, i.e., the
clustering implied by sampling from a DDP family of random probability measures,
has not be used in the literature before. However, several proposed approaches can
be interpreted as approximations to this natural construction. Note that other
variants of dependent stick-breaking prior such as the probit stick-breaking process
(see §5.7.1) and the kernel stick-breaking process (see §5.7.2) can be used to generate
prior on dependence partitions in a similar fashion.
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