
Chapter 1

Introduction

1.1. Definition

All models are wrong, but some are useful. Many statisticians know and appreciate
G.E.P. Box’s comment on statistical modeling (Box, 1979). Often the choice of
the final inference model is a compromise of an accurate representation of the
experimental conditions, a preference for parsimony and the need for a practicable
implementation. However, these competing goals are not always honestly spelled
out, and the resulting uncertainties are not fully described.

Over the last 20 years a powerful inference approach that allows us to mitigate
some of these limitations has become increasingly popular. Bayesian nonparametric
(BNP) inference allows us to acknowledge uncertainy about an assumed model while
maintaining a practically feasible inference approach. We could take this feature
as a pragmatic characterization of BNP as flexible prior probability models that
generalize traditional models by allowing for positive prior probability for a very
wide range of alternative models, while centering the prior around a parsimonious
traditional model. A more formal definition of BNP is as probability models on
infinite dimensional parameter spaces, such as functional spaces.

Example 1 (Density estimation) Consider a simple random sample yi ∼ F
i.i.d., i = 1, . . . , n, from some unknown distribution F . Bayesian inference requires
that the model be completed with a prior for the unknown F in the sampling model.
One could proceed by restricting F to a normal location family, F = N(θ, 1). The
model F is indexed by a finite dimensional parameter vector θ and the model is com-
pleted with a prior probability model for the finite dimensional θ. We are back to
parametric Bayesian inference. Figure 1.1a shows the resulting inference conditional
on an assumed random sample y. Naturally, inference about the unknown F is re-
stricted to the assumed normal location family and does not allow for multimodality
or skewness. In contrast, a BNP model would proceed with a prior probability model
p(F ) for the unknown distribution. Figure 1.1b contrasts the parametric inference
with the flexible BNP inference under a Dirichlet process mixture prior.

In Example 1 the infinite dimensional random quantity is an unknown distribu-
tion. Alternatively, the infinite dimensional quantity might be the unknown mean
function f(·) in a regression problem, a response surface, a spectral density, or per-
haps an autoregressive mean function in a nonparametric time series model. In the
rest of these notes we will mostly focus on problems where the infinite dimensional
quantity is an unknown probability measure F (·), as in example 1. The reason for
this focus is simply tradition; most BNP models in the recent literature consider
random probability measures.
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(a) Parametric model (b) Nonparametric model

Fig 1.1. Example 1. Inference on the unknown distribution F under a parametric model and
nonparametric model. The histogram are the observed data yi ∼ F .

1.2. BNP Models for Random Probability Measures

Figure 1.2 summarizes in a stylized diagram the relationships between some of the
most popular BNP models for random probability measures (RPM). The diagram
highlights the central role of the popular Dirichlet process (DP) model, which arises
as a special case of several other BNP models. The diagram serves as a short outline
of these notes. After a brief introductory definition of the models in the rest of this
Introduction we will in the following chapters discuss some of the models in more
detail.

1.2.1. Species Sampling Models

Species sampling models (SSMs) define an RPM p(G) indirectly, by considering
a predictive rule for xn+1 | x1, . . . , xn in a random sample xi ∼ G. For a dis-
crete probability measure G, random sampling includes a positive probability for
ties among the xi. We use groups of tied sequence elements xi to define clusters.
These clusters will play a prominent role in the upcoming discussion. It is helpful
to introduce some related notation. Let kn denote the number of unique values
(“species”) among (x1, . . . , xn), let x�

j , j = 1, . . . , kn, denote the unique values,
and let nnj denote the number of xi equal to the j-th unique value x�

j . Finally,
n = {nn1, . . . , nnkn

} characterizes the cluster sizes of the partition created by the
ties. We drop the subindex n when the sample size n is understood from the context.

Definition 1 (Pitman, 1996) An exchangeable sequence of r.v.’s x1, x2, . . . is a
species sampling sequence (SSS) if x1 ∼ G0 where G0 is a non-atomic measure and

(1.1) xn+1 | x1, . . . , xn ∼
kn∑
j=1

pj(nn)δx�
j
+ pk+1(nn)G0,

where pj(nn) ≥ 0 and
∑kn+1

j=1 pj(nn) = 1.
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Fig 1.2. Popular BNP models. An arrow from model A to B indicates that B is a special case
(or variation) of A. Details of the models are discussed in the text. The graph includes species
sampling models (SSM), the Pitman-Yor process (PY), the Dirichlet process (DP), the product
partition model (PPM), Pólya trees (PT), dependent DP (DDP), normalized random measures
with independent increments (NRMI), the normalized gamma process (NGaP), the normalized
inverse Gaussian process (NIGP), neutral to the right processes (NTR), the Beta-Stacey process
(BeSt), the beta process (BP), the Bernoulli process (BeP) and the Indian buffet process (IBP).
The annotations are not exhaustive. For example, the NIGP is not the only NRMI that defines
a SSM.

The sequence of weights {pj(n)} is known as predictive probability function (PPF).
Any SSS can be characterized by the PPF {pj(n)} and G0. The opposite is not
true. The critical property is the exchangeability of the sequence. Not every family
of weights with

∑k
j=1 pj(·) = 1 and pj(·) ≥ 0 characterizes an SSS because for an

arbitrary choice of {pj(·)} the implied sequence xi might not be exchangeable.

At this moment the reader might wonder how the SSS defines a prior probability
model for an unknown probability measure. The SSS defines a random probability
measures as the de Finetti measure in the corresponding representation of the
exchangeable sequence as a hierarchical model.

Theorem 1.2.1 (Pitman, 1996) (xi) is an SSS if and only if xi ∼ G, i.i.d., for

(1.2) G(·) =
∞∑
h=1

phδx̃h
(·) +RG0,

for some sequence of positive random variables (ph) and R such that 1 − R =∑∞
i=h ph ≤ 1, (x̃h) is a random sample from G0, and {ph} and {x̃h} are mutually

independent.

In other words, a constructive definition of SSMs is possible as a discrete RPM with
point masses at i.i.d. locations x̃h and an arbitrary probability model for the weights
ph, subject only to

∑
ph ≤ 1. Unless otherwise stated we will always assume R = 0.

In contrast to the alternative definition through a PPF, any choice of G0 and (ph)
will do. Exchangeability of the sequence xi is already ensured by construction.
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The Pitman-Yor (PY) process (Ishwaran and James, 2001; Pitman, 1995; Pitman
and Yor, 1997) is a SSM with PPF

(1.3) pj(n) ∝
{
(b+ ka) j = k + 1

nnj − a j = 1, . . . , k,

for 0 ≤ a < 1 and b > 0. It is also known as the two-parameter Poisson Dirichlet
process. Exploiting the construction of a SSM as a discrete RPM we can charac-
terize the PY by a base measure G0 and the law for the weights ph in (1.2). The
distribution of the weights ph for the PY process can be described by a sequence
of independent Beta random variables

ph = vh
∏
l<h

(1− vl), vh ∼ Beta(1− a, b+ ha),(1.4)

for h = 1, 2, . . .. We write PY(a, b,G0) for a PY random probability measure with
the joint distribution of the weights indexed by (a, b) and the locations of the point
masses generated as i.i.d. sample from a base measure G0.

Ishwaran and James (2001) refer to (1.4) as a stick breaking construction. The
name arises from picturing (1.4) as repeated breaking of a stick of initial length 1.
The first weight p1 = v1 is a beta random fraction of the stick, p2 is a beta random
fraction of the remaining stick of length (1−p1), etc. Sethurman (1994) introduced
the construction for the special case of a = 0, which defines a Dirichlet process (DP),
DP(b,G0). Here we encounter for the first time the DP model. The characterization
of the DP as a SSM is one of its many alternative defining properties. One of the
reasons for the wide use of the DP prior is the simple form of the implied PPF
(1.1). Assume xi ∼ G, i.i.d. and G ∼ DP(M,G0). Then

(1.5) xn+1 | x1, . . . , xn ∼
{
δx�

j
with prob ∝ nnj

G0 with prob ∝ M,

i.e., (1.3) with a = 0 and b = M .
The simple form of (1.5) greatly simplifies posterior simulations when the BNP

model is used for statistical inference. Indeed, exchangeability of the xi implies that
the same rule applies for the complete conditional probability p(xi | x�, � �= i). We
will come back to the DP several times in the following review before we discuss it
in more detail in Chapter 3.

Gnedin and Pitman (2006) and Lijoi et al. (2007b) define another special case
of SSMs. They consider Gibbs type priors that are characterized by a PPF

pj(n) ∝
{
Vn+1,k

nnj−σ
n j = 1, . . . , k

Vn+1,k+1 j = k + 1,

with {Vn,k, k ≤ n} a sequence of coefficients with V1,1 = 1 and subject to Vn,k =
Vn+1,k+1 + (n − kσ)Vn+1,k, and 0 ≤ σ < 1. The model defines a variation of PY
priors. Conditional on kn+1 = kn the conditional PPF remains the same as under
a PY prior. Only the probability of a new species, i.e., p(kn+1 = kn + 1 | nn),
changes.

1.2.2. Stick Breaking Prior

One of the characteristics of the SSM construction is the unlimited flexibility in
defining the joint distribution of the weights ph. Ishwaran and James (2001) exploit
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this flexibility to propose stick breaking priors for RPMs by generalizing the beta
distribution of the fractions vh in the construction of the PY process.

They propose two generalizations. First, they allow the number of non-zero
weights to be finite,

G(·) =
H∑

h=1

phδx̃h
(·)

for H ≤ ∞. Second, the beta prior for the fractions vh is replaced by vh ∼
Beta(ah, bh), independently, h = 1, . . . , H − 1. For H < ∞ we add vH = 1.0 to en-
sure

∑
ph = 1.0. The locations of the point masses remain unchanged as x̃h ∼ G0,

i.i.d.

Naturally the DP remains a special case, with ah = 0, bh = b and H = ∞.
Ishwaran and James (2001) propose the model ah = 0, bh = b and H < ∞ as a
natural simplification of the DP prior. We refer to it as the finite DP, DPH(b,G0).
An alternative version of the truncated DP prior is the ε-DP of Muliere and Tardella
(1998), see §3.4.

1.2.3. Product Partition Models

While not strictly a prior for a random probability measure, we include the product
partition model (PPM) in this review because of the close connection with popu-
lar BNP models for random probability measures. We have already seen how the
random clustering that is defined by the ties in an i.i.d. sample from a discrete dis-
tribution G can be useful to characterize a discrete random probability measures
G ∼ p(G). In many applications of BNP models the investigators are not primar-
ily interested in the random probability measure G itself, but rather focus on the
induced clustering. It is therefore useful to consider probability models for random
cluster arrangements.

We need a minimum of notation. Let S = {1, 2, . . . , n} index a set of ex-
perimental units. A partition or cluster arrangement of S is a family of subsets
ρn = {S1, . . . , Sk} with

⋃
Sj = S and Sj1 ∩Sj2 = ∅ for j1 �= j2. When ρn is treated

as a random quantity we have a random partition p(ρn). For example, any discrete
probability model G implies a random partition p(ρn) by grouping random samples
xi ∼ G, i = 1, . . . , n, by unique values, as Sj = {i : xi = x�

j}. Here x�
j denotes

the j-th unique value. The x�
j are indexed by order of appearance. The random

partition p(ρn) is determined by the probability masses in G. The same remains
true when G is an unknown discrete random probability measure with prior p(G),
but this is not the only interesting class of random partition models p(ρn).

Hartigan (1990) introduces the product partition models (PPM). A random par-
tition p(ρn) is called a product partition model if it can be written as a product

p(ρn) =

k∏
j=1

c(Sj)

of factors that depend on Sj only, j = 1, . . . , k. Let yi denote an outcome for the
i-th experimental unit, let y�j = {yi; i ∈ Sj} denote the outcomes arranged by
clusters and let y = (y1, . . . , yn) denote the entire data. The PPM combines the
prior p(ρn) with a sampling model p(y | ρn) that factors similarly and assumes
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exchangeability within each cluster

p(y | ρn) =
k∏

j=1

p(y�j )

for an exchangeable model p(y�j ).
Again we run into the DP model as a special case. The random partition induced

by the ties in a random sample xi ∼ G with DP prior G ∼ DP(M,G0) forms a
PPM with

p(ρn) ∝
kn∏
j=1

M Γ(nnj).

Recall that nnj = |Sj | is the size of the j-th cluster.

1.2.4. Pólya Trees

Essentially, the Pólya tree (PT) model defines a RPM G as a random histogram.
The bins are created by nested partitions of the desired sample spaceB. The random
probabilities for each bin are products of (independent) conditional probabilities of
each layer of the nested partition sequence.

Figure 1.3 illustrates the construction. The bins Bε are indexed by binary se-
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Fig 1.3. PT prior for an RPM G. At level m of the nested partition sequence the sample space B
is partitioned into {Bε} indexed by binary sequences ε = ε1 · · · εm and defined by repeated splits
into Bε = Bε0 ∪Bε1.

quences ε = e1 · · · em with ej ∈ {0, 1}. The bins are created by nested partitions
of the desired sample space B into B = B0 ∪ B1, B0 = B00 ∪ B01, etc. The ran-
dom probabilities G(Bε) are defined by the (independent) conditional probabilities
G(Be1···ej0 | Be1···ej ). Let ε = e1 · · · ej−1 and let Yε0 = G(Bε0j | Bε). The PT
prior characterizes p(G) as a prior probability model for all Yε0. It defines p(G) by
assuming

Yε0 ∼ Beta(αε0, αε1)

independently across ε and Yε1 = 1 − Yε0. In short, the definition of an RPM is
reduced to independent beta priors for the conditional probabilities in the nested



BNP Models for Random Probability Measures 7

partition sequence. The PT is indexed by the partition sequence B = {Bε} and the
set of beta parameters, A = {αε}. We write G ∼ PT(A,B).

Again the DP arises as a special case when αε = αε0+αε1. For example, αε1···εm =
c2−m implies a DP(c,G0) with G0 defined as the distribution with dyadic quantiles
given by Bε. Thus G0(B0) = 0.5, G0(B01 = 0.25), etc.

1.2.5. DDP

Many applications call for more than one random probability measure G. For
example, the generic regression problem of predicting an outcome y conditional
on a covariate x could be described as inference for the conditional distributions
Gx(·) = p(yi | xi = x) for x ∈ X. When p(yi | xi = x) is indexed by finitely many
parameters we are back to parametric, possibly non-linear regression. However,
when the investigator is unwilling or unable to restrict p(yi | xi) to a parametric
family, then the problem becomes one of inference for a family of random proba-
bility measures G = {Gx, x ∈ X}, indexed by the covariates x. We thus need a
BNP prior p(Gx; x ∈ X) for the entire family. In the application to nonparametric
regression as well as many other applications it is natural to require that Gx be
dependent across x. Surely we would not expect Gx to change substantially for
minor changes of x.

MacEachern (1999) introduced the class of dependent DP (DDP) priors to con-
struct such prior models p(G). In particular, the marginal distribution p(Gx) re-
mains a DP prior, Gx ∼ DP(c,G0x). But the model allows for the desired depen-
dence. Recall that the DP prior is a special case of a SSM. A DP random measure
can therefore be written as an infinite discrete probabilty measure with independent
locations for the point masses

(1.6) Gx(·) =
∑
h

phδx̃hx
(·).

We will discuss the DDP prior in more detail in Chapter 5. One important feature is
the independence of the point mass locations x̃hx across h. The DDP construction
leaves the independence across h untouched, but adds dependence for x̃hx across x
to induce the desired dependence of Gx across x. The notation in (1.6) implies the
use of common weights ph across all Gx. This variation of DDP models is known as
the common weight DDP. In general, the weights could have an additional x index,
defining Gx(·) =

∑
phxδx̃hx

(·).

1.2.6. Completely Random Measures

A rich variety of BNP models are based on completely random measures (CRM)
(Kingman, 1993). A random measure μ is a CRM when μ(B1) and μ(B2) are
independent for any two non-overlapping measurable sets B1, B2 of some space X.
The independence property implies in particular that μ can not be a probability
measure, lest the restriction to total mass 1.0 induces dependence between μ(B1)
and μ(B2).

As a consequence of the desired independence a CRM must always be discrete,
i.e., it can be written as a sum of point masses. An alternative construction of
CRMs that will turn out to be useful in the upcoming discussion is based on a
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Poisson process. Let N(·) denote a Poisson process on X ×R+ with intensity ν(·).
Then

μ(A) ≡
∫
A

∫
R+

sN(dx, ds)

for measurable A ⊂ X. In words, each point (x, s) of the Poisson process in X×R+

defines a locations x and weight s for a point mass of μ. The intensity ν(·) is known
as Levy intensity, which also features in the Levy-Khintchine representation for
μ. For X = R, μx ≡ μ((−∞, x]) is also known as increasing additive process or
independent increments process.

CRMs are useful tools to define BNP priors for random probability measures.
The simplest construction is to normalize a CMR to define

G ≡ μ/μ(X).

Regazzini et al. (2003) introduce such random probability measures as normalized
random measures with independent increments (NRMI).

Here we run again into the DP prior. The original discussion of the DP in Fergu-
son (1973) discusses as an alternative defining property of the DP the construction
as an NRMI, using a normalized version of a gamma process. The definition of
the DP as a normalized gamma process immediately implies another useful char-
acterization. Let w ∼ Dir(a1, . . . , ak) denote a Dirichlet distribution for a random
vector of weights w. Recall that a Dirichlet random vector can be generated by
normalized gamma random variables, as wi = xi/(

∑
j xj) for xi ∼ Gamma(αi, θ),

i.i.d. Let {A1, . . . , Ak} denote a partition of the sample space. The nature of the
DP as a normalized gamma process implies (G(A1), . . . , G(Ak)) ∼ Dir(a1, . . . , ak)
with aj = αG0(Aj).

There is at least one other NRMI model that allows a similarly simple characteri-
zation. Lijoi et al. (2005) introduce the normalized inverse Gaussian process (NIGP)
as an NRMI. Alternatively, the NIGP can be defined by the following property. For
any partition (A1, . . . , Ak) of the sample space,

(G(A1), . . . , G(Ak)) ∼ NIG(MG0(A1), . . . ,MG0(Ak)),

where NIG(a1, . . . , ak) denotes a normalized inverse Gaussian distribution. The NIG
distribution is a parametric probability model for a (finite) vector of weights that
add up to 1. The definition starts with the inverse Gaussian distribution, IG(α, γ)
with p.d.f.

p(x) ∝ x−3/2e
− 1

2

(
α2

x +γ2x
)
+γα

,

where x ≥ 0 and α > 0. Now, let xj ∼ IG(aj , 1), j = 1, . . . , k, denote k independent
inverse Gaussian random variables. The NIG is the distribution of the normalized
values wj = xj/

∑
x�. We say w ≡ (w1, . . . , wk) ∼ NIG(a1, . . . , ak). Despite the

name, the inverse Gaussian has no obvious relation with the normal distribution.

1.2.7. NTR Priors

Normalization is not the only mechanism to construct nonparametric Bayes models
from CRMs. Another popular class of models based on CRMs are neutral to the
right (NTR) priors. NTR priors are nonparametric priors for random distributions
on the real line. Typical applications are to modeling event time distributions in
survival analysis.
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The defining property of NTR models are independent normalized increments.
An RPM G is NTR if the normalized increments

G( (ti−1, ti] )/G( (ti−1,∞) ),

i = 1, . . . ,M , are independent for any t0 < t1 . . . < tM . Docksum (1974, Theorem
3.1) shows that G is NTR if and only if its distribution function can be written as
1−exp(−μ(∞, t]) for some CRM μ on the real line with limt→∞ μ(0, t] = ∞ almost
surely. The DP is again a special case; Doksum (1974) shows that the DP is NTR
and gives the specific CRM μ that defines the DP as NTR prior.

1.2.8. Indian Buffet Process

The Indian buffet process (IBP) defines a random binary matrix Z, not (naturally)
a random probability measure. The name is explained by the analogy to a large
buffet in an Indian restaurant. Customers arrive at the buffet to select dishes. Let
Zik ∈ {0, 1} denote an indicator for the i-th customer selecting the k-th dish. The
first customer selects a number k1 of dishes. We index the dishes in the sequence
of first selection. Thus the first customer, i = 1, selects dishes k = 1, . . . , k1. This
defines Zik = 1, i = 1 and k = 1, . . . , k1. Let Ki =

∑
j≤i kj denote the number

of distinct dishes selected by the first i customers. The next, (i + 1)-st customer
selects or does not select some of the previously selected dishes, defining Zi+1,k ∈
{0, 1}, k = 1, . . . ,Ki. In addition to dishes selected by previous customers the next
customer selects a number ki+1 of new dishes k = Ki + 1, . . . ,Ki + ki+1, defining
Zi+1,k = 1. We set Zj,k = 0 for earlier customers, j ≤ i.

Let Zi = [Zjk; j = 1, . . . , i, k = 1, . . . ,Ki] denote the selections of the first i
customers. The random matrix is defined by specifying the probability p(Zi+1,k =
1 | Zi) of the next customer choosing already earlier selected dishes and the distri-
bution of the number of new dishes, p(ki+1). Let m−(i+1),k denote the number of
customers before (i+ 1) selecting dish k. We assume

p(Zi+1,k = 1 | Zi) =
m−(i+1),k

i+ 1

and ki+1 ∼ Poi{α/(i+ 1)}. For n customers the process defines the random binary
(n×Kn) matrix Zn, with a random number of columns Kn, Kn ∼ Poi (α

∑n
i=1 1/i).

In an alternative construction Thibaux and Jordan (2007) show that the IBP can
be constructed by a Beta process and a Bernoulli process.

The IBP is useful as a prior model for (possibly overlapping) random subsets.
Interpret Zik as an indicator for experimental unit i being in the k−subset. Then
Sk = {i : Zik = 1} denotes the k-th subset. We see the parallel to the random
partition that is defined by, for example, the PPM. While the PPM defines a prior
for a random partition p(Sk; k = 1, . . . ,K) with Sk1

∩ Sk2
= ∅ and ∪kSk =

{1, . . . , n}, the IBP defines a prior p(Sk; k = 1, . . . ,K) for a family of subsets
with possibly overlapping subsets, and with ∪kSk ⊆ {1, . . . , n}. In an application
the experimental units and subsets could be, for example, proteins and different
molecular pathways. A protein i could be part of multiple pathways, i.e., i ∈ Sk1

∩
Sk2

, and some proteins might not be in any pathway of interest, i.e., ∪kSk �=
{1, . . . , n}.
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1.3. BNP Models for Random Functions

The models that were introduced in §1.2 are priors p(G) for RPMs. Recall the
earlier definition of BNP as probability models on infinite dimensionsal spaces.
Besides random distributions, another large number of BNP models defines priors
p(f) for random functions f . The main motivating applications is to priors for
non-linear regression mean functions f(·).

1.3.1. Gaussian Process

We first discuss Gaussian processes as nonparametric priors p(f) for a function
f(·) on X. Consider any finite collections of n ≥ 1 points x1, . . . , xn ∈ X , and let
f = (f(x1), . . . , f(xn)). A stochastic process {f(x) : x ∈ X ⊂ R

d} is said to follow
a Gaussian process with mean function g(x) and symmetric covariance function
γ(x, x′), denoted f ∼ GP{g(x), γ(x, x′)}, if⎛⎜⎜⎜⎝

f(x1)
f(x2)

...
f(xn)

⎞⎟⎟⎟⎠ ∼ N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
g(x1)
g(x2)

...
g(xn)

⎞⎟⎟⎟⎠ ,

⎡⎢⎢⎢⎣
γ(x1, x1) γ(x1, x2) · · · γ(x1, xn)
γ(x2, x1) γ(x2, x2) · · · γ(x2, xn)

...
...

. . .
...

γ(xn, x1) γ(xn, x2) · · · γ(xn, xn)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠(1.7)

or, more succinctly, f ∼ N(g,Γ). In our notation we distinguish the random func-
tion f(·) versus the finite-dimensional vector f . The collection of finite-dimensional
distributions described above defines a proper stochastic process since it satisfies
Kolmogorov’s consistency conditions. Indeed, for any collection of measurable sets
A1, . . . , An the joint distribution ν(x1,...,xn) for (f(x1), . . . , f(xn)) satisfies

ν(x1,...,xn)(A1, . . . , An) = ν(xπ1 ,...,xπn )(Aπ1
, . . . , Aπn

)

for any permutation π1, . . . , πn of the integers {1, . . . , n} and

ν(x1,...,xn−1,xn)(A1, . . . , An−1,R) = ν(x1,...,xn−1)(A1, . . . , An−1).

Example 2 (Realizations from a Gaussian process) Consider a Gaussian
process on X = [0, 10] with mean function g(x) = sin(x) − cos(x/4) + 0.15x and
covariance function γ(x, x′) = σ2 exp {−|x− x′|/λ}. For any collection of points,
x1, . . . , xn ∈ X , we can obtain a realization from the stochastic process on these
locations by sampling from the multivariate normal distribution (1.7). Figure 1.4
shows realizations from the process on a fine regular grid on X , for different values
of σ and λ. The simulations illustrate the effect of these two parameters on the re-
alizations of the process; the range parameter λ controls the local variability, while
σ controls the global variability in the realizations.

In addition to controlling how close the realizations from the process are to the
mean function, the covariance function also controls other important properties
such as smoothness. For example, the exponential covariance function that we used
in example 2 implies that realizations are almost surely not differentiable anywhere,
hence the jagged look of the curves. A more detailed discussion of these issues can
be found, for example, in Banerjee and Gelfand (2002).

One of the appealing features of the Gaussian process is its tractability. Given
the values fo = (f(x1), f(x2), . . . , f(xn))

′, predictions for the value of the function
at new levels of the covariates

fp = (f(xn+1), . . . , f(xn+m))′
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(a) σ = 4, λ = 0.3 (b) σ = 4,λ = 1
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(c) σ = 100, λ = 0.3 (d) σ = 100, λ = 1

Fig 1.4. Realizations from a Gaussian process with mean function g(x) = sin(x)−cos(x/4)+0.15x
and exponential covariance function γ(x, x′) = σ2 exp {−|x− x′|/λ} over a regular grid of 500
points on the interval [0, 10]. Each panel corresponds to a different combination of the parameters
σ and λ. Within each panel, the solid line shows the mean function g and the dotted lines show
five different realizations generated under the corresponding values of λ and σ.

can be obtained by noting that the joint distribution for f = (f ′
o,f

′
p)

′

(
fo

fp

)
∼ N

((
go

gp

)
,

[
Γoo Γop

Γpo Γpp

])
,

where go and gp denote the marginal means of fo and fp, Γoo, Γpp denote their

marginal variance matrices, and Γop = Γ′
po denotes the cross-covariance matrix.

From this, standard results for the normal distribution yield

fp | fo ∼ N
{
gp + ΓpoΓ

−1
oo (fo − go),Γpp − ΓpoΓ

−1
oo Γop

}
.

In this way, the predictive distribution p(fp | f0) is obtained by marginalizing with
respect to the random function f(·). In other words, inference can proceed without
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the need to record the infinite dimensional f(·). This is critical for practical im-
plementation, computation and extrapolation. The predictive distribution implies
that the optimal predictor for fp under squared-error loss is simply

(1.8) f̂p = gp + ΓpoΓ
−1
oo (fo − go)

If fo is observed, then equation (1.8) can be used to estimate fp for any value of the

covariate x. In that case, f̂(xi) = f(xi) for the covariate values x1, . . . , xn where the
function was observed and (1.8) acts as an interpolator at xn+1, . . . , xn+m. However,
in practice we often observe fo only indirectly through some noisy observations
yo = (y1, . . . , yn) with E(yi) = f(xi). If we assume normal residuals we get a
hierarchical model

yo | fo ∼ N(fo, τ
2I), f ∼ N(go,Γoo),(1.9)

which implies yo ∼ N(go,Γoo + τ2I). Then, a posteriori,

fo | yo ∼ N

{(
Γ−1
oo +

1

τ2
I

)−1 (
Γ−1
oo go +

1

τ2
yo

)
,

(
Γ−1
oo +

1

τ2
I

)−1
}
,

and the optimal predictor under squared error loss for fp is given by

(1.10) f̂p = gp + ΓpoΓ
−1
oo

{(
Γ−1
oo +

1

τ2
I

)−1 (
Γ−1
oo go +

1

τ2
yo

)
− go

}
.

In this case, the predictor acts as a smoother rather than an interpolator, with the
value of τ2 controlling the level of smoothing. In particular, note that if τ2 → 0
then (1.10) converges to (1.8).

An excellent reference on Gaussian process models for regression is Rasmussen
and Williams (2006). For applications of Gaussian processes in spatial statistics,
see Cressie (1993) and Banerjee et al. (2004).

1.3.2. Models Based on Basis Representations

An alternative strategy to create rich models for random functions is to consider
representations of the unknown function f in terms of a basis system. This ap-
proach reduces the problem of modeling a random function to that of modeling the
coefficients associated with the bases.

In the sequel, let f ∈ F , where F represents an appropriate function space, and
let (φl(x)) be a system of basis functions spanning F , implying

(1.11) f(x) =

∞∑
�=1

β�φ�(x).

Nonparametric Bayesian inference on f can now be carried out by introducing a
prior distribution for coefficients β. For any x ∈ X , the optimal estimator under
squared error loss is

f̂(x) =

∞∑
�=1

E (βi | y)φ�(x).

A popular example of this approach is wavelet regression. See, for example,
Müller and Vidakovic (1999) and Vidakovic (1998).
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Let F = L2(R) denote the space of square-integrable functions on R. A basis
for F is obtained by translations and dyadic dilations of a mother wavelet ψ(x) ∈
L2(R), so that

ψj�(x) = 2j/2ψ(2jx− �), � ∈ Z, j = 0, . . . , 2j − 1,

and (ψj�) forms an orthonormal basis for L2. The fact that shifted and scaled
versions of ψ(·) form an orthonormal basis is a defining characteristic of a wavelet
function. Transformation and dilation of an arbitrary function would not necessarily
define an orthonormal basis. Hence, any function f ∈ L2 can be written as

(1.12) f(x) =
∑
j

∑
�

βj�2
j/2ψ(2jx− �).

The representation of a function with respect to a wavelet basis can be thought of
as a localized version of a Fourier transform. The localization is provided by the
index �, while the index j is the level of detail explained by the basis function,
with larger values of j corresponding to basis functions explaining higher frequency
properties of the function.

Since in practice just a finite number of the coefficients (βj�) can be estimated
from a finite sample of size n, the estimation problem is often regularized by as-
suming that coefficients at the higher levels of details are zero, say for j ≥ �log2 n�.
In addition, variable selection priors (such as zero inflated Gaussians or double ex-
ponential priors) can be used to further reduce the number of coefficients to be
estimated.

An important practical feature of the wavelet bases is the existence of a super-
fast algorithm to carry out the transformation from f to β and the reconstruction
from β to f when f is evaluated over a regular grid. The algorithm is known as the
pyramid scheme and allows easy implementation of nonparametric regression if the
data are observed on a regular grid. In the absence of a regular grid computation
becomes challenging and the practical advantage of wavelet bases fades. An excellent
introduction to wavelet appears in Vidakovic (1999).

Example 3 (Wavelet prior for a periodic function.) Figure 1.5 shows prior
simulations for a random function f ∼ p(f) with p(f) defined as a prior on wavelet
coefficients. The function is defined on [0, 1] and is constrained to f(0) = f(1). The
prior is a multivariate normal dependent prior on the wavelet coefficients βj� in
(1.12). We start with a regular grid {�/n; � = 0, . . . , n = 2J} on [0, 1], and define a
multivariate normal prior on d� = f(�/n)−f [(�−1)/n], � = 1, . . . , n. Working with
the differences makes it easy to impose the constraint f(0) = f(1). A multivariate
normal on d = (d1, . . . , dn) is defined with mean 0 and Cor(dk, d�) = exp(−ρ|k−�|).
By the pyramid scheme this implies a multivariate normal prior on all βj�. See
Berger et al. (2012) for details. Modeling in the wavelet domain allows us to later
add prior information about the spikiness of the function, formalized by selecting
wavelet coefficients βj� with prior probability p(βj� = 0) = 1− αj (see §2.2.2).

Models based on basis representations are particularly attractive because model
fitting can often be carried out using tools for linear regression. This requires that
the basis system is fixed in advance, and that the number of basis functions that are
used in the representation is finite. As we discussed above for the case of wavelet
bases, this last requirement is often satisfied by truncating the basis system and
introducing regularization priors on the remaining coefficients.



14 Introduction

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

−1
00

0
10

0
20

0

X

F

RHO=0.1

0.0 0.2 0.4 0.6 0.8 1.0

−2
00

−1
00

0
10

0
20

0

X

F

RHO=0.9

(a) ρ = 0.1 (b) ρ = 0.9

Fig 1.5. Prior simulation of random curves f ∼ p(f) using a dependent prior on the wavelet
coefficients in (1.12), subject to f(0) = f(1), with high (panel a) and low (panel b) prior correla-
tion.

1.3.3. Basis Representation and Gaussian Process Priors

There is a close connection between models based on basis representations and those
based on Gaussian process priors. The Kaurhunen-Loève representation theorem
(Karhunen, 1947; Lòeve, 1978) states that if f follows a Gaussian process prior with
mean g(x) = 0 and covariance function γ(x, x′), then it admits a representation of
the form (1.11), where each β� is independently distributed as a normal random
variable and the functions {φ�(x)} are the eigenfunction of the covariance function
γ(x, x′), i.e., they satisfy the integral equations

λkφ
∗
k(x) =

∫
γ(x, x′)φ∗

k(x
′)dx′,

∫
φ∗
k(x)φ

∗
� (x)dx =

{
1 k = �

0 k �= �.
(1.13)

Similar results can be obtained for Gaussian processes with more general mean
function g(x) by expanding g(x) in terms of the orthonormal basis functions (φk).
Hence, when we fit a Gaussian process model to data we are implicitly estimat-
ing a model that uses an infinite-dimensional basis representation where the basis
functions satisfy the constrains in (1.13) and where each β� is given an independent
Gaussian prior.
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