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Multivariate data analysis:

The French way

Susan Holmes1,∗

Stanford University

Abstract: This paper presents exploratory techniques for multivariate data,
many of them well known to French statisticians and ecologists, but few well
understood in North American culture. We present the general framework
of duality diagrams which encompasses discriminant analysis, correspondence
analysis and principal components, and we show how this framework can be
generalized to the regression of graphs on covariates.

1. Motivation

David Freedman is well known for his interest in multivariate projections [5] and
his skepticism with regards to model-based multivariate inference, in particular in
cases where the number of variables and observations are of the same order (see
Freedman and Peters [12, 13]).

Brought up in a completely foreign culture, I would like to share an alien ap-
proach to some modern multivariate statistics that is not well known in North
American statistical culture. I have written the paper ‘the French way’ with theo-
rems and abstract formulation in the beginning and examples in the latter sections;
Americans are welcome to skip ahead to the motivating examples.

Some French statisticians, fed Bourbakist mathematics and category theory in
the 60’s and 70’s as all mathematicians were in France at the time, suffered from
abstraction envy. Having completely rejected the probabilistic enterprise as use-
less for practical reasons, they composed their own abstract framework for talking
about data in a geometrical context. I will explain the framework known as the
duality diagram developed by Cazes, Cailliez, Pagès, Escoufier and their follow-
ers. I will try to show how aspects of the general framework are still useful today
and how much every idea from Benzecri’s correspondence analysis to Escoufier’s
conjoint analysis has been rediscovered many times. Section 2.1 sets out the ab-
stract picture. Sections 2.2-2.6 treat extensions of classical multivariate techniques:
principal components analysis, instrumental variables, canonical correlation analy-
sis, discriminant analysis, correspondence analysis from this unified view. Section
3 shows how the methods apply to the analysis of network data.
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2. The duality diagram

Established by the French school of “Analyse des Données” in the early 1970’s,
this approach was only published in a few texts [1] and technical reports [9], none
of which were translated into English. My Ph.D. advisor, Yves Escoufier [8, 10]
publicized the method to biologists and ecologists, presenting a formulation based
on his RV-coefficient that I will develop below. The first software implementation of
duality based methods described here were done in LEAS (1984), a Pascal program
written for Apple II computers. The most recent implementation is the R package
ade-4 (see Appendix A for a review of various implementations of the methods
described here).

2.1. Notation

The data are p variables measured on n observations. They are recorded in a matrix
X with n rows (the observations) and p columns (the variables). Dn is an n × n
matrix of weights on the “observations”, which is most often diagonal. We will also
use a ”neighborhood” relation (thought of as a metric on the observations) defined
by taking a symmetric definite positive matrix Q. For example, to standardize the
variables Q can be chosen as

Q =

⎛
⎜⎜⎜⎝

1
σ2
1

0 0 0 ...

0 1
σ2
2

0 0 ...

0 0 1
σ2
3

0 ...

... ... ... 0 1
σ2

p

⎞
⎟⎟⎟⎠ .

These three matrices form the essential “triple” (X, Q, D) defining a multivariate
data analysis. As the approach here is geometrical, it is important to see that Q
and D define geometries or inner products in R

p and R
n, respectively, through

xtQy =< x, y >Q, x, y ∈ R
p,

vtDw =< v, w >D, x, y ∈ R
n.

From these definitions we see there is a close relation between this approach and
kernel based methods, for more details see [24]. Q can be seen as a linear function
from R

p to R
p∗ = L(Rp), the space of scalar linear functions on R

p. D can be seen
as a linear function from Rn to R

n∗ = L(Rn). Escoufier[8] proposed to associate to
a data set an operator from the space of observations R

p into the dual of the space
of variables R

n∗. This is summarized in the following diagram [1] which is made
commutative by defining V and W as XtDX and XQXt respectively, (commutative
just says that V Q = XtDXQ and WD = XQXtD).

We call V Q the characterizing operator of the diagram.

R
p∗ −−→

X
R

n

Q

�⏐⏐⏐
⏐⏐⏐
V D

⏐⏐⏐

�⏐⏐⏐W

R
p ←−−

Xt
R

n∗
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This is known as the duality diagram because knowledge of the eigendecompo-
sition of XtDXQ = V Q leads to that of the dual operator XQXtD. The main
consequence is an easy transition between principal components and principal axes
as we will see in the next section. The terms duality diagram or triple are often
used interchangeably.

Remarks.

1. The duality diagram is equivalent to a triple of three matrices (X, Q, D) such
that X is n×p and Q and D are symmetric matrices of the right size (Q is p×p
and D is n×n). The operators defined as XQXtD = WD and XtDXQ = V Q
are called the characteristic operators of the diagram [8]. We say an operator
O is B-symmetric if < x, Oy >B=< Ox, y >B , or equivalently BO = OtB.
In particular, V Q is Q-symmetric and WD is D-symmetric.

2. V = XtDX will be the variance-covariance matrix if X is centered with
regards to D (X ′D1n = 0) and D is the diagonal matrix with all elements
equal to 1

n .
3. There is an important symmetry between the rows and columns of X in the

diagram, and one can imagine situations where the role of observation or
variable is not uniquely defined. For instance in microarray studies the genes
can be considered either as variables or observations. This makes sense in
many contemporary situations which evade the more classical notion of n
observations seen as a random sample of a population. It is certainly not the
case that the 30,000 probes are a sample of genes since these probes try to be
an exhaustive set.

2.1.1. Properties of the diagram

Here are some of the properties that prove useful in various settings:

• Rank of the diagram: X, Xt, V Q and WD all have the same rank r, which
will usually be smaller than both n and p.

• For Q and D symmetric matrices, V Q and WD are diagonalisable and have
the same eigenvalues. We denote them in decreasing order

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λr ≥ 0 = · · · = 0.

• Eigendecomposition of the diagram: V Q is Q symmetric, thus we can find Z
such that

(2.1) V QZ = ZΛ, ZtQZ = Ip,

where

Λ = diag(λ1, λ2, . . . , λr, 0, . . . , 0) and Ip is the identity matrix in R
p.

This generalized eigendecomposition of V Q is often called the (generalized)
PCA of the triple (X, Q, D).
In practical computations, we start by finding the Cholesky decompositions
of Q and D, which exist as long as these matrices are symmetric and positive
definite; call these HtH = Q and KtK = D. Here H and K are upper
triangular. Then we can use the singular value decomposition of KXHt:

KXHt = UST t, with T tT = Ip, U
tU = In, S diagonal,
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to give us

X = K−1UST t(Ht)−1 = K−1UST t(H−1)t and Xt = H−1TSU t(Kt)−1.

Thus
HXtDXHt = TS2T t = TΛT t with Λ = S2

and finally we can see that Z = H−1T satisfies (2.1).
The renormalized columns of Z, A = SZ are called the principal axes and
satisfy:

AtQA = Λ.

Similarly, we can define L = K−1U that satisfies

(2.2) WDL = LΛ, LtDL = In, where Λ = diag(λ1, λ2, . . . , λr, 0, . . . , 0).

C = LS is usually called the matrix of principal components. It is normed so
that

CtDC = Λ.

When we impose that C or Z be of reduced rank q < min(n, p), we take just
their first q columns, and have thus achieved what is known as the generalized
PCA of rank q.

• Transition Formulæ: Of the four matrices Z, A, L and C we only have to
compute one, all others are obtained by the transition formulæ provided by
the duality property of the diagram:

XQZ = LS = C, XtDL = ZS = A.

• The Trace(V Q) = Trace(WD) is often called the inertia of the diagram (in-
ertia in the sense of Huyghens’ inertia formula for instance). The inertia with
regards to a point A of a cloud of pi-weighted points being

∑n
i=1 pid

2(xi, a).
When we look at ordinary PCA with Q = Ip, D = 1

n In, and the variables
are centered, the inertia is the sum of the variances of all the variables. If
the variables are standardized (Q is the diagonal matrix of inverse variances),
then the inertia is the number of variables p.

2.2. Comparing two diagrams: the RV coefficient

Many problems can be rephrased in terms of comparison of two “duality diagrams”
or put more simply, two characterizing operators, built from two “triples”, usually
with one of the triples being a response or having constraints imposed on it. We
usually try to make one triple match the other in some optimal way.

To compare two symmetric operators, there is either a vector covariance
covV (O1, O2) = Tr(Ot

1O2) or a vector correlation [8]

RV (O1, O2) =
Tr(Ot

1O2)√
Tr(Ot

1O1)tr(Ot
2O2)

.

If we were in the special case of comparing two variables X and Y then the
computation of the RV coefficient comparing the two triples

(
Xn×1, 1, 1

nIn

)
and(

Yn×1, 1, 1
nIn

)
would give the square of the correlation between the variables RV =

ρ2. Thus we see that in general the RV coefficient is an extension of the notion of
correlation to the multivariate context.
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Generalized PCA of rank q of a D centered matrix X as defined above can be
seen as providing best approximation F in the RV-sense. To be more precise, we
are looking for the matrix F of rank q which once inserted in a triple with the same
weights on the observations D and no weighting of the variables will maximizes the
RV coefficient between characterizing operators. Thus F is the choice of matrix of
rank q < p that maximizes

RV
(
XQXtD, FF tD

)
=

Tr (XQXtDFF tD)√
Tr (XQXtD)2 Tr (FF tD)2

.

This maximum is attained where F is chosen as the matrix combining the first
q eigenvectors of XQXtD normed so that F tDF = Λq, the diagonal matrix where
only the first q eigenvalues are non zero. The maximum RV is

RV max =

√∑q
i=1 λ2

i∑p
i=1 λ2

i

.

Of course, classical PCA has D = 1
n I, Q = I, but the extra flexibility is often

useful. We define the distance between triplets (X, Q, D) and (Z, P, D) where Z is
also n × p, as the distance deduced from the RV inner product between operators
XQXtD and ZPZtD. In fact, the reason the French like this scheme so much is
that most multivariate linear methods can be reframed in these terms. We will give
a few examples such as Principal Component Analysis (PCA in English, ACP in
French), Correspondence Analysis (CA in English, AFC in French), Discriminant
Analysis (LDA in English, AFD in French), PCA with regards to instrumental
variable (PCAIV in English, ACPVI in French) and Canonical Correlation Analysis
(CCA in English, AC in French).

2.3. Explaining one diagram by another

Principal Component Analysis with respect to Instrumental Variables was a tech-
nique developed by C. R. Rao [25] to find the best set of coefficients in the multi-
variate regression setting where the response is multivariate, given by a matrix Y .
In terms of diagrams and RV coefficients, this problem can be rephrased as that of
finding M to associate to X so that (X, M, D) is as close as possible to (Y, Q, D)
in the RV sense.

The answer is provided by defining M such that

Y QY tD = λXMXtD.

If this is possible then the two eigendecompositions of the triple give the same
answers. We simplify notation by the following abbreviations:

XtDX = Sxx, Y tDY = Syy, XtDY = Sxy

and
R = S−1

xx SxyQSyxS−1
xx .

Then

‖ Y QY tD − XMXtD ‖2=‖ Y QY tD − XRXtD ‖2 + ‖ XRXtD − XMXtD ‖2 .
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The first term on the right hand side does not depend on M , and the second term
will be zero for the choice M = R.

If we add the extra constraint that we only allow ourselves a rank q approxima-
tion, with q < min (rank (X), rank (Y)), the optimal choice of a positive definite
matrix M is to take M = RBBtR where the columns of B are the eigenvectors of
XtDXR with:

B =

(
1√
λ1

β1, . . . ,
1√
λq

βq

)
such that

⎧⎨
⎩

XtDXRβk = λkβk,
βt

kRβk = λk, k = 1, . . . , q,
λ1 > λ2 > · · · > λq.

The PCA with regards to instrumental variables of rank q is equivalent to the PCA
of rank q of the triple (X, R, D) where

R = S−1
xx SxyQSyxS−1

xx .

2.4. One diagram to replace two diagrams

Canonical correlation analysis was introduced by Hotelling [18] to find the common
structure in two sets of variables X1 and X2 measured on the same observations.
This is equivalent to merging the two matrices columnwise to form a large matrix
with n rows and p1 + p2 columns and taking as the weighting of the variables the
matrix defined by the two diagonal blocks (Xt

1DX1)−1 and (Xt
2DX2)−1

Q =

⎛
⎜⎜⎝

(Xt
1DX1)−1 0

0 (Xt
2DX2)−1

⎞
⎟⎟⎠

R
p1∗ −−−−→

X1
R

n

Ip1

�⏐⏐ ⏐⏐
V1 D

⏐⏐
 �⏐⏐W1

R
p1 ←−−−−

Xt
1

R
n∗

R
p2∗ −−−−→

X2
R

n

Ip2

�⏐⏐ ⏐⏐
V2 D

⏐⏐
 �⏐⏐W2

R
p2 ←−−−−

Xt
2

R
n∗

R
p1+p2∗ −−−−−→

[X1;X2]
R

n

Q

�⏐⏐ ⏐⏐
V D

⏐⏐
 �⏐⏐W

R
p1+p2 ←−−−−−−

[[X1;X2]t
R

n∗

This analysis gives the same eigenvectors as the analysis of the triple (Xt
2DX1,

(Xt
1DX1)−1, (Xt

2DX2)−1), also known as the canonical correlation analysis of X1

and X2. These eigenvectors are known as the canonical variables.

2.5. Discriminant analysis

If we want to find linear combinations of the original variables Xn×p that char-
acterize best the group structure of the points given by a zero/one group coding
matrix Y , with as many columns as groups (call this number g), we can phrase the
problem as a duality diagram. Suppose that the observations are given individual
weights in the diagonal matrix D, and that the variables are centered with regards
to these weights.
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Let A be the g×p matrix of group means in each of the p variables. This satisfies
Y tDX = ΔY A where,

ΔY = Y tDY = diag(w1, w2, . . . , wg), wk =
∑

i:yik=1

di.

The wk’s are the group weights, as they are the sums of the weights as defined by
D for all the elements in that group. Call T the matrix T = XtDX, in the standard
case with all diagonal elements of D equal to 1

n this is just the standard variance-
covariance, otherwise it is a generalization thereof. The generalized between group
variance-covariance is B = AtΔY A and call the between group variance covariance
the matrix W = (X − Y A)tD(X − Y A).

Proposition 1. (A generalized Huyghens’ formula).

T = B + W.

Proof. Expanding W gives

W = XtDX − XtDY A − AtY tDX + AtY tDY A

= T − A′ΔY A − A′ΔY A + A′ΔY A

= T − B.

The duality diagram for linear discriminant analysis is

R
p∗ −−→

A
R

g

T−1

�⏐⏐⏐
⏐⏐⏐
B ΔY

⏐⏐⏐

�⏐⏐⏐AT−1At

R
p ←−−

At
R

g∗

.

This corresponds to the triple (A, T−1, ΔY ), because

(XtDY )Δ−1
Y (Y tDX) = AtΔY A

and gives equivalent results to the triple (Y tDX, T−1, Δ−1
Y ).

The discriminating variables are the eigenvectors of the operator

AtΔY AT−1.

They can also be seen as the PCA with regards to instrumental variables of
(Y,Δ−1

Y , D) with regards to (X, M, D).

2.6. Correspondence analysis

Correspondence analysis can be used to analyse several types of multivariate data.
All involve some categorical variables. Here are some examples of the type of data
that can be decomposed using this method:

• Contingency Tables (cross-tabulation of two categorical variables).
• Multiple Contingency Tables (cross-tabulation of several categorical vari-

ables).
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• Binary tables obtained by cutting continuous variables into classes and then
recoding both these variables and any extra categorical variables into 0/1
tables, 1 indicating presence in that class. So for instance a continuous variable
cut into three classes will provide three new binary variables of which only
one can take the value one for any given observation.

To first approximation, correspondence analysis can be understood as an extension
of principal components analysis (PCA) where the variance in PCA is replaced
by an inertia proportional to the χ2 distance of the table from independence. CA
decomposes this measure of departure from independence along axes that are or-
thogonal according to a χ2 inner product. If we are comparing two categorical
variables, the simplest possible model is that of independence in which case the
counts in the table would obey approximately the margin products identity. For an
m × p contingency table N with n =

∑m
i=1

∑p
j=1 nij observations and associated

to the frequency matrix F = N
n . Under independence, the approximation

nij
.=

ni·
n

n·j
n

n

can also be written: N
.= crtn where

r =
1
n

N1p

is the vector of row sums of F and ct = 1
nN ′1m are the column sums. The departure

from independence is measured by the χ2 statistic

X 2 =
∑
i,j

[
(nij − ni·n·j

n2 n)2
ni·n·j

n2 n
].

Under the usual validity assumptions that the cell counts nij are not too small, this
statistic is distributed as a χ2 with (m−1)(p−1) degrees of freedom if the data are
independent. If we do not reject independence, there is no more to be said about
the table, no interaction of interest to analyse. There is in fact no ‘multivariate’
effect.

On the contrary if this statistic is large, we decompose it into one dimensional
components.

Correspondence analysis is equivalent to the eigendecomposition of the triple
(X, Q, D) with

X = D−1
r FD−1

c − 1t1, Q = Dc, D = Dr,

Dc = diag(c), Dr = diag(r), X ′Dr1m = 1p, the average of each column is one.
Notes:

1. Consider the matrix Dr
−1FDc

−1 and take the principal components with
regards to the weights Dr for the rows and Dc for the columns.
The recentered matrix Dr

−1FDc
−1 − 1′m1p has a generalized singular value

decomposition

Dr
−1FDc

−1 − 1′m1p = USV ′, with U ′DrU = Im, V ′DcV = Ip

having total inertia:

Dr(Dr
−1FDc

−1 − 1′m1p)′Dc(Dr
−1FDc

−1 − 1′m1p) =
X 2

n
.
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2. PCA of the row profiles FDr
−1, taken with weight matrix Dc and the metric

Q = Dc
−1.

3. Notice that ∑
i

fi·(
fij

fi·f·j
− 1) = 0

and the row and columns profiles are centered

∑
j

f·j(
fij

fi·f·j
− 1) = 0

This method has been rediscovered many times, the most recently by Jon Klein-
berg’s in his method for analyzing Hubs and Authorities [19]. See Fouss, Saerens
and Renders [11] for a detailed comparison.

In statistics the most commonplace use of Correspondence Analysis is in ordi-
nation or seriation, that is , the search for a hidden gradient in contingency tables.
As an example we take data analyzed by Cox and Brandwood [4] and Diaconis [6],
who wanted to seriate Plato’s works using the proportion of sentence endings in a
given book with a given stress pattern. The seven books studied here are Republic,
Laws, Critias, Philebus, Sophist, Timœus. We use abbreviations of these names as
our column labels in the data analysis below. The stress patterns use the last five
syllables of every sentence and combine long or short syllables (abbreviated by -
and U in the data below). Thus there are 32 possible stress patterns, and 32 rows
in our contingency table.

We propose the use of correspondence analysis on the table of frequencies of
sentence endings, for a detailed analysis see Charnomordic and Holmes [2].

The first 10 row profiles (as percentages) are as follows:

Rep Laws Crit Phil Pol Soph Tim

UUUUU 1.1 2.4 3.3 2.5 1.7 2.8 2.4

-UUUU 1.6 3.8 2.0 2.8 2.5 3.6 3.9

U-UUU 1.7 1.9 2.0 2.1 3.1 3.4 6.0

UU-UU 1.9 2.6 1.3 2.6 2.6 2.6 1.8

UUU-U 2.1 3.0 6.7 4.0 3.3 2.4 3.4

UUUU- 2.0 3.8 4.0 4.8 2.9 2.5 3.5

--UUU 2.1 2.7 3.3 4.3 3.3 3.3 3.4

-U-UU 2.2 1.8 2.0 1.5 2.3 4.0 3.4

-UU-U 2.8 0.6 1.3 0.7 0.4 2.1 1.7

-UUU- 4.6 8.8 6.0 6.5 4.0 2.3 3.3

.......etc (there are 32 rows in all)

The eigenvalue decomposition (called the scree plot) of the chi-square distance
matrix (see [2]) shows that two axes out of a possible 6 (the matrix is of rank 6)
will provide a summary of 85% of the departure from independence. This suggests
that a planar representation will provide a good visual summary of the data.

Eigenvalue inertia % cumulative %
1 0.09170 68.96 68.96
2 0.02120 15.94 84.90
3 0.00911 6.86 91.76
4 0.00603 4.53 96.29
5 0.00276 2.07 98.36
6 0.00217 1.64 100.00
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Fig 1. Correspondence analysis of Plato’s works.

We can see from the plot that there is a seriation that in most cases follows a
parabola or arch [16] from Laws on one extreme being the latest work and Republica
being the earliest among those studied.

3. From discriminant analysis to networks

Consider a graph with vertices the members of a social group and edges if two
members interact. We suppose each vertex comes with an observation vector xi,
and that each has the same weight 1

n . In the extreme case of discriminant analysis,
the graph is supposed to connect all the points of a group in a complete graph, and
be disconnected between observations from different groups. Discriminant Analysis
is just the explanation of this particular graph by linear combinations of variables.
What we propose here is to extend this to more general graphs in a similar way.
We will suppose all the observations are the nodes of the graph and each has the
same weight 1

n . The basic decomposition of the variance is written

cov (xj , xk) = tjk =
1
n

n∑
i=1

(xij − x̄j)(xik − x̄k).

Call the group means,

x̄gj =
1
ng

∑
i∈Gg

xij , g = 1, . . . , q,

∑
i∈Gg

(xij − x̄gj)(x̄gj − x̄k) = (x̄gj − x̄k)
∑
i∈Gg

(xij − x̄gj) = 0.
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As in proposition 1, Huyghens’ formula is tjk = wjk + bjk, where

wjk =
q∑

g=1

∑
i∈Gg

(xij − x̄gj)(xik − x̄gk),

bjk =
q∑

g=1

ng

n
(x̄gj − x̄j)(x̄gk − x̄k),

T = W + B.

As we showed above, linear discriminant analysis finds the linear combinations a
such that atBa

atTa is maximized. This is equivalent to maximizing the quadratic form
atBa in a, subject to the constraint atTa = 1. As we saw above, the eigenvalue
problem

Ba = λTa or T−1Ba = λa if T−1 exists.

provides λ as needed. Then a′Ba = λa′Ta = λ. We extend this to graphs by relaxing
the group definition to partition the variation into local and global components.

3.1. Decomposing the variance into local and global components

Lebart was a pioneer in adapting the eigenvector decompositions to cater to spatial
structure in the data [20–22]. We can again decompose the variance into parts, but
this time the criteria for the decomposition is not defined by group membership as
in LDA but by the neighborhood relation given by the spatial structure. We call
the set of edges of the undirected neighborhood graph E. The usual elementwise
definition of covariances is given by

cov (xj , xk) =
1
n

n∑
i=1

(xij − x̄j)(xik − x̄k) =
1

2n2

n∑
i=1

n∑
i′=1

(xij − xi′j)(xik − xi′k).

For the variances we have

var(xj) =
1

2n2

⎧⎨
⎩

∑
(i,i′)∈E

(xij − xi′j)2 +
∑

(i,i′)/∈E

(xij − xi′j)2

⎫⎬
⎭ .

If we call M the incidence matrix of the graph mij = 1 (i, j) ∈ E. The degree of
vertex i is mi =

∑n
i′=1 mii′ . We take the convention that there are no self loops.

Then another way of writing the variance formula is

var(xj) =
1

2n2

⎧⎨
⎩

n∑
i=1

n∑
i′=1

mii′(xij − xi′j)2 +
∑

(i,i′)/∈E

(xij − xi′j)2

⎫⎬
⎭ .

Call local variance

varloc(xj) =
1

2m

n∑
i=1

n∑
i′=1

mii′(xij − xi′j)2

where m =
∑n

i=1

∑n
i′=1 mii′ . The total variance is the variance of the complete

graph. Geary’s ratio [14] is used to see whether the variable xj can be considered as
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independent of the graph structure. If the neighboring values of xj seem positively
correlated then the local variance will only be an underestimate of the variance:

G = c(xj) =
varloc(xj)
var(xj)

.

Call D the diagonal matrix with the total degrees of each node in the diagonal
D = diag(mi).

For all variables taken together, j = 1, . . . , p note the local covariance matrix
V = 1

2mXt(D − M)X, if the graph is just made of disjoint groups of the same
size. This is proportional to the W within class variance-covariance matrix. The
proportionality can be accomplished by taking the average of the sum of squares
to the average of the neighboring nodes [23]. We can generalize the Geary index
to account for irregular graphs coherently. In this case we weight each node by its
degree. Then we can write the Geary ratio for any n-vector x as

c(x) =
xt(D − M)x

xtDx
, D =

⎛
⎜⎜⎜⎝

m1 0 0 0
m2 0 0

...
. . .

...
. . . 0 0 mn

⎞
⎟⎟⎟⎠ .

We can ask for the coordinate(s) that are the most correlated to the graph structure,
then if we want to minimize the Geary ratio, choose x such that c(x) is minimal.
This is equivalent to minimizing xt(D − M)x under the constraint xtDx = 1. It
can be solved by finding the smallest eigenvalue μ with eigenvector x such that:

(D − M)x = μDx,

D−1(D − M)x = μx,

(1 − μ)x = D−1Mx.

This is exactly the defining equation of the correspondence analysis of the matrix
M. This can be extended to as many coordinates as we like, in particular we can
take the first 2 largest eigenvectors and provide the best planar representation of
the graph in this way.

3.2. Regression of graphs on node covariates

The covariables measured on the nodes can be essential to understanding the fine
structure of graphs. We call X the n×p matrix of measurements at the vertices of the
graph; they may be a combination of both categorical variables (gene families, GO
classes) and continuous measurements (expression scores). We can use the PCAIV
method defined in Section 2 to the eigenvectors of the graph defined above. This
provides a method that uses the covariates in X to explain the graph. To be more
precise, given a graph (V, E) with adjacency matrix M , define the Laplacian

L = D−1(M − I), D = diag(d1, d2, . . . , dn) diagonal matrix of degrees.

Using the eigenanalysis of the graph, we can summarize the graph with a few
variables, the first few relevant eigenvectors of L, these can then be regressed on
the covariates using Principal Components with respect to Instrumental Variables
[25] as defined above to find the linear combination of node covariates that explain
the graph variables the best.
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Appendix A: Resources

A.1. Reading

There are few references in English explaining the duality/operator point of view,
apart from the already cited references of Escoufier [8, 10]. Fréderique Glaçon’s
PhD thesis [15] (in French) clearly lays out the duality principle before going on to
explain its application to the conjoint analysis of several matrices, or data cubes.
The interested reader fluent in French could also consult any one of several Masters
level textbooks on the subject for many details and examples:

• Brigitte Escoffier and Jérôme Pagès [7] have a textbook with many examples,
although their approach is geometric, they do not delve into the Duality
Diagram, more than explaining on page 100 its use in transition formula
between eigenbases of the different spaces.

• [22] is one of the broader books on multivariate analyses, making connections
between modern uses of eigendecomposition techniques, clustering and seg-
mentation. This book is unique in its chapter on stability and validation of
results (without going as far as speaking of inference).

• Cailliez and Pagès [1] is hard to find, but was the first textbook completely
based on the diagram approach, as was the case in the earlier literature they
use transposed matrices.

A.2. Software

The methods described in this article are all available in the form of R packages
which I recommend. The most complete package is ade4 [3] which covers almost
all the problems I mention except that of regressing graphs on covariates. However,
a complete understanding of the duality diagram terminology and philosophy is
necessary as these provide the building blocks for all the functions in the form
of a class called dudi (this actually stands for duality diagram). One of the most
important features in all the ‘dudi.*’ functions is that when the argument scannf
is at its default value TRUE, the first step imposed on the user is the perusal of the
scree plot of eigenvalues. This can be very important, as choosing to retain 2 values
by default before consulting the eigenvalues can lead to the main mistake that can
be made when using these techniques: the separation of two close eigenvalues. When
two eigenvalues are close the plane will be stable, but not each individual axis or
principal component resulting in erroneous results if for instance the 2nd and 3rd
eigenvalues were very close and the user chose to take 2 axes[17].

Another useful addition also comes from the ecological community and is called
vegan. Here is a list of suggested functions from several packages:

• Principal Components Analysis (PCA) is available in prcomp and princomp
in the standard package stats as pca in vegan and as dudi.pca in ade4.

• Two versions of PCAIV are available, one is called Redundancy Analysis
(RDA) and is available as rda in vegan and pcaiv in ade4.

• Correspondence Analysis (CA) is available in cca in vegan and as dudi.coa
in ade4.

• Discriminant analysis is available as lda in stats, as discrimin in ade4
• Canonical Correlation Analysis is available in cancor in stats (Beware cca

in ade4 is Canonical Correspondence Analysis).
• STATIS (Conjoint analysis of several tables) is available in ade4.
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