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On asymptotic quantum statistical

inference

Richard D. Gill1,∗ and Mădălin I. Guţă2,†

Leiden University, University of Nottingham

Abstract: We study asymptotically optimal statistical inference concerning
the unknown state of N identical quantum systems, using two complementary
approaches: a “poor man’s approach” based on the van Trees inequality, and
a rather more sophisticated approach using the recently developed quantum
form of LeCam’s theory of Local Asymptotic Normality.

1. Introduction

The aim of this paper is to show the rich possibilities for asymptotically optimal
statistical inference for “quantum i.i.d. models”. Despite the possibly exotic context,
mathematical statistics has much to offer, and much that we have learned—in
particular through JonWellner’s work in semiparametric models and nonparametric
maximum likelihood estimation—can be put to extremely good use. Exotic? In
today’s quantum information engineering, measurement and estimation schemes are
put to work to recover the state of a small number of quantum states, engineered
by the physicist in his or her laboratory. New technologies are winking at us on the
horizon. So far, the physicists are largely re-inventing statistical wheels themselves.
We think it is a pity statisticians are not more involved. If Jon is looking for some
new challenges... ?

In this paper we do theory. We suppose that one has N copies of a quantum
system each in the same state depending on an unknown vector of parameters θ,
and one wishes to estimate θ, or more generally a vector function of the parameters
ψ(θ), by making some measurement on the N systems together. This yields data
whose distribution depends on θ and on the choice of the measurement. Given the
measurement, we therefore have a classical parametric statistical model, though not
necessarily an i.i.d. model, since we are allowed to bring the N systems together
before measuring the resulting joint system as one quantum object. In that case
the resulting data need not consist of (a function of) N i.i.d. observations, and
a key quantum feature is that we can generally extract more information about θ
using such “collective” or “joint” measurements than when we measure the systems
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separately. What is the best we can do as N → ∞, when we are allowed to optimize
both over the measurement and over the ensuing data-processing?

A statistically motivated, approach to deriving methods with good properties
for large N is to choose the measurement to optimize the Fisher information in
the data, leaving it to the statistician to process the data efficiently, using for in-
stance maximum likelihood or related methods, including Bayesian. This heuristic
principle has already been shown to work in a number of special cases in quan-
tum statistics. Since the measurement maximizing the Fisher information typically
depends on the unknown parameter value this often has to be implemented in a
two-step approach, first using a small fraction of the N systems to get a first ap-
proximation to the true parameter, and then optimizing on the remaining systems
using this rough guess.

The approach favoured by many physicists, on the other hand, is to choose a prior
distribution and loss function on grounds of symmetry and physical interpretation,
and then to exactly optimize the Bayes risk over all measurements and estimators,
for any given N . This approach succeeds in producing attractive methods on those
rare occasions when a felicitous combination of all the mathematical ingredients
leads to an analytically tractable solution.

Now it has been observed in a number of problems that the two approaches re-
sult in asymptotically equivalent estimators, though the measurement schemes can
be strikingly different. Heuristically, this can be understood to follow from the fact
that, in the physicists’ approach, for large N the prior distribution should become
increasingly irrelevant and the Bayes optimal estimator close to the maximum likeli-
hood estimator. Moreover, we expect those estimators to be asymptotically normal
with variances corresponding to inverse Fisher information.

Here we link the two approaches by deriving an asymptotic lower bound on the
Bayes risk of the physicists’ approach, in terms of the optimal Fisher information
of the statisticians’ approach. Sometimes one can find in this way asymptotically
optimal solutions which are much easier to implement than the exactly optimal
solution of the physicists’ approach. On the other hand, it also suggests that the
physicists’ approach, when successful, leads to procedures which are asymptotically
optimal for other prior distributions, and other loss functions, than those used in
the computation. It also suggests that these solutions are asymptotically optimal
in a pointwise rather than a Bayesian sense.

In the first part of our paper, we derive our new bound by combining an existing
quantum Cramér-Rao bound [22] with the van Trees inequality, a Bayesian Cramér-
Rao bound from classical statistics [7, 29]. The former can be interpreted as a bound
on the Fisher information in an arbitrary measurement on a quantum system, the
latter is a bound on the Bayes risk (for a quadratic loss function) in terms of the
Fisher information in the data. This part of the paper can be understood without
any familiarity with quantum statistics. Applications are given in an appendix to
an eprint version of the paper at arXiv.org.

The paper contains only a brief summary of “what is a quantum statistical
model”; for more information the reader is referred to the papers of Barndorff-
Nielsen et al. [1], and Gill [4]. For an overview of the “state of the art” in quantum
asymptotic statistics see Hayashi [19] which reprints papers of many authors to-
gether with introductions by the editor.

After this “simplistic” part of the paper we present some of the recently devel-
oped theory of quantum Local Asymptotic Normality (also mentioning a number of
open problems). This provides an alternative but more sophisticated route to get-
ting asymptotic optimality results, but at the end of the day it also explains “why”
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our simplistic approach does indeed work. In classical statistics, we have learnt
to understand asymptotic optimality of maximum likelihood estimation through
the idea that an i.i.d. parametric model can be closely approximated, locally, by
a Gaussian shift model with the same information matrix. To say the same thing
in a deeper way, the two models have the same geometric structure of the score
functions of one-dimensional sub-models; and in the i.i.d. case, after local rescaling,
those score functions are asymptotically Gaussian.

Let us first develop enough notation to state the main result of the paper and
compare it with the comparable result from classical statistics. Starting on familiar
ground with the latter, suppose we want to estimate a function ψ(θ) of a parameter
θ, both represented by real column vectors of possibly different dimension, based
on N i.i.d. observations from a distribution with Fisher information matrix I(θ).

Let π be a prior density on the parameter space and let G̃(θ) be a symmetric

positive-definite matrix defining a quadratic loss function l(ψ̂(N), θ) = (ψ̂(N) −
ψ(θ))�G̃(θ)(ψ̂(N) −ψ(θ)). (Later we will use G(θ), without the tilde, in the special

case when ψ is θ itself). Define the mean square error matrix V (N)(θ) = Eθ(ψ̂
(N)−

ψ(θ))(ψ̂(N) − ψ(θ))� so that the risk can be written R(N)(θ) = trace G̃(θ)V (N)(θ).

The Bayes risk is R(N)(π) = Eπtrace G̃V (N). Here, Eθ denotes expectation over
the data for given θ, Eπ denotes averaging over θ with respect to the prior π. The
estimator ψ̂(N) is completely arbitrary. We assume the prior density to be smooth,
compactly supported and zero on the smooth boundary of its support. Furthermore
a certain quantity roughly interpreted as “information in the prior” must be finite.
Then it is very easy to show [7], using the van Trees inequality, that under minimal
smoothness conditions on the statistical model,

(1) lim inf
N→∞

NR(N)(π) ≥ EπtraceGI−1,

where G = ψ′G̃ψ′� and ψ′ is the matrix of partial derivatives of elements of ψ with
respect to those of θ.

Now in quantum statistics the data depends on the choice of measurement and
the measurement should be tuned to the loss function. Given a measurement M (N)

on N copies of the quantum system, denote by I
(N)

M the average Fisher informa-
tion (i.e., Fisher information divided by N) in the data. The Holevo [22] quantum
Cramér-Rao bound, as extended by Hayashi and Matsumoto [20] to the quantum
i.i.d. model, can be expressed as saying that, for all θ, G, N and M (N),

(2) traceG(θ)
(
I
(N)

M (θ)
)−1 ≥ CG(θ)

for a certain quantity CG(θ), which depends on the specification of the quantum
statistical model (state of one copy, derivatives of the state with respect to param-
eters, and loss function G) at the point θ only, i.e., on local or pointwise model
features (see (7) below).

We aim to prove that under minimal smoothness conditions on the quantum
statistical model, and conditions on the prior similar to those needed in the clas-
sical case, but under essentially no conditions on the estimator-and-measurement
sequence,

(3) lim inf
N→∞

NR(N)(π) ≥ EπCG,

where, as before, G = ψ′G̃ψ′�. The main result (3) is exactly the bound one would
hope for, from heuristic statistical principles. In specific models of interest, the right
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hand side is often easy to calculate. Various specific measurement-and-estimator
sequences, motivated by a variety of approaches, can also be shown in interesting
examples to achieve the bound, see the appendix to the eprint version of this paper.

It was also shown in [7], how—in the classical statistical context—one can replace
a fixed prior π by a sequence of priors indexed by N , concentrating more and more
on a fixed parameter value θ0, at rate 1/

√
N . Following their approach would, in

the quantum context, lead to the pointwise asymptotic lower bounds

(4) lim inf
N→∞

NR(N)(θ) ≥ CG(θ)

for each θ, for regular estimators, and to local asymptotic minimax bounds

(5) lim
M→∞

lim inf
N→∞

sup
‖θ−θ0‖≤N−1/2M

NR(N)(θ) ≥ CG(θ0)

for all estimators, but we do not further develop that theory here. In classical
statistics the theory of Local Asymptotic Normality is the way to unify, generalise,
and understand this kind of result. In the last section of this paper we introduce
the now emerging quantum generalization of this theory.

The basic tools used in the first part of this paper have now all been mentioned,
but as we shall see, the proof is not a routine application of the van Trees inequality.
The missing ingredient will be provided by the following new dual bound to (2):
for all θ, K, N and M (N),

(6) traceK(θ)I
(N)

M (θ) ≤ CK(θ),

where CK(θ) actually equals CG(θ) for a certain G defined in terms of K (as ex-
plained in Theorem 2 below). This is an upper bound on Fisher information, in
contrast to (2) which is a lower bound on inverse Fisher information. The new in-
equality (6) follows from the convexity of the sets of information matrices and of
inverse information matrices for arbitrary measurements on a quantum system, and
these convexity properties have a simple statistical explanation. Such dual bounds
have cropped up incidentally in quantum statistics, for instance in [8], but this is
the first time a connection is established.

The argument for (6), and given that, for (3), is based on some general structural
features of quantum statistics, and hence it is not necessary to be familiar with the
technical details of the set-up.

In the next section we will summarize the i.i.d. model in quantum statistics,
focussing on the key facts which will be used in the proof of the dual Holevo bound
(6) and of our main result, the asymptotic lower bound (3).

These proofs are given in a subsequent section, where no further “quantum”
arguments will be used.

In the final section we will show how the bounds correspond to recent results in
the theory of Q-LAN, according to which the i.i.d. model converges to a quantum
Gaussian shift experiment, with the same Holevo bounds, which are actually at-
tainable in the Gaussian case. An eprint version of this paper, Gill and Guţă (2012)
includes an appendix with some worked examples.

2. Quantum statistics: The i.i.d. parametric case

The basic objects in quantum statistics are states and measurements, defined in
terms of certain operators on a complex Hilbert space. To avoid technical compli-
cations we restrict attention to the finite-dimensional case, already rich in structure
and applications, when operators are represented by ordinary (complex) matrices.
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States and measurement

The state of a d-dimensional system is represented by a d× d matrix ρ, called the
density matrix of the state, having the following properties: ρ∗ = ρ (self-adjoint
or Hermitian), ρ ≥ 0 (non-negative), trace(ρ) = 1 (normalized). “Non-negative”
actually implies “self-adjoint” but it does no harm to emphasize both properties. 0
denotes the zero matrix; 1 will denote the identity matrix.

Example. When d = 2, every density matrix can be written in the form ρ =
1
2 (1+ θ1σ1 + θ2σ2 + θ3σ3) where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are the three Pauli matrices and where θ21 + θ22 + θ23 ≤ 1.

“Quantum statistics” concerns the situation when the state of the system ρ(θ)
depends on a (column) vector θ of p unknown (real) parameters.

Example. A completely unknown two-dimensional quantum state depends on a
vector of three real parameters, θ = (θ1, θ2, θ3)

�, known to lie in the unit ball.
Various interesting submodels can be described geometrically: e.g., the equatorial
plane; the surface of the ball; a straight line through the origin. More generally, a
completely unknown d-dimensional state depends on p = d2 − 1 real parameters.

Example. In the previous example the two-parameter case obtained by demanding
that θ21+θ22+θ23 = 1 is called the case of a two-dimensional pure state. In general, a
state is called pure if ρ2 = ρ or equivalently ρ has rank one. A completely unknown
pure d-dimensional state depends on p = 2(d− 1) real parameters.

A measurement on a quantum system is characterized by the outcome space,
which is just a measurable space (X,B), and a positive operator valued measure
(POVM) M on this space. This means that for each B ∈ B there corresponds a
d× d non-negative self-adjoint matrix M(B), together having the usual properties
of an ordinary (real) measure (sigma-additive), with moreover M(X) = 1. The
probability distribution of the outcome of doing measurement M on state ρ(θ) is
given by the Born law, or trace rule: Pr(outcome ∈ B) = trace(ρ(θ)M(B)). It
can be seen that this is indeed a bona-fide probability distribution on the sample
space (X,B). Moreover it has a density with respect to the finite real measure
trace(M(B)).

Example. The most simple measurement is defined by choosing an orthonormal
basis of Cd, say ψ1,. . . ,ψd, taking the outcome space to be the discrete space X =
{1, . . . , d}, and defining M({x}) = ψxψ

∗
x for x ∈ X; or in physicists’ notation,

M({x}) = |ψx〉〈ψx|. One computes that Pr(outcome = x) = ψ∗
xρ(θ)ψx = 〈ψx|ρ|ψx〉.

If the state is pure then ρ = φφ∗ = |φ〉〈φ| for some φ = φ(θ) ∈ C
d of length 1

and depending on the parameter θ. One finds that Pr(outcome = x) = |ψ∗
xφ|2 =

|〈ψx|φ〉|2.
So far we have discussed state and measurement for a single quantum system.

This encompasses also the case of N copies of the system, via a tensor product
construction, which we will now summarize. The joint state of N identical copies
of a single system having state ρ(θ) is ρ(θ)⊗N , a density matrix on a space of
dimension dN . A joint or collective measurement on these systems is specified by a
POVM on this large tensor product Hilbert space. An important point is that joint



110 Gill and Guţă

measurements give many more possibilities than measuring the separate systems
independently, or even measuring the separate systems adaptively.

Fact to remember 1. State plus measurement determines probability distribution
of data.

Quantum Cramér-Rao bound

Our main input is going to be the Holevo [22] quantum Cramér-Rao bound, with
its extension to the i.i.d. case due to Hayashi and Matsumoto [20].

Precisely because of quantum phenomena, different measurements, incompatible
with one another, are appropriate when we are interested in different components
of our parameter, or more generally, in different loss functions. The bound concerns
estimation of θ itself rather than a function thereof, and depends on a quadratic loss
function defined by a symmetric real non-negative matrix G(θ) which may depend

on the actual parameter value θ. For a given estimator θ̂(N) computed from the
outcome of some measurement M (N) on N copies of our system, define its mean
square error matrix V (N)(θ) = Eθ(θ̂

(N)−θ)(θ̂(N)−θ)�. The risk function when using

the quadratic loss determined by G is R(N)(θ) = Eθ(θ̂
(N) − θ)�G(θ)(θ̂(N) − θ) =

trace(G(θ)V (N)(θ)).
One may expect the risk of good measurements-and-estimators to decrease like

N−1 as N → ∞. The quantum Cramér-Rao bound confirms that this is the best
rate to hope for: it states that for unbiased estimators of a p-dimensional parameter
θ, based on arbitrary joint measurements on N copies,

(7) NR(N)(θ) ≥ CG(θ) = inf
�X,V :V≥Z( �X)

trace
(
G(θ)V

)
,

where �X = (X1, . . . , Xp), the Xi are d× d self-adjoint matrices satisfying

(8) ∂/∂θi trace
(
ρ(θ)Xj

)
= δij ,

Z is the p × p self-adjoint matrix with elements trace(ρ(θ)XiXj), and V is a real

symmetric matrix. It is possible to solve the optimization over V for given �X leading
to the formula

(9) CG(θ) = inf
�X
trace

(


(
G1/2Z( �X)G1/2

)
+ abs�

(
G1/2Z( �X)G1/2

))
,

where G = G(θ). The absolute value of a matrix is found by diagonalising it and
taking absolute values of the eigenvalues. We’ll assume that the bound is finite, i.e.,
there exists �X satisfying the constraints. A sufficient condition for this is that the
Helstrom quantum information matrix H introduced in ([21]) below is nonsingular.

For specific interesting models, it often turns out not difficult to compute the
bound CG(θ). Note, it is a bound which depends only on the density matrix of one
system (N = 1) and its derivative with the respect to the parameter, and on the loss
function, both at the given point θ. It can be found by solving a finite-dimensional
optimization problem.

We will not be concerned with the specific form of the bound. What we are going
to need, are just two key properties.

Firstly: the bound is local, and applies to the larger class of locally unbiased
estimators. This means to say that at the given point θ, Eθ θ̂

(N) = θ, and at this
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point also ∂/∂θi Eθ θ̂
(N)
j = δij . Now, it is well known that the “estimator” θ0 +

I(θ0)
−1S(θ0), where I(θ) is Fisher information and S(θ) is score function, is locally

unbiased at θ = θ0 and achieves the Cramér-Rao bound there. Thus the Cramér-Rao
bound for locally unbiased estimators is sharp. Consequently, we can rewrite the

bound (7) in the form (2) announced above, where I
(N)

M (θ) is the average (divided
by N) Fisher information in the outcome of an arbitrary measurement M = M (N)

on N copies and the right hand side is defined in (7) or (9).

Fact to remember 2. We have a family of computable lower bounds on the inverse
average Fisher information matrix for an arbitrary measurement on N copies, given
by (2) and (7) or (9),

Secondly, for given θ, define the following two sets of positive-definite symmetric
real matrices, in one-to-one correspondence with one another through the mapping
“matrix inverse”. The matrices G occurring in the definition are also taken to be
positive-definite symmetric real.

V =
{
V : trace(GV ) ≥ CG ∀G

}
,(10)

I =
{
I : trace

(
GI−1

)
≥ CG ∀G

}
.(11)

Elsewhere (Gill, 2005) we have given a proof by matrix algebra that that the set
I is convex (for V, convexity is obvious), and that the inequalities defining V define
supporting hyperplanes to that convex set, i.e., all the inequalities are achievable
in V, or equivalently CG = infV ∈V trace(GV ). But now, with the tools of Q-LAN
behind us (well—ahead of us—see the last section of this paper), we can give a
short, statistical, explanation which is simultaneously a short, complete, proof.

The quantum statistical problem of collective measurements onN identical quan-
tum systems, when rescaled at the proper

√
N -rate, approaches a quantum Gaus-

sian problem as N → ∞, as we will see the last section of this paper. In this prob-
lem, V consists precisely of all the covariance matrices of locally unbiased estimators
achievable (by suitable choice of measurement) in the limiting p-parameter quan-
tum Gaussian statistical model. The inequalities defining V are exactly the Holevo
bounds for that model, and each of those bounds, as we show in Section 4, is attain-
able. Thus, for each G, there exists a V ∈ V achieving equality in trace(GV ) ≥ CG.
It follows from this that I consists of all non-singular information matrices (aug-
mented with all non-singular matrices smaller than an information matrix) achiev-
able by choice of measurement on the same quantum Gaussian model. Consider
the set of information matrices attainable by some measurement, together with all
smaller matrices; and consider the set of variance matrices of locally unbiased esti-
mators based on arbitrary measurements, together with all larger matrices. Adding
zero mean noise to a locally unbiased estimator preserves its local unbiasedness, so
adding larger matrices to the latter set does not change it, by the mathematical def-
inition of measurement, which includes addition of outcomes of arbitrary auxiliary
randomization. The set of information matrices is convex: choosing measurement 1
with probability p and measurement 2 with probability q while remembering your
choice, gives a measurement whose Fisher information is the convex combination
of the informations of measurements 1 and 2. Augmenting the set with all matrices
smaller than something in the set, preserves convexity. The set of variances of lo-
cally unbiased estimators is convex, by a similar randomization argument. Putting
this together, we obtain

Fact to remember 3. For given θ, both V and I defined in (10) and (11) are
convex, and all the inequalities defining these sets are achieved by points in the sets.
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3. An asymptotic Bayesian information bound

We will now introduce the van Trees inequality, a Bayesian Cramér-Rao bound, and
combine it with the Holevo bound (2) via derivation of a dual bound following from
the convexity of the sets (7) and (9). We return to the problem of estimating the
(real, column) vector function ψ(θ) of the (real, column) vector parameter θ of a
state ρ(θ) based on collective measurements of N identical copies. The dimensions
of ψ and of θ need not be the same. The sample size N is largely suppressed from
the notation. Let V be the mean square error matrix of an arbitrary estimator
ψ̂, thus V (θ) = Eθ(ψ̂ − ψ(θ))(ψ̂ − ψ(θ))�. Often, but not necessarily, we’ll have

ψ̂ = ψ(θ̂) for some estimator of θ. Suppose we have a quadratic loss function

(ψ̂−ψ(θ))�G̃(θ)(ψ̂−ψ(θ)) where G̃ is a positive-definite matrix function of θ, then

the Bayes risk with respect to a given prior π can be written R(π) = Eπtrace G̃V .
We are going to prove the following theorem:

Theorem 1. Suppose ρ(θ) : θ ∈ Θ ⊆ Rp is a smooth quantum statistical model and
suppose π is a smooth prior density on a compact subset Θ0 ⊆ Θ, such that Θ0 has
a piecewise smooth boundary, on which π is zero. Suppose moreover the quantity
J(π) defined in (16) below, is finite. Then

(12) lim inf
N→∞

NR(N)(π) ≥ EπCG0 ,

where G0 = ψ′G̃ψ′� (and assumed to be positive-definite), ψ′ is the matrix of partial
derivatives of elements of ψ with respect to those of θ, and CG0 is defined by (7) or
(9).

“Once continuously differentiable” is enough smoothness. Smoothness of the
quantum statistical model implies smoothness of the classical statistical model fol-
lowing from applying an arbitrary measurement to N copies of the quantum state.
Slightly weaker but more elaborate smoothness conditions on the statistical model
and prior are spelled out in [7]. The restriction that G0 be non-singular can probably
be avoided by a more detailed analysis.

Let IM denote the average Fisher information matrix for θ based on a given
collective measurement on the N copies. Then the van Trees inequality states that
for all matrix functions C of θ, of size dim(ψ)× dim(θ),

(13) NEπtrace G̃V ≥ (EπtraceCψ′�)2

Eπtrace G̃−1CIMC� + 1
NEπ

(Cπ)′�G̃−1(Cπ)′

π2

,

where the primes in ψ′ and in (Cπ)′ both denote differentiation, but in the first
case converting the vector ψ into the matrix of partial derivatives of elements of ψ
with respect to elements of θ, of size dim(ψ)×dim(θ), in the second case converting
the matrix Cπ into the column vector, of the same length as ψ, with row elements∑

j(∂/∂θj)(Cπ)ij . To get an optimal bound we need to choose C(θ) cleverly.
First though, note that the Fisher information appears in the denominator of

the van Trees bound. This is a nuisance since we have a Holevo’s lower bound (2)
to the inverse Fisher information. We would like to have an upper bound on the
information itself, say of the form (6), together with a recipe for computing CK .

All this can be obtained from the convexity of the sets I and V defined in (11) and
(10) and the non-redundancy of the inequalities appearing in their definitions. Sup-
pose V0 is a boundary point of V. Define I0 = V −1

0 . Thus I0 (though not necessarily
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an attainable average information matrix I
(N)

M ) satisfies the Holevo bound for each
positive-definite G, and attains equality in one of them, say with G = G0. In the
language of convex sets, and “in the V -picture”, traceG0V = CG0 is a supporting
hyperplane to V at V = V0.

Under the mapping “matrix-inverse” the hyperplane traceG0V = CG0 in the V -
picture maps to the smooth surface traceG0I

−1 = CG0 touching the set I at I0 in the
I-picture. Since I is convex, the tangent plane to the smooth surface at I = I0 must
be a supporting hyperplane to I at this point. The matrix derivative of the operation
of matrix inversion can be written dA−1/dx = −A−1(dA/dx)A−1. This tells us that
the equation of the tangent plane is traceG0I

−1
0 II−1

0 = traceG0I
−1
0 = CG0 . Since

this is simultaneously a supporting hyperplane to I we deduce that for all I ∈ I,
traceG0I

−1
0 II−1

0 ≤ CG0 . Defining K0 = I−1
0 G0I

−1
0 and CK0 = CG0 we rewrite this

inequality as traceK0I ≤ CK0 .
A similar story can be told when we start in the I-picture with a supporting

hyperplane (at I = I0) to I of the form traceK0I = CK0 for some symmetric
positive-definite K0. It maps to the smooth surface traceK0V

−1 = CK0 , with tan-
gent plane traceK0V

−1
0 IV −1

0 = CK0 at V = V0 = I−1
0 . By strict convexity of the

function “matrix inverse”, the tangent plane touches the smooth surface only at
the point V0. Moreover, the smooth surface lies above the tangent plane, but below
V. This makes V0 the unique minimizer of traceK0V

−1
0 IV −1

0 in V.
It would be useful to extend these computations to allow singular I, G and K.

Anyway, we summarize what we have so far in a theorem.

Theorem 2. Dual to the Holevo family of lower bounds on average inverse infor-

mation, traceGI
−1

M ≥ CG for each positive-definite G, we have a family of upper
bounds on information,

(14) traceKIM ≤ CK for each K.

If I0 ∈ I satisfies traceG0I
−1
0 = CG0 then with K0 = I−1

0 G0I
−1
0 , CK0 = CG0 .

Conversely if I0 ∈ I satisfies traceK0I0 = CK0 then with G0 = I0K0I0, CG0 = CK0 .
Moreover, none of the bounds is redundant, in the sense that for all positive-definite
G and K, CG = infV ∈V trace(GV ) and CK = supI∈I trace(KI). The minimizer in
the first equation is unique.

Now we are ready to apply the van Trees inequality. First we make a guess for
what the left hand side of (13) should look like, at its best. Suppose we use an

estimator ψ̂ = ψ(θ̂) where θ̂ makes optimal use of the information in the measure-
ment M . Denote now by IM the asymptotic normalized Fisher information of a
sequence of measurements. Then we expect that the asymptotic normalized covari-
ance matrix V of ψ̂ is equal to ψ′I−1

M ψ′� and therefore the asymptotic normalized

Bayes risk should be Eπtrace G̃ψ′I−1
M ψ′� = Eπtraceψ

′�G̃ψ′I−1
M . This is bounded

below by the integrated Holevo bound EπCG0 with G0 = ψ′�G̃ψ′. Let I0 ∈ I satisfy
traceG0I

−1
0 = CG0 ; its existence and uniqueness are given by Theorem 2. (Heuris-

tically we expect that I0 is asymptotically attainable). By the same theorem, with

K0 = I−1
0 G0I

−1
0 , CK0 = CG0 = traceG0I

−1
0 = traceψ′�G̃ψ′I−1

0 .
Though these calculations are informal, they lead us to try the matrix function

C = G̃ψ′I−1
0 . Define V0 = I−1

0 . With this choice, in the numerator of the van Trees

inequality, we find the square of traceCψ′� = trace G̃ψ′I−1
0 ψ′� = traceG0V0 =

CG0 . In the main term of the denominator, we find trace G̃−1G̃ψ′I−1
0 IMI−1

0 ψ′�G̃ =
trace I−1

0 G0I
−1
0 IM = traceK0IM ≤ CK0 = CG0 by the dual Holevo bound (14).



114 Gill and Guţă

This makes the numerator of the van Trees bound equal to the square of this part
of the denominator, and using the inequality a2/(a+ b) ≥ a− b we find

(15) NEπtraceGV ≥ EπCG0 −
1

N
J(π),

where

(16) J(π) = Eπ
(Cπ)′�G̃−1(Cπ)′

π2

with C = G̃ψ′V0 and V0 uniquely achieving in V the bound traceG0V ≥ CG0 ,

where G0 = ψ′�G̃ψ′. Finally, provided J(π) is finite (which depends on the prior
distribution and on properties of the model), we obtain the asymptotic lower bound

(17) lim inf
N→∞

NEπtrace G̃V ≥ EπCG0 .

4. Q-LAN for i.i.d. models

In this section we sketch some elements of a theory of comparison and convergence
of quantum statistical models, which is currently being developed in analogy to
the LeCam theory of classical statistical models. We illustrate the theory with
the example of local asymptotic normality for (finite dimesional) i.i.d. quantum
states, which provides a route to proving that the Holevo bound is asymptotically
achievable. For more details we refer to the papers [12–14, 16], for the i.i.d. case
and to [10] for the case of mixing quantum Markov chains.

The Q-LAN theory surveyed here concerns strong local asymptotic normality.
Just as in the classical case, the “strong” version of the theory enables us not only
to derive asymptotic bounds, but also to actually construct asymptotically optimal
statistical procedures, by explicitly lifting the optimal solution of the asymptotic
problem back to the finite N situation, where it is approximately optimal. It will be
useful to build up theory and applications of the corresponding weak local asymp-
totic normality concept. A start has been made by [13]. Such a theory would be
easier to apply, and would be sufficient to obtain rigorous asymptotic bounds, but
would not contain recipes for how to attain them. At present there are some situa-
tions (involving degeneracy) where stong local asymptotic normality is conjectured
but not yet proven. It would be interesting to study these analytically tricky prob-
lems first using the simpler tools of weak Q-LAN.

4.1. Convergence of classical statistical models

To facilitate the comparison between classical and quantum, we will start with a
brief summary of some basic notions from the classical theory of convergence of
statistical models, specialised to the case of dominated models.

Recall that if Pθ is a probability distribution on (Ω,Σ) with θ ∈ Θ unknown,
then model P = {Pθ : θ ∈ Θ} is called dominated if Pθ � P for some measure
P. We will denote by pθ the probability density of Pθ with respect to P. Similarly,
let P ′ := {P′

θ : θ ∈ Θ} be another model on (Ω′,Σ′) with densities p′θ = dP′
θ/dP

′.
Then we say that P and P ′ are statistically equivalent (denoted P ∼ P ′) if their
distributions can be transformed into each other via randomisations, i.e., if there
exists a linear transformation

R : L1(Ω,Σ,P) → L1(Ω′,Σ′,P′)
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mapping probability densities into probability densities, such that for all θ ∈ Θ

R(pθ) = p′θ,

and similarly in the opposite direction. In particular, S : Ω → Ω′ is a sufficient
statistic for P if and only if P ∼ P ′ where P

′
θ := Pθ ◦ S−1.

In asymptotics one often needs to show that a sequence of models converges to
a limit model without being statistically equivalent to it at any point. This can be
formulated by using LeCam’s notion of deficiency and the associated distance on
the space of statistical models. The deficiency of P with respect to P ′ (expressed
here in L1 rather than total variation norm) is

δ(P ,P ′) := inf
R

sup
θ∈Θ

‖R(pθ)− p′θ‖1,

where the infimum is taken over all randomisations R. The LeCam distance between
P and P ′ is defined as

Δ(P ,P ′) := max(δ(P ,P ′), δ(P ′,P)),

and is equal to zero if and only if the models are equivalent. A sequence of models
P(n) converges strongly to P if

lim
n→∞

Δ(P(n),P) = 0.

This can be used to prove the convergence of optimal procedures and risks for
statistical decision problems. We illustrate this with the example of local asymptotic
normality (LAN) for i.i.d. parametric models, whose quantum extension provides
an alternative route to optimal estimation in quantum statistics. Suppose that P
is a model over an open set Θ ⊂ R

k and that pθ depends sufficiently smoothly on θ

(e.g., p
1/2
θ is differentiable in quadratic mean), and consider the local i.i.d. models

around θ0 with local parameter h ∈ R
k

P(n) := {Pn
θ0+h/

√
n : ‖h‖ ≤ C}.

LAN means that P(n) converges strongly to the Gaussian shift model consisting of
a single sample from an k-variate normal distribution with mean h and variance
equal to the inverse Fisher information matrix of the original model at θ0

N := {N(h, I−1
θ0

) : ‖h‖ ≤ C}.

4.2. Convergence of quantum statistical models

As we have seen, an important problem in quantum statistics is to find the most in-
formative measurement for a given quantum statistical model and a given decision
problem. A partial solution to this problem is provided by the quantum Cramér-Rao
theory which aims to construct lower bounds to the quadratic risk of any estima-
tor, expressed solely in terms of the properties of the quantum states. Classical
mathematical statistics suggests that rather than searching for optimal decisions,
more insight could be gained by analysing the structure of the quantum statistical
models themselves, beyond the notion of quantum Fisher information. Therefore
we will start by addressing a more basic question of how to decide whether two
quantum models over a parameter space Θ are statistically equivalent, or close to
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each other in a statistical sense. To answer this question we will introduce the no-
tion of quantum channel, which is a transformation of quantum states that could—
in principle—be physically implemented in a lab, and should be seen as the analog
of a classical randomisation which defines a particular data processing procedure.
The simplest example of such transformation is a unitary channel which rotates a
state (d× d density matrix ρ) by means of a d× d unitary matrix U , i.e.,

U : ρ �→ UρU∗.

Since U can be reversed by applying the inverse unitary U−1, we anticipate that
it will map any quantum model into an equivalent one. More generally, a quantum
channel C : M(Cd) → M(Ck) must satisfy the minimal requirement of being pos-
itive and trace preserving linear map, i.e., it must transform quantum states into
quantum states in an affine way, similarly to the action of a classical randomisa-
tion. However, unlike the classical case, it turns out that this condition needs to be
strengthened to the requirement that C is completely positive, i.e., the ampliated
maps

C ⊗ Idn : M(Cd)⊗M(Cn) → M(Ck)⊗M(Cn)

must be positive for all n ≥ 0, where Idn is the identity transformation on M(Cn).
An example of a positive but not completely positive, and hence unphysical trans-
formation, is the transposition tr : M(Cd) → M(Cd) with respect to a given basis.
Indeed, the reader can verify that applying tr ⊗ Idd to any pure entangled state
(i.e., not a product state |ψ〉〈ψ| ⊗ |φ〉〈φ|) produces a matrix which is not positive,
hence not a state.

Definition 1. A linear map C : M(Cd) → M(Ck) which is completely positive
and trace preserving is called a quantum channel.

The Stinespring-Kraus Theorem [26] says a linear map C : M(Cd) → M(Ck) is
completely positive map if and only if it is of the form

C(ρ) =

dk∑
i=1

KiρK
∗
i ,

with Ki linear transformations from Cd to Ck, some of which may be equal to zero.
Moreover, C is trace preserving if and only if

∑
i K

∗
i Ki = 1d. In particular, if the

sum consists of a single non-zero term V ρV ∗, the action of the channel C is to embed
the state ρ isometrically into a the d-dimensional subspace Ran(V ) ⊂ C

k. As in the
unitary case, it is easy to see that this action is reversible (hence noiseless) and maps
any statistical model into an equivalent one. We are now ready to define the notion
of equivalence of statistical models, as an extension of the classical characterisation.

Definition 2. Let Q := {ρ(θ) ∈ M(Cd) : θ ∈ Θ} and R := {ϕ(θ) ∈ M(Ck) : θ ∈
Θ} be two quantum statistical models over Θ. Then Q is statistically equivalent to
R if there exist quantum channels T : M(Cd) → M(Ck) and S : M(Ck) → M(Cd)
such that for all θ ∈ Θ

T (ρ(θ)) = ϕ(θ) and S(ϕ(θ)) = ρ(θ).

The interpretation of this definition is immediate. Suppose that we want to solve
a statistical decision problem concerning the model R, e.g., estimating θ, and we
perform a measurement M on the state ϕθ whose outcome is the estimator θ̂ with
distribution P

M
θ = M(ρ(θ)) and risk RM

θ := Eθ(d(θ̂, θ)
2). Consider now the same
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problem for the model Q, and define the measurement N = M ◦ R realised by
first mapping the quantum states ρ(θ) through the channel T into ϕ(θ), and then
performing the measurement M . Clearly, the distribution of the obtained outcome
is again PM

θ and the risk is RM
θ , so we can say that Q is at least as informative

as P from a statistical point of view. By repeating the argument in the opposite
direction we conclude that any statistical decision problem is equally difficult for
the two models, and hence they are equivalent in this sense. However, unlike the
classical case the opposite implication is not true. For instance, models whose states
are each other’s transpose have the same set of risks for any decision problem but are
usually not equivalent in the sense of being connected by quantum channels. It turns
out that a full statistical interpretation of Definition 2 is possible if one considers
a larger set of quantum decision problems, which do not involve measurements, but
quantum channels as statistical procedures.

Until this point we have tacitly assumed that any (finite dimensional) quantum
model is built upon the algebra of square matrices of a certain dimension. However
this setting is too restrictive as it excludes the possibility of considering hybrid
classical-quantum models, as well as the development of a theory of quantum suffi-
ciency. We motivate this extension through the following example. We throw a coin
whose outcome X has probabilities pθ(1) = θ and pθ(0) = 1− θ, and subsequently
we prepare a quantum system in the state ρθ(X) ∈ M(Cd) which depends on X
and the parameter θ. What is the corresponding statistical model? Since the “data”
is both classical and quantum, the “state” is a matrix valued density on {0, 1}

�θ(i) = pθ(i)ρθ(i), i ∈ {0, 1}

or equivalently, a block-diagonal density matrix �θ(1) ⊕ �θ(2) ∈ M(Cd) ⊕ M(Cd)
which is positive and normalised in the usual sense. While this can be seen as
a state on the full matrix algebra M(C2d), it is clear that since the off-diagonal
blocks have expectation zero for all θ, we can restrict �θ to the block diagonal
sub-algebra M(Cd) ⊕M(Cd) without loosing any statistical information. In other
words, the latter is a sufficient algebra of our quantum statistical model. In general,
for a model defined on some matrix algebra, one can ask what is the smallest sub-
algebra to which we can restrict without loosing statistical information, i.e., such
that the restricted model is equivalent to the original one in the sense of definition
2. The theory of quantum sufficiency was developed in [28] where a number of
classical results were extended to the quantum set-up, in particular the fact that
the minimal sufficient algebra is generated by the likelihood ratio statistic.

We now make a step further and characterise the “closeness” rather than equiv-
alence of quantum statistical models, by generalising LeCam’s notion of deficiency
between models.

Definition 3. Let Q := {ρ(θ) ∈ M(Cd) : θ ∈ Θ} and R := {ϕ(θ) ∈ M(Ck) : θ ∈
Θ} be two quantum statistical models over Θ. The deficiency of R with respect to
Q is defined as

(18) δ(R,Q) = inf
T

sup
θ∈Θ

∥∥ϕ(θ)− T
(
ρ(θ)

)∥∥
1
,

where the infimum is taken over all channels T : M(Cd) → M(Ck). The LeCam
distance between Q and R is

Δ(Q,R) = max(δ(R,Q), δ(Q,R)).
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This is an extension of the classical definition of deficiency for dominated sta-
tistical models. We will use the LeCam distance to formulate the concept of local
asymptotic normality for quantum states and find asymptotically optimal measure-
ment procedures.

4.3. Continuous variables systems and quantum Gaussian states

In this section we introduce the basic concepts associated to continuous variables
(cv) quantum systems, and then analyse the problem of optimal estimation for
simple quantum Gaussian shifts models.

Firstly we will restrict our attention to the elementary “building block” cv system
which physically may be a particle moving on the real line, or a mono-chromatic
light pulse. Then we will show how more complex cv systems can be reduced to a
tensor product of such “building blocks” by a standard “diagonalisation” procedure.

The Hilbert space of the system isH = L2(R) and its quantum states are given by
density matrices, i.e., positive operators of trace one. Unlike the finite dimensional
case, their linear span, called the space of trace-class operators T1(H), is a proper
subspace of all bounded operators on H, which is a Banach space with respect to
the trace-norm

‖τ‖1 := Tr(|τ |) =
∞∑
i=1

si,

where si are the singular values of τ . The key observables are two “canonical coor-
dinates” Q and P representing the position and momentum of the particle, or the
electric and magnetic field of the light pluse, and are defined as follows

(19) (Qf)(x) = xf(x), (Pf)(x) = −i
df

dx
(x).

Although they do not commute with each other, they satisfy Heisenberg’s com-
mutation relation which essentially captures the entire algebraic properties of the
system:

QP−PQ = i1.

The label “continuous variables” stems from the fact that the probability distribu-
tions of Q and P are always absolutely continuous with respect to the Lebesgue
measure. Indeed since any state is a mixture of pure states, it suffices to prove
this for a pure state |ψ〉〈ψ|. If Q and P denote the real valued random variables
representing the outcomes of measuring Q and respectively P then using (19) one
can verify that

E
(
eiuQ

)
=

〈
ψ, eiuQψ

〉
=

∫
eiuq|ψ(q)|2 dq,

E
(
eivP

)
=

〈
ψ, eivPψ

〉
=

∫
eivp|ψ̂(p)|2 dp.

where ψ̂ is the Fourier transform of ψ. This means that Q and P have probability
densities |ψ(q)|2 and respectively |ψ̂(p)|2, and suggests that the cv system should be
seen as the non-commutative analogue of an R

2 valued random variable. Following
up on this idea we define the “quantum characteristic function” of a state ρ

W̃ρ(u, v) := Tr(ρe−i(uQ+vP))
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and the Wigner or “quasidistribution” function

Wρ(q, p) =
1

(2π)2

∫ ∫
ei(uq+vp) W̃ρ(u, v) du dv.

These functions have a number of interesting and useful properties, which make
them into important tools in visualising and analysing states of cv quantum systems.

1. there is a one-to-one correspondence between ρ and Wρ;
2. the Wigner function may take negative values, but its marginal along any di-

rection φ is a bona-fide probability density corresponding to the measurement
of the quadrature observable Xφ := Q cosφ+P sinφ;

3. Both Wρ and W̃ρ belong to L2(R2) and the following isometry holds between
the space of Hilbert-Schmidt operators T2(L2(R)) and L2(R2)

Tr(ρA) =

∫ ∫
Wρ(q, p)WA(q, p) dq dp.

We can now introduce the class of quantum Gaussian states by analogy to the
classical definition.

Definition 4. Let ρ be a state with mean (q, p) = (Tr(ρQ),Tr(ρQ)) and covariance
matrix

V :=

⎛
⎝ Tr(ρ(Q− q)2) Tr(ρ(Q− q) ◦ (P − p))

Tr(ρ(Q− q) ◦ (P − p)) Tr(ρ(P − p)2)

⎞
⎠ .

Then ρ is called Gaussian if its characteristic function is

Tr(ρe−i(uQ+vP)) = e−itxt · e−tV tt/2, t = (u, v), x = (q, p),

in particular the Wigner function Wρ is equal to the probability density of N(x, V ).

While the definition looks deceptively similar to that of a classical normal dis-
tribution, there are a couple of important differences. The first one is that the
covariance matrix V cannot be arbitrary but must satisfy the uncertainty principle

(20) Det(V ) ≥ 1

4
.

This restriction can be traced back to the commutation relations [Q,P] = i1 which
says that we cannon assign classical values to Q and P simultaneously. Which
leads us to the second point, and the problem of optimal estimation: since Q and P
cannot be measured simultaneously, their covariance matrix V is not “achievable”
by any measurement aimed at estimating the means (q, p) and the experimenter
needs to make a trade-off between measuring Q with high accuracy but ignoring
P, and vice-versa. In the last part of this section we look at this problem in more
detail and explain the optimal measurement procedure.

Definition 5. A quantum Gaussian shift model is family of Gaussian states

G := {Φ(x, V ) : x ∈ R
2}

with unknown mean x and fixed and known covariance matrix V . If G is a 2×2 pos-
itive real weight matrix, the optimal estimation problem is to find the measurement
M with outcome x̂ = (q̂, p̂) which minimises the maximum quadratic risk

(21) R(M) = sup
x

Ex

(
(x̂− x)G(x̂− x)t

)
.
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This is a provisional definition only: a definitive version follows as Definition 6
below. Finding the optimal measurement, relies on the equivariance (or covariance
in physics terminology) of the problem with respect to the action of the translations
(or displacements) group R2 on the states

D(y) : Φ(x, V ) �→ Φ(x+ y, V ), y ∈ R
2.

This action is implemented by a unitary channel

Φ(x+ y, V ) = D(y)Φ(x, V )D(y)∗, y = (u, v),

where D(y) = exp(ivQ − iuP) are called the displacement or Weyl operators.
Since R(M) is invariant under the transformation [x, x̂] �→ [x+y, x̂+y], a standard
equivariance argument shows that the infimum risk is achieved on the special subset
of covariant measurements, defined by the property

P
(M)
Φ(x+y,V )(dx̂+ y) = P

(M)
Φ(x,V )(dx̂).

Such measurements, and the more general class of covariant quantum channels,
have a simple description in terms of linear transformation on the space of coor-
dinates of the system together with an auxiliary system, [25]. More specifically,
consider an independent quantum cv system with coordinates (Q′,P′), prepared in
a state τ with zero mean and covariace matrix Y . By the commutation relations,
the observables Q + Q′ and P − P′ commute with each other and hence can be
measured simultaneously. Since the joint state of the two independent systems is
Φ(x, V ) ⊗ τ , the outcome (q̂, p̂) of the measurement is an unbiased estimator of
(q, p) with covariance matrix V + Y , and the risk is

R(M) = Tr(G(V + Y )) = Tr(GV ) + Tr(GY ),

where the first term is the risk of the corresponding classical problem, and the
second is the non-vanishing contribution due to the auxiliary “noisy” system. To
find the optimum, it remains to minimise the above expression over all possi-
ble covariance matrices of the auxiliary system which must satisfy the constraint
Det(Y ) ≥ 1/4. If G has the form G = ODiag(g1, g2)O

t with O orthogonal, then it
can be easily verified that the optimal Y is the matrix

Y0 =
1

2
O

(√
g2/g1 0

0
√

g1/g2

)
Ot.

Moreover, the unique state with such “minimum uncertainty” is the Gaussian state
τ = Φ(0, Y0). In conclusion, the minimax risk is

Rminmax = inf
M

R(M) = Tr(GV ) +
√

Det(G).

4.4. General Gaussian shift models and optimal estimation

We now extend the findings of the previous section from the “building block” sys-
tem to a multidimensional setting. In essence, we show that the Holevo bound is
achievable for general Gaussian shift models, a result which has been known—in
various degrees of generality—since the pioneering work of V.P. Belavkin and of
A.S. Holevo in the 70’s.
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Let us consider a system composed of p ≥ 1 mutually commuting pairs of canon-
ical coordinates (Qi,Pi), so that the commutation relations hold

[Qi,Pj ] = iδi,j1, i, j = 1, . . . , p.

The joint system can be represented on the Hilbert space L2(R)⊗p such that the
pair (Qi,Pi) acts on i-th copy of the tensor product as in (19), and as identity
on the other spaces. Additionally, we allow for a number l of “classical variables”
Ck which commute with each other and with all (Qi,Pi), and can be represented
separately as position observables on k additional copies of L2(R). For simplicity
we will denote all variables as

(X1, . . . ,Xm) ≡ (Q1,P1, . . . ,Qp,Pp,C1, . . . ,Cl), m = 2p+ l,

and write their commutation relations as

[Xi,Xj ] = iSi,j1,

where S is the m×m block diagonal symplectic matrix of the form S = Diag(Ω, . . . ,
Ω, 0, . . . 0) with

Ω =

(
0 1
−1 0

)
.

Note that while this may seem to be rather special cv system, it actually cap-
tures the general situation since any symplectic (bilinear antisymmetric) can be
transformed into the above one by a change of basis.

The states of this hybrid quantum-classical system are described by positive
normalised densities in T1(L2(Rp)) ⊗ L1(Rl), e.g., if the quantum and classical
variables are independent the state is of the form ρ ⊗ p with ρ a density matrix
and p a probability density. In general the classical and quantum parts may be
correlated, and the state is a positive operator valued density � : Rl → T1(L2(Rp)),
whose characteristic function can be computed as

E�(e
i
∑m

i=1 uiXi) =

∫
. . .

∫
Tr(�(y)e

∑ 2p
i=1 uiXi) ei

∑ l
j=1 u2p+jyj dy1 . . . dyl.

Definition 6. A state Φ(x, V ) with mean x ∈ R
m and m ×m covariance matrix

V is Gaussian if
EΦ(x,V )(e

i
∑m

i=1 uiXi) = eiux
t

e−uV ut/2.

A Gaussian shift model over the parameter space Θ := R
k is a family

G := {Φ(Lh, V ) : h ∈ R
k},

where L : Rk → R
m is a linear map.

Note that the dimension of the parameter hmay be smaller than the dimension of
mean value x. One may distinguish full and partial quantum Gaussian shift models:
in the full model case, the dimensions are equal (and the matrix L invertible). A non-
classical feature of the general quantum Gaussian shift is that a linear submodel
of a full Gaussian shift model is not, in general, equivalent to a full model with
lower-dimensional mean vector.

The analogue of the uncertainty principle (20) for general cv systems is the
(complex) matrix inequality

(22) V ≥ i

2
S.
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The statistical decision problem is to find the measurement which optimally esti-
mates the parameter h of the Gaussian state Φ(Lh, V ), for a mean square error risk
with a given k×k weight matrix G, cf. (21). As before, we can restrict our attention
to covariant measurements, i.e., to measuring mutually commuting variables of the
form

W(i) = Y(i) + Ỹ(i),

where

Y(i) =

m∑
j=1

y
(i)
j Xj , EΦ(Lh,V )(Y

(i)) = hi

and

Ỹ(i) =
m̃∑
j=1

ỹ
(i)
j X̃j , E�(Ỹ

(i)) = 0.

Here (X̃1, . . . , X̃m̃) are the coordinates of an independent, auxiliary system with
symplectic matrix S̃, prepared in a state � with mean zero and covariance matrix

Ṽ . Let V (Y) and V (Ỹ) denote the covariance matrices of the independent systems
(Y(1), . . . ,Y(k)) and (Ỹ(1), . . . , Ỹ(k)). Then the risk of the (W(1), . . . ,W(k)) mea-
surement is

R(W) = Tr(GV (Y)) + Tr(GV (Ỹ)).

On the other hand, since all W(i) must commute with each other, we have

[Ỹ(i), Ỹ(j)] = −[Y(i),Y(j)] := −iS
(Y)
i,j 1.

The uncertainty principle (22) applied to to the auxiliary variables Ỹ(i) gives the
constraint

V (Ỹ) ≥ ± i

2
S(Y).

Lemma 1. Let V and S be real symmetric and respectively anti-symmetric k × k
matrices, such that V ≥ iS/2. Then Tr(V ) ≥ Tr(|S|)/2, with equality for V = |S|/2.

By optimising V (Ỹ)’s contribution to the risk and applying the above lemma
with a fixed choice of Y(i) we obtain

inf
Ỹ(i)

Tr(GV (Ỹ)) = inf
Ỹ(i)

Tr(
√
GV (Ỹ)

√
G) =

1

2
Tr(

√
G|S(Y)|

√
G).

and the infimum is achieved for the covariance matrix V (Ỹ) = |S(Ỹ)|/2, which is

only possible if the auxiliary system is prepared in the Gaussian state Φ(0, V (Ỹ)),
[23].

It remains now to optimise the risk over all unbiased (Y(1), . . . ,Y(k)) i.e., which
satisfy the condition (8) from the formulation of the Holevo bound:

(23)
∂

∂hj
EΦh,V

(
Y(i)

)
= δi,j .

The minimax risk is then

Rminmax(G, G) = inf
{Y(i)}

Tr(
√
GV (Y)

√
G) +

1

2
Tr(

√
G|S(Y)|

√
G)

which is equal to the Holevo bound (9) if we consider that

V Y
i,j = 
EΦ(0,V )(Y

(i)Y(j)), and
1

2
S(Y) = �EΦ(0,V )(Y

(i)Y(j)).
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4.5. Local asymptotic normality for i.i.d. states

In this section we show how the general Gaussian shift models discussed above
emerge from i.i.d. models through local asymptotic normality.

Suppose that we are given N independent quantum systems prepared identically
in an unknown state ρ ∈ M(Cd). For large N we can sacrifice a small part of the
systems (e.g., Ñ = N1−ε) and use them to construct an estimator ρ0 of the state, by
means of a quantum tomography procedure. Using standard concentration inequal-
ities it can be shown that ρ belongs to a neighbourhood of size N−1/2+ε centred
at ρ0, with probability converging to one. Therefore, the asymptotic behaviour of
parameter estimation problems is determined by the structure of local quantum
models around a fixed state ρ0, and from now on we will restrict our attention to
such models. By choosing the eigenvectors of ρ0 as the standard basis, and assum-
ing that the eigenvalues satisfy μ1 > . . . μd > 0, we have ρ0 = Diag(μ1, . . . , μd) and
an arbitrary state in its neighbourhood is of the form

(24) ρh :=

⎡
⎢⎢⎢⎢⎣
μ1 + u1 ζ∗1,2 . . . ζ∗1,d

ζ1,2 μ2 + u2
. . .

...
...

. . .
. . . ζ∗d−1,d

ζ1,d . . . ζd−1,d μd −
∑d−1

i=1 ui

⎤
⎥⎥⎥⎥⎦ , ui ∈ R, ζj,k ∈ C.

with local parameter h = (�u, �ζ) ∈ Rd−1 × Cd(d−1)/2 ∼= Rd2−1. The local i.i.d.
quantum model around ρ0 is then defined as

(25) QN :=
{
ρNh := ρ⊗N

h/
√
N

: ‖h‖ ≤ N ε
}
.

If some eigenvalues μi are equal to one another or to zero, degeneracies occur
which are tricky to deal with. Completing the theory for such situations is a topic
of ongoing research. In the rest of this section we give an intuitive argument for the
emergence of the limit Gaussian model and finish with the precise formulation of
LAN, restricting attention to the nondegenerate situation.

We define m = d2 − 1 operators whose expectation with respect to the state ρ0
is zero, and together with the identity form a basis of the space of selfadjoint d× d
matrices

{X1, . . . , Xm} = {Q1,2, P1,2, . . . , Qd−1,d, Pd−1,d, C1, . . . , Cd−1},

where

Qj,k :=
|j〉〈k|+ |j〉〈k|√

2(μj − μk)
, Pj,k :=

i(|k〉〈j| − |j〉〈k|)√
2(μj − μk)

, Ci := |i〉〈i| − μi1.

Let Qj,k(N) ∈ M(Cd)⊗N denote the corresponding collective observables

Qj,k(N) :=

N∑
s=1

Q
(s)
j,k, Q

(s)
jk := 1⊗ · · · ⊗Qj,k ⊗ · · · ⊗ 1,

with Q
(s)
j,k acting on the position s of the tensor product; similar definitions hold

for Pj,k(N), Ci(N). The collective observables play the role of sufficient statistic
for our i.i.d. model, and we would like to understand their asymptotic behaviour.
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Since all systems are independent and identically prepared, and the terms in each
collective observable commute, we can apply classical Central Limit techniques to
show that, under the state ρnh, we have

Ci(N)√
N

L−→N
(
ui, μi(1− μi)

)
, 1 ≤ i ≤ d− 1;

Qj,k(N)√
N

L−→N(
ζ̃j,k, vj,k), 1 ≤ j < k ≤ d;

Pj,k(N)√
N

L−→N(�ζ̃j,k, vj,k), 1 ≤ j < k ≤ d,

where ζ̃j,k = ζj,k/
√
(μj − μk)/2 and vj,k = 1/(2(μj − μk)). This indicates that the

model converges to a Gaussian shift model, but does not tell us what the covariance
and commutation relations of the different limit variables are. For this, we need a
quantum CLT, that is a multivariate CLT which takes into account the fact that
the collective variables do not commute with each other. Its precise formulation can
be found in [27], but for our purposes it is enough to give the following recipe. The
limit is a general cv system as described in Section 4.4, with m = d2−1 coordinates
(X1, . . . ,Xm) = (Qj,k,Pj,k,Ci) having the commutation relations

[Xa,Xb] = Tr(ρ0[Xa, Xb])1 = 2i�Tr(ρ0XaXb)1,

whose state is Gaussian with covariance matrix

Va,b = Tr
(
ρ0(XaXb +XbXa)/2

)
= 
Tr(ρ0XaXb)1.

It can be easily verified that thanks to our special choice of basis, (Qj,k,Pj,k) are
pairs of position and momentum operators, which commute with all other coor-
dinates and Ci are “classical” variables, cf. Section 4.4. Moreover the covariance
matrix is block diagonal, with each pair (Qj,k,Pj,k) having a 2× 2 the covariance
matrix V q

j,k = vj,k1, and no correlation with the other coordinates, and the classical
variables have covariance matrix

V cl
ij := δijμi − μiμj , i, j = 1, . . . d− 1.

In summary, the limit Gaussian model consists of a tensor product between a Gaus-
sian probability density and a density matrix of d(d − 1)/2 independent quantum
Gaussian states

(26) G(h, μ) := N
(
u, V cl

)
⊗

⊗
j<k

Φ
(
(
ζ̃j,k,�ζ̃j,k), V q

j,k

)
.

We can now formulate the LAN Theorem which shows that the i.i.d. model
can be asymptotically approximated by the Gaussian one, by means of quantum-
classical randomisations, as discussed in Section 4.2. An alternative approach based
on a generalisation of the notion of weak convergence of models, can be found in
[13].

Theorem 3. Let QN be the i.i.d. quantum model (25) and let

GN := {G(h, μ) : ‖h‖ ≤ N ε}.
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be the Gaussian model with G(h, μ) defined in (26). Then there exist channels (com-
pletely positive, normalised maps)

TN :M
(
C

d
)⊗N → L1

(
R

d−1
)
⊗ T1

(
L2(R)⊗d(d−1)/2

)
,

SN : L1
(
R

d−1
)
⊗ T1

(
L2(R)⊗d(d−1)/2

)
→ M

(
C

d
)⊗N

,

such that
lim

N→∞
Δ(QN ,GN ) = 0,

where Δ(·, ·) is the LeCam distance, cf. Definition 3.

Clearly, in the same i.i.d. setting, smooth lower-dimensional submodels of the
model of a completely unknown state converge to a partial Gaussian shift model.

4.6. Asymptotic attainability of the Holevo bound

Besides its theoretical importance, local asymptotic normality has been used as a
tool for solving various asymptotic problems such as optimal quantum learning [15],
teleportation benchmarks [11], quantum state purification [2]. Here we give a short
non-technical argument for the asymptotic attainability of the Holevo bound for
i.i.d. models, using local asymptotic normality.

In Section 4.4 we showed that the Holevo bound is attained for arbitrary classical-
quantum Gaussian shift models. We then saw that the model of N i.i.d. systems
prepared in a completely unknown state converges locally to a Gaussian shift model
with (d2−1) parameters. If some prior information about the state of the systems is
available, we consider a lower dimensional model ρθ ∈ M(Cd) with θ ∈ Θ ⊂ R

k. By
applying LAN to this sub-model of the “full” one, we find that it is approximated
in the LeCam sense by a Gaussian shift of the form

G′ = {G(Lh′, μ) : h′ ∈ R
k},

where L : Rk → Rd2−1 is a linear map which depends only on the local behaviour of
the restricted model around θ0. To identify the linear transformation L we recall the
correspondence between the collective variables and the limit continuous variables

(Lh′)a := EG(h′,μ)(Xa) = lim
N→∞

Tr(ρNh′Xa(N)) =

k∑
i=1

h′
iTr

(
∂ρh′

∂h′
i

∣∣∣∣
h=0

Xa

)

from which we deduce

Li,a = Tr

(
∂ρh′

∂h′
i

∣∣∣∣
h=0

Xa

)
.

By a technical but otherwise rather standard argument, one can show that the
asymptotic minimax risk for the problem of estimating the local parameter h′ con-
verges to the minimax risk for the same problem and the Gaussian model G′, where
in both cases the loss function is quadratic with weight matrix G

lim
N→∞

inf
MN

sup
‖h′‖≤Nε

NR(MN , h′) = Rminmax(G′, G).

The final step in proving the asymptotic attainability of the Holevo bound for
finite dimensional systems it is to observe that its expression coincides with that of
the minimax risk deduced in Section 4.4, applied to the Gaussian shift model G′.
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The optimisation (9) is performed over selfadjoint matrices satisfying the condition
(8), which becomes (23) when translated into the cv language. Similarly, the real
and imaginary parts of Z(X) become the covariance and the symplectic matrices
V Y and respectively SY/2.
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