
Chapter 7

Species Sampling Models

7.1. Introduction

One of the reasons for the widespread popularity of the DP prior model is the com-
putational simplicity of posterior simulation and posterior predictive inference. This
simplicity is in part due to the almost sure discrete nature of a random probability
measure G with DP prior.

Recall from the discussion in §2.1 that the discrete nature of G naturally induces
a prior on random partitions, in the following sense. Consider a random sample,
xi | G ∼ G, i = 1, . . . , n, with G ∼ DP(M,G0). The discreteness of G implies
a positive probability of ties among the xi. We can use these ties to partition
experimental units into clusters defined by the unique values. Let x�

j , j = 1, . . . , k,
define the k ≤ n unique values among the xi and define clusters Sj = {i : xi = x�

j}.
Also, let nj = |Sj | denote the size of the j-th cluster and let nn = (n1n, . . . , nkn).
When the number n of experimental units is understood from the context we drop
the index n.

Finally, recall posterior predictive inference under i.i.d. sampling from a DP
random measure:

(7.1) p(xn+1 | x1, . . . , xn) =

{
δx�

j
(xn+1) w. prob

nj

n+α ≡ pj(n)

G0(xn+1) w. prob α
n+α ≡ pk+1(n).

In anticipation of the upcoming discussion, the posterior predictive distribution can
also be written as

(7.2) xn+1 | x1, . . . , xn ∼
k∑

j=1

pj(n)δx�
j
+ pk+1(n),

with weights pj(n). This is known as the predictive probability function (PPF). The
first important feature to see in (7.1) is what is not seen. The posterior predictive is
integrated with respect to the random probability measure G. This is important for
computation. It would be impossible to keep an infinite dimensional quantity G in
computer memory. In other words, the Pólya urn (7.1) characterizes the marginal
distribution p(x1, . . . , xn), simply by multiplying the posterior predictive p(xi+1 |
x1, . . . , xi) for i = 1, . . . , n − 1 and the marginal p(x1) = G0(x1). The second
important feature to note is that the weights pj(·) of the clusters are a function of
only the cluster size nj . Neither the actual observations xi ∈ Sj , nor the number
and sizes of other clusters enter the expression.

7.2. Predictive Probability Functions

We introduced the PPF in (7.2) as the predictive rule that is implied by i.i.d.
sampling from a probability measure with DP prior. However, also the opposite is
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true; the PPF characterizes the DP prior and is a defining property of the process.
This is not immediately obvious; to formally state this we introduce the notion of
a species sampling sequence.

An exchangeable sequence of random variables x1, x2, . . ., is called a species sam-
pling sequence (SSS) if

xn+1 | x1, . . . , xn ∼
kn∑
j=1

pj(nn)δx�
j
+ pkn+1(nn)G0,

with weights depending on the data only indirectly through the cluster sizes nj .
The family of functions {pj(nn)} is called the predictive probability function

(PPF). As the weights in the posterior predictive distribution any PPF needs to
satisfy

pj(nn) ≥ 0,

kn+1∑
j=1

pj(nn) = 1,(7.3)

for all nn. In the definition of the SSS and PPF, the restriction to exchangeable
sequences (xn)n≥1 is important. Not every family of functions {pj(n)} that satisfies
(7.3) is a PPF. In fact, most such families are not.

The expression for the weights pj(·) in the Pólya urn for the DP appear par-
ticularly simple with pj ∝ nj . It can be shown (Gnedin and Pitman, 2006; Lee
et al., 2008) that any PPF with weights that are functions of the cluster size only
must be of essentially that form. More specifically, if pj = f(nj) for some func-
tion of the cluster size, j = 1, . . . , kn and pkn+1 = θ, then f(nj) = anj for some
a > 0. Actually, for finite exchangeable sequences x1, x2, . . . , xn+1 of categorical
random variables, i.e., possible outcomes xi ∈ {1, . . . , t}, the same result is known
as Johnson’s sufficientness postulate (Zabell, 1982).

We are now ready to state how the predictive rule of a SSS characterizes a
random probability measure. An exchangeable sequence of random variables (xn)
is a SSS if and only if xi ∼ G, i.i.d., for some random distribution G that admits a
representation of the form

G =

∞∑
h=1

phδmh
+RG0,

with mh ∼ G0, i.i.d., and some sequence of positive random weights ph such that∑∞
h=1 ph ≤ 1 (Pitman, 1996, Proposition 11). The random probability measure G

is called the species sampling model (SSM) of the SSS (xn).
A SSM can be defined directly by specifying a prior for the weights ph, and

a distribution for the point masses mh. The only constraint is the positivity of
the ph and the constraint on the sum of the weights. Alternatively an SSM can
be (implicitly) defined through its PPF. The characterization is very useful for
computational purposes, but of little use to construct an SSM, because of the
difficult constraint that the implied sequence xn be exchangeable.

A third characterization of an SSM is through the implied prior on the se-
quence of random partitions. A sequence of discrete random variables (xn) defines
a partition of {1, . . . , n} into clusters Sj = {i : xi = x�

j} of tied observations.
Thus the SSM indirectly defines a sequence of priors for partitions. As before, let
nn = (n1, . . . , nkn

) denote the cluster sizes of the partition of {1, . . . , n}. Since the
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sequence xn is exchangeable it suffices to specify the probability of nn. The proba-
bility for any two partitions with the same cluster sizes nn must be the same. The
implied prior p(nn) is known as the exchangeable partition probability function
(EPPF). Let N� = ∪∞

k=1N
k and let nj+ denote n with the the j-th cluster size

incremented by 1. Formally an EPPF p(·) is a symmetric function p : N� → [0, 1]
with

(7.4) p(n) =

kn+1∑
j=1

p(nj+) for all n ∈ N�

and p(1) = 1. The condition simply formalizes coherence across sample sizes. The
probability of partitions for the first n elements of a SSS must match the appropriate
marginal of the probabilities for partitions of the first n+ 1 elements.

The converse is also true. For any function that could be interpreted as an EPPF,
i.e., that satisfies the above condition, there is a SSS that gives rise to it (Pitman,
1996, Proposition 13). Again, similar to the characterization of a SSM by PPF, the
definition through the EPPF is of little practical use. It is difficult to directly elicit
and specify a legitimate EPPF that satisfies (7.4).

Finally, there is an obvious link between the EPPF and the PPF. Every EPPF
defines a PPF through

pj(n) ≡ p(nj+)/p(n).

7.3. More SSMs

We used the DP prior to introduce the notion of the PPF. Some other examples
of SSMs are the Pitman Yor (PY) process, the normalized inverse Gaussian (NIG)
and Gibbs type priors.

Pitman-Yor Process

The PY process (Pitman, 1995; Pitman and Yor, 1997) is more easily introduced
as a stick breaking prior. A random probability measure G =

∑
h whδθh has a

PY(σ, α,G0) prior if wh =
∏

�<h(1−v�)vh for vh ∼ Be(1−σ, α+hσ), independently
with 0 ≤ σ < 1 and α > −σ, and the locations θh are a random sample from the
base measure, θh ∼ G0. See Ishwaran and James (2001) for a discussion of this
construction and a larger class of random probability measures defined by similar
stick breaking algorithms. The PPF implied by the PY process is simply

xn+1 | x1, . . . , xn ∼
kn∑
j=1

nj − σ

n+ θ
δx�

j
(xn+1) +

θ + knσ

n+ θ
G0(xn+1),

while the EPPF reduces to

p(n) =
Γ(θ + 1)

(θ + knσ)Γ(θ + n)

kn∏
j=1

{
(θ + jσ)

Γ(nj − σ)

Γ(1− σ)

}
.

Homogeneous NRMIs

Many more SSMs exist. Any homogeneous NRMI is a SSM. Recall from §1.2.6 the
construction of NRMI’s as normalized CRM, which in turn can be constructed with



86 Species Sampling Models

a Poisson process with intensity ν(x, s) on X × 
+. An NRMI is called homoge-
neous when the intensity factors as ν(x, s) = ρ(s)G0(x). While all homogeneous
NRMIs define a SSM, most do not allow a closed form expression for the weights
in the PPF. The most prominent exception is the DP. Another is the normalized
inverse Gaussian process (NIG) that was already briefly introduced in §1.2.6. The
NIG is in many ways similar to the DP prior. Recall the characterization of a
DP for G as assigning a Dirichlet prior to (G(A1), . . . , G(Ak)) for any partition
{A1, . . . , Ak} of the sample space. Similarly a NIG prior for random probability
measure G can be defined by requiring a normalized inverse Gaussian distribution
for (G(A1), . . . , G(Ak)). See §1.2.6 for a statement of the normalized inverse Gaus-
sian distribution. Like the DP the NIG allows closed form expressions for the PPF.
See, for example, Lijoi et al. (2007b) (using σ = 1/2) or Lijoi et al. (2005). The
NIG is a special case of the more general normalized generalized gamma (NGG)
process.

Gibbs Type Priors

Another large class of SSMs are Gibbs type priors (Gnedin and Pitman, 2006).
Gibbs type priors can be defined by the EPPF. Let ak = a(a+1)·. . .·(a+k−1) define
a rising factorial. A Gibbs type prior is a prior for a discrete random probability
measure with EPPF

p(n) = Vn,k

k∏
j=1

(1− σ)nj−1.

with σ < 1, V1,1 = 1 and Vn,k = Vn+1,k(n − kσ) + Vn+1,k+1. The last condition is
simply (7.4). The implied weights in the PPF are

pj(n) ∝ Vn+1,k(nj − σ), pk+1(n) ∝ Vn+1,k+1.

Lijoi et al. (2007a) discuss some results about the predictive distribution under this
model.
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