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Bernstein inequality and moderate

deviations under strong mixing conditions

Florence Merlevède1 , Magda Peligrad2,∗ and Emmanuel Rio3,†

Université Paris Est, University of Cincinnati, Université de Versailles

Abstract: In this paper we obtain a Bernstein type inequality for a class
of weakly dependent and bounded random variables. The proofs lead to a
moderate deviations principle for sums of bounded random variables with ex-
ponential decay of the strong mixing coefficients that complements the large
deviation result obtained by Bryc and Dembo (1998) under superexponential
mixing rates.

1. Introduction

This paper has double scope. First we obtain a Bernstein’s type bound on the
tail probabilities of the partial sums Sn of a sequence of dependent and bounded
random variables (Xk, k ≥ 1). Then we use the developed techniques to study the
moderate deviations principle.

We recall the definition of strongly mixing sequences, introduced by Rosenblatt
[19]: For any two σ-algebras A and B, we define the α-mixing coefficient by

α(A, B) = sup
A∈A,B∈B

|P(A ∩ B) − P(A)P(B)|.

Let (Xk, k ≥ 1) be a sequence of real-valued random variables defined on (Ω, A,
P). This sequence will be called strongly mixing if

(1.1) α(n) := sup
k≥1

α (Mk, Gk+n) → 0 as n → ∞,

where Mj := σ(Xi, i ≤ j) and Gj := σ(Xi, i ≥ j) for j ≥ 1.
Alternatively (see Bradley [5], Theorem 4.4)

(1.2) 4α(n) := sup{Cov(f, g)/| |f | | ∞ | |g| | ∞; f ∈ L∞(Mk), g ∈ L∞(Gk+n)}.

Establishing exponential inequalities for strongly mixing sequences is a very chal-
lenging problem. Some steps in this direction are results by Rio [18, Theorem 6.1],
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who obtained a Fuk-Nagaev type inequality, by Dedecker and Prieur [10] who ex-
tended Theorem 6.1 in Rio [18] using coupling coefficients, by Doukhan and Neu-
mann [13] who used combinatorics techniques. In a recent paper Merlevède, Peligrad
and Rio [17] get exponential bounds for subexponential mixing rates, when the
variables are not necessarily bounded, obtaining the same order of magnitude as
in the independent case. More precisely they show that, if α(n) ≤ exp(−cnγ1)
and supi>0 P(|Xi| > t) ≤ exp(1 − tγ2) with γ1 > 0 and γ2 > 0, such that
(1/γ1) + (1/γ2) = 1/γ > 1, then there are positive constants C, C1, C2 and η
depending only on c, γ1 and γ2, such that for all n ≥ 4 and λ ≥ C(log n)η

P(|Sn| ≥ λ) ≤ (n + 1) exp(−λγ/C1) + exp(−λ2/nC2).

Here Sn =
∑n

k=1 Xk. The case not covered by that paper is the case of exponential
mixing rates and bounded variables, that is γ1 = 1 and γ2 = ∞. The aim of this
paper is to study this case, to point out several new recent techniques and ideas
and to comment on the order of magnitude of the probabilities of large deviations.
Our proofs will be based on estimations of the Laplace transform.

One of our results is that for a strongly mixing sequence of centered and bounded
random variables satisfying, for a certain c > 0,

(1.3) α(n) ≤ exp(−2cn),

we can find two constants c1 and c2 depending only on c and on the uniform bound
of the random variables, such that, for all x > 0,

P(|Sn| > x) ≤ exp(−c1x
2/n) + exp(−c2x/(log n)(log log n)).

Then, we use this exponential inequality and the techniques that lead to this re-
sult to obtain moderate deviations asymptotic results, improving Proposition 2.4
in Merlevède and Peligrad [16]. Our results show that we can come close up to
a logarithmic term to the moderate deviations asymptotics for independent ran-
dom variables. Of course a kind of correction is needed since the traditional large
deviations results do not hold for geometrically strongly mixing sequences. As a
matter of fact the large deviations principle does not hold even in the context of
uniformly mixing sequences with exponential rates. See Bryc and Dembo [6], Exam-
ple 1, Proposition 5 and Example 2, that point out examples of empirical processes
of Doeblin recurrent Markov chains, that are therefore φ-mixing with exponential
mixing rate and that do not satisfy the large deviations principle.

We mention that strongly mixing sequences form a larger class than absolutely
regular sequences. The problem of the moderate deviations principle was studied
for absolutely regular Markov chains with exponential rates in de Acosta [9] and
also in Chen and de Acosta [8], when the transition probabilities are stationary and
there is a certain restriction on the class of initial distributions. A class of processes
satisfying a splitting condition closely related to absolutely regular processes was
considered by Tsirelson [21]. Recently, Dedecker, Merlevède, Peligrad and Utev [11]
considered projective conditions with applications to φ-mixing.

Notice that we do not require any degree of stationarity for obtaining Bernstein
inequality except for a uniform bound for the variables.

The strong mixing coefficient used in this paper can be generalized by using
smaller classes of functions than those used in Definition (1.2) to include even more
examples. Such examples include function of linear processes with absolutely regular
innovations and Arch models. In this paper, we give an application to the moderate
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deviations principle for Kernel estimators of the common marginal density of a
certain class of continuous time processes.

For the clarity of the proofs it will be more convenient to embed the initial
sequence into a continuous time process; namely, (Xt, t ≥ 0) is defined from the
original sequence (Xn, n ≥ 1) by Xt = X[t+1]. For a Borel set A, define

(1.4) SA =
∫

A

Xt dt.

Then S[0,n] =
∑n

k=1 Xk. The strong mixing coefficient of (Xt, t ≥ 0) is defined as

α̃(u) := sup
t≥0

α (Mt, Gt+u) → 0 as n → ∞,

where Mt := σ(Xv, v ≤ t) and Gw := σ(Xv, v ≥ w).
Notice that, since α̃(u) ≤ α([u]), if (Xn, n ≥ 1) satisfies (1.3), the continuous

type mixing coefficients still satisfy a geometrically mixing condition; namely for
any u ≥ 2,

(1.5) α̃(u) ≤ exp(−cu).

In the rest of the paper, ‖Y ‖∞ stands for the essential supremum of a random
variable Y .

2. Results

Our first result is the following exponential inequality:

Theorem 1. Let (Xj)j≥1 be a sequence of centered real-valued random variables.
Suppose that the sequence satisfies (1.3) and that there exists a positive M such
that supi≥1 ‖Xi‖ ∞ ≤ M . Then there are positive constants C1 and C2 depending
only on c such that for all n ≥ 4 and t satisfying 0 < t < 1

C1M(log n)(log log n) , we
have

log E
(
exp(tSn)

)
≤ C2t

2nM2

1 − C1tM(log n)(log log n)
.

In terms of probabilities, there is a constant C3 depending on c such that for all
n ≥ 4 and x ≥ 0

(2.1) P(|Sn| ≥ x) ≤ exp
(

− C3x
2

nM2 + Mx(log n)(log log n)

)
.

As a counterpart, the following Bernstein type inequality holds.

Theorem 2. Under conditions of Theorem 1, there are positive constants C1 and
C2 depending only on c such that for all n ≥ 2 and any positive t such that t <

1
C1M(log n)2 , the following inequality holds:

log E
(
exp(tSn)

)
≤ C2t

2(nv2 + M2)
1 − C1tM(log n)2

,

where v2 is defined by

(2.2) v2 = sup
i>0

(
Var(Xi) + 2

∑
j>i

|Cov(Xi, Xj)|
)
.
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In terms of probabilities, there is a constant C3 depending only on c such that for
all n ≥ 2,

(2.3) P(|Sn| ≥ x) ≤ exp
(

− C3x
2

v2n + M2 + xM(log n)2

)
.

To compare these two results, we notice that the coefficient of x in the inequality
(2.1) has a smaller order than the corresponding in (2.3). However, the term v2n
can be considerably smaller than nM2, which is an advantage in some applications
when the variables are not uniformly bounded. Notice also that if stationarity is
assumed, v2 can be taken as

v2 = Var(X1) + 4
∑

i≥1
EX2

1I(|X1| ≥ Q(2αi)),

where Q(u) = inf{t > 0, P(|X1| > t) ≤ u} for u in ]0, 1].
In the context of bounded functions f of stationary geometrically strongly mixing

Markov chains, Theorem 6 in Adamczak [1] provides a Bernstein type inequality
for Sn(f) = f(X1) + · · · + f(Xn) with the factor log n instead of (log n)2, which
appears in (2.3). To be more precise, under the centering condition E(f(X1)) = 0,
he proves that

P(|Sn(f)| ≥ x) ≤ C exp
(

− 1
C

min
( x2

nσ2
,

x

log n

))
,

where σ2 = limn n−1VarSn(f).
The two previous results are useful to study the moderate deviations principle

(MDP) for the partial sums of the underlying sequences. In our terminology the
moderate deviations principle (MDP) signifies the following type of behavior.

Definition 3. We say that the MDP holds for a sequence (Tn)n of random vari-
ables with the speed an → 0 and rate function I(t) if for each Borel set A,

− inf
t∈Ao

I(t) ≤ lim inf
n

an log P(
√

anTn ∈ A)

≤ lim sup
n

an log P(
√

anTn ∈ A) ≤ − inf
t∈Ā

I(t)(2.4)

where Ā denotes the closure of A and Ao the interior of A.

Notice that the moderate deviations principle for (Sn/
√

n) is an intermediate
behavior between CLT, P(Sn/

√
n ∈ A) and large deviation, P(Sn/n ∈ A). Our

moderate deviations results are the following:

Theorem 4. Let (Xj)j≥1 be a sequence of centered real valued random variables
satisfying the assumptions of Theorem 1. Let Sn =

∑n
i=1 Xi, σ2

n = Var(Sn) and
assume in addition that lim infn→∞ σ2

n/n > 0. Then for all positive sequences an

with

(2.5) an → 0 and
nan

(log n)2(log log n)2
→ ∞

the sequence (σ−1
n Sn)n≥1 satisfies (2.4) with the good rate function I(t) = t2/2.

If we assume that the sequence is L2-stationary, then by Lemma 1 in Bradley
[4], we get the following corollary:
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Corollary 5. Let (Xj)j≥1 be as in Theorem 4. Suppose in addition that the se-
quence is L2−stationary and σ2

n → ∞. Then, limn→∞ σ2
n/n = σ2 > 0 and for all

positive sequences an satisfying (2.5), (n−1/2Sn)n≥1 satisfies (2.4) with the good
rate function I(t) = t2/(2σ2).

In the next result, we derive conditions ensuring that the MDP holds for the
partial sums of triangular arrays of strongly mixing sequences. For a double indexed
sequence (Xj,n, j ≥ 1)n≥1 of real valued random variables, we define for any k ≥ 0,

(2.6) αn(k) = sup
j≥1

α(σ(Xn,i, i ≤ j), σ(Xn,i, i ≥ k + j)).

Theorem 6. For all n ≥ 1, let (Xj,n, j ≥ 1)n≥1 be a double indexed sequence of
centered real valued random variables such that for every j ≥ 1 and every n ≥ 1,
‖Xj,n‖ ∞ ≤ Mn where Mn is a positive number. For all n ≥ 1 and all k ≥ 0, let
αn(k) be defined by (2.6) and assume that α(k) = supn≥1 αn(k) satisfies (1.3).
Define v2 by

(2.7) v2 = sup
n≥1

sup
i>0

(
Var(Xi,n) + 2

∑
j>i

|Cov(Xi,n, Xj,n)|
)
.

and suppose v2 < ∞. Let Sn =
∑n

i=1 Xi,n , σ2
n = Var(Sn) and assume in addition

that lim infn→∞ σ2
n/n > 0. Then for all positive sequences an with

(2.8) an → 0 and nan/M2
n(log n)4 → ∞

the sequence (σ−1
n Sn)n≥1 satisfies (2.4) with the good rate function I(t) = t2/2.

3. Discussion and Examples

1. The first comment is on Theorems 1 and 2. Notice that compared to the
traditional Bernstein inequality for independent random variables there is a loga-
rithmic correction in the linear term in x appearing in the inequalities (2.1) and
(2.3). We includ in our paper another bound. Corollary 12 gives better results than
the other exponential bound results in the large deviation range, that is when x
is close to n. As a matter of fact the tail probability P(|Sn| ≥ x) can be bounded
with the minimum of the right hand sides of inequalities (2.1), (2.3) and (4.16).
Among these inequalities, (2.1) provides the best condition leading to a moderate
deviations principle when the random variables are uniformly bounded.

2. The strong mixing coefficients are not used in all their strength. For obtaining
our Bernstein type inequalities we can considerably restrict the class of functions
used to define the strong mixing coefficients to those functions that are coordinate-
wise nondecreasing, and one sided relations. Assume that for any index sets Q and
Q∗ (sets of natural numbers) such that Q ⊂ (0, p] and Q∗ ⊂ [n + p, ∞), where n
and p are arbitrary integers, there exists a decreasing sequence α∗(n) such that

Cov(f(SQ), g(SQ∗ )) ≤ α∗(n)| |f(SQ)| | ∞ | |f(SQ∗ )| | ∞,

where f and g are bounded functions coordinatewise nondecreasing. Here SQ =∑
i∈Q Xi. Clearly the families of functions exp(

∑
i∈Q txi) are coordinatewise non-

decreasing for t > 0 and then, for bounded random variables we have for all t > 0

(3.1) Cov(exp(tSQ), exp(tSQ∗ )) ≤ α∗(n)| | exp(tSQ)| | ∞ | | exp(tSQ∗ ))| | ∞.
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Also by using the functions f(x) = g(x) = x

(3.2) Cov(Xj,Xj+n) ≤ α∗(n)| |Xj | | ∞ | |Xj+n| | ∞.

As a matter of fact these are the only functions we use in the proof of our Bernstein
inequality. So if α∗(n) decreases geometrically our results still hold. Inequality (3.1)
is used to bound the Laplace transform of partial sums, and Inequality (3.2) is used
to bound their variance. Since both of these inequalities (3.1) and (3.2) are stable
under convolution we can obtain Bernstein type inequality for example for sequences
of the type Xn = Yn + Zn, where Yn is strongly mixing as in Theorem 1 and is Zn

a noise, independent on Yn, negatively associated, such as a truncated Gaussian
sequence with negative correlations.

We point out that similar results can be obtained by using alternative mixing
coefficients such as the τ -mixing coefficient introduced by Dedecker and Prieur [10].
Consequently we can treat all the examples in Merlevède, Peligrad and Rio [17],
namely: instantaneous functions of absolutely regular processes, functions of linear
processes with absolutely regular innovations and ARCH(∞) models.

3. We now give an application to the moderate deviations principle behavior for
kernel estimators of the density of a continuous time process.

Let X = (Xt, t ≥ 0) be a real valued continuous time process with an unknown
common marginal density f . We wish to estimate f from the data (Xt, 0 ≤ t ≤ T ).
In what follows, we will call a kernel a function K from R to R which is a bounded
continuous symmetric density with respect to Lebesgue measure and such that

lim
|u|→∞

uK(u) = 0, and
∫

R

u2K(u)du < ∞.

The kernel density estimator is defined as

fT (x) =
1

ThT

∫ T

0

K
(x − Xt

hT

)
dt,

where hT → 0+ and K is a kernel. In order to derive sufficient conditions ensuring
that the MDP holds for the sequence

√
T (fT (x) − EfT (x)), we assume that there

exists a constant c > 0 such that for any u ≥ 0,

(3.3) αu = sup
t≥0

α(σ(Xs, s ≤ t), σ(Xs, i ≥ u + t)) ≤ e−cu.

In addition, we assume that the joint distribution fXs,Xt between Xs and Xt exists
and that fXs,Xt = fX0,X|t−s| . Applying Theorem 6, we obtain the following result:

Corollary 7. Suppose that gu = fX0,Xu − f ⊗ f exists for u �= 0, and that the
function u 
→ supx,y |gu(x, y)| is integrable on ]0, ∞[ and gu(·, ·) is continuous at
(x, x) for each u > 0. In addition assume that the strong mixing coefficients of the
process satisfy (3.3). Then for all positive sequences aT with

aT → 0,
a[T ]

aT
→ 1, and

aT Th2
T

(log T )4
→ ∞ ,

the sequence
√

T (fT (x) − EfT (x)) satisfies (2.4) with speed aT and the good rate
function

(3.4) I(t) = t2
/(

4
∫ ∞

0

gu(x, x)du
)−1

.
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Furthermore if f is differentiable and such that f ′ is l-Lipschitz for a positive con-
stant l, and if aT Th4

T → 0, then the sequence
√

T (fT (x) − f(x)) satisfies (2.4) with
speed aT and the good rate function defined by (3.4).

Some examples of diffusion processes satisfying Condition (3.3) may be found in
Veretennikov [20] (see also Leblanc, [15]).

4. Proofs

First let us comment on the variance of partial sums. By using the notation (1.4),
for any compact set KA included in [a, a+A] where A > 0 and a ≥ 0, we have that

Var(SKA
) ≤ A sup

i>0

(
Var(Xi) + 2

∑
j>i

|Cov(Xi, Xj)|
)

.

If the variables are bounded by M , then by using the definition (1.2), we get that

Var(SKA
) ≤ A

(
1 + 8

∑
i≥1

αi

)
M2 ≤ KAM2.

If some degrees of stationarity are available we can have better upper bounds. For
instance if P(|Xn| > x) ≤ P(|X0| > x), then by Theorem 1.1 in Rio [18],

Var(SKA
) ≤ A

(
Var(X0) + 4

∑
i≥1

EX2
0I(|X0| ≥ Q(2αi))

)
,

where Q(u) = inf{t > 0, P(|X0| > t) ≤ u} for u in ]0, 1].

4.1. Preliminary lemmas

The first step is to prove an upper bound on the Laplace transform, valid for small
values of t. Without restricting the generality it is more convenient to embed the
index set into continuous time. In the following we shall use the notation (1.4).

Lemma 8. Let (Xn)n≥1 be as in Theorem 1. Let B ≥ 2 and a ≥ 0. Then for any
subset KB of (a, a + B] which is a finite union of intervals, and for any positive t
with tM ≤ ( 1

2 ) ∧ ( c
2B )1/2, we have

(4.1) log E exp(tSKB
) ≤ B

(
6.2t2v2 +

Mt

2
exp

(
− c

2tM

))
,

where v2 is defined by (2.2).

Remark 9. Notice that under our conditions v2 ≤ KM2 where K = 1+8
∑

i≥1 αi.

Proof of Lemma 8. If tM ≤ 4/B, then tSKB
≤ 4, which ensures that

exp(tSKB
) ≤ 1 + tSKB

+
e4 − 5

16
t2(SKB

)2,

since the function x 
→ x−2(ex − x − 1) is increasing. Now (e4 − 5)/16 ≤ 3.1. Hence

(4.2) E exp(tSKB
) ≤ 1 + 3.1Bv2t2,
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which implies Lemma 8 by taking into account that log(1 + x) ≤ x.
If tM > 4/B, it will be convenient to apply Lemma 15 in Appendix, to get the

result. Let p be a positive real to be chosen later on. Let k = [B/2p], square brackets
denoting the integer part. We divide the interval (a, a + B] into 2k consecutive
intervals of equal size B/(2k). Denote these subintervals by {Ij ; 1 ≤ j ≤ 2k} and
let

S̃1 =
k∑

j=1

SKB ∩I2j−1 and S̃2 =
k∑

j=1

SKB ∩I2j .

By the Cauchy-Schwarz inequality,

(4.3) 2 log E exp(tSKB
) ≤ log E(2tS̃1) + log E exp(2tS̃2).

Now let p = 1/(tM). Since (Xn)n≥1 satisfies Condition (1.3), and since B/(2k) ≥
p ≥ 2, by applying Lemma 15 in Appendix, we obtain

E exp(2tS̃2) ≤ k exp
(MBt

2
− cB

2k

)
+

k∏
j=1

E exp(2tSKB ∩I2j ).

Notice that we are in the case tM > 4/B implying that p ≤ B/4 and then k ≥ 2.
Now, under the assumptions of Lemma 8, we have tM ≤ (c/(2B))1/2 which ensures
that

MBt − cB

2k
≤ MBt − cp ≤ MBt − c

tM
≤ − c

2Mt
.

Therefore,

E(exp(2tS̃2)) ≤ BMt

2
exp(−c/(2tM)) +

k∏
j=1

E exp(2tSKB ∩I2j ).

Since the random variables (Xi)i≥1 are centered, the Laplace transforms of S̃2 and
each of (SKB ∩I2j )j≥1 are greater than one. Hence applying the inequality

(4.4) | log x − log y| ≤ |x − y| for x ≥ 1 and y ≥ 1,

we derive that

log E(exp(2tS̃2)) ≤
k∑

j=1

log E exp(2tSKB ∩I2j ) +
BMt

2
exp(−c/(2tM)).

Next |2tSKB ∩I2j | ≤ 2tMB/(2k). Since p ≤ B/4, k ≥ B/(4p) implying that
|2tSKB ∩I2j | ≤ 4, and consequently we may repeat the arguments of the proof of
(4.2), so that

k∑
j=1

log E exp(2tSKB ∩I2j ) ≤ 6.2Bt2v2.

It follows that

log E exp(2tS̃2) ≤ 6.2Bt2v2 + (BMt/2) exp(−c/(2tM)).

Clearly the same inequality holds true for the log-Laplace transform of S̃1 which,
together with relation (4.3), gives the result.
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The key lemma for proving our theorems is a new factorization lemma. Its proof
combines the ideas of Bernstein big and small type argument with a twist, diadic
recurrence and Cantor set construction.

Lemma 10. Let (Xi)i≥1 be as in Theorem 1. Then, for every A ≥ 2(c ∨ 10)
there exists a subset KA of [0, A], with Lebesgue measure larger than A/2 (not
depending on the random process) such that for all t, 0 ≤ tM ≤ c0/(log A) where

c0 = c
8 ∧

√
c log 2

8

(4.5) log(E exp(tSKA
)) ≤ 6.2v2t2A + (c + 1)A−1 exp(−c/4tM).

where v2 is defined by (2.2). Moreover, if A ≥ 4 ∨ (2c) for all 0 ≤ tM < c∧1
2 , we

can find a constant C depending only c such that

(4.6) log(E exp(tS(0,A]) ≤ Ct2M2A log A.

Proof of Lemma 10. The proof is inspired by the construction of a “Cantor set”
and has several steps.

Step 1. A “Cantor set” construction. Let A be a strictly positive real number
strictly more than one. Let δ ∈ (0, 1) that will be selected later, and let kA be
the largest integer k such that ((1 − δ)/2)k ≥ 1/A. We divide the interval [0, A]
in three parts and delete the middle one of size Aδ. The remaining ordered sets
are denoted K1,1, K1,2 and each has the Lebesgue measure A(1 − δ)/2. We repeat
the procedure. Each of the remaining two intervals K1,1, K1,2, are divided in three
parts and the central one of length Aδ(1 − δ)/2 is deleted. After j steps (j ≤ kA),
we are left with a disjoint union of 2j intervals denoted by Kj,i, 1 ≤ i ≤ 2j , each of
size A((1 − δ)/2)j and we deleted a total length

∑j−1
i=0 Aδ(1 − δ)i = A(1 − (1 − δ)j).

We use the first index of sets Kj,i to denote the step, and second one to denote its
order. Set k = kA when no confusion is allowed, and define

(4.7) KA =
2k⋃
i=1

Kk,i.

We shall use also the following notation: for any 
 in {0, 1, . . . , kA},

KA,�,j =
j2k−�⋃

i=(j−1)2k−�+1

Kk,i,

implying that for any 
 in {0, 1, . . . , k}: KA =
⋃2�

j=1 KA,�,j .
Step 2. Proof of Inequality (4.5). Here we consider KA as constructed in step 1,

with
δ =

log 2
2 log A

.

Since A ≥ 2, with this selection of δ we get that δ ≤ 1/2. Since k(A) ≤ log A/ log 2,
it follows that

λ
(
[0, A] \ KA

)
≤ Aδk(A) ≤ A/2 whence λ(KA) ≥ A/2.

We estimate now the Laplace transform of SKA
. We first notice that since KA is

included in [0, A], then if tM ≤ ( c0
log A ) ∧

√
c

2A , by applying Lemma 8, we derive
that

log E exp(tSKA
) ≤ 6.2At2v2 + A

tM

2
exp(−c/(2tM)).
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Since tM ≤ c/(8 log A), we have

(4.8) exp(−c/(2tM)) ≤ A−2 exp(−c/(4tM)).

Consequently

log E exp(tSKA
) ≤ 6.2At2v2 + A−1 tM

2
exp(−c/(4tM)),

proving (4.5) since tM ≤ 1/2. Then we assume in the rest of the proof that
(c/(2A))1/2 < tM ≤ c0/(log A), and we shall then estimate the Laplace trans-
form of SKA

by the diadic recurrence. Let t be a positive real. Since KA,1,1 and
KA,1,2 are spaced by an interval of size Aδ and Aδ ≥ 2 (since A ≥ 20), by using
Lemma 15 below and condition (1.3), we derive that

E exp(tSKA
) = E exp(tSKA,1,1) exp(tSKA,1,2)

≤ E exp(tSKA,1,1)E exp(tSKA,1,2) + exp(−cAδ + A(1 − δ)tM).

Since the variables are centered, E exp(tSKA,1,i
) ≥ 1 for i = 1, 2. Hence by taking

into account (4.4), we obtain that

(4.9) log E exp(tSKA
) ≤

∑2

i=1
log E exp(tSKA,1,i

) + exp(−cAδ + A(1 − δ)tM).

Now, let

(4.10) 
 = 
(t) = inf
{

k ∈ Z : A((1 − δ)/2)k ≤ c

2(tM)2

}
.

Notice that 
(t) ≥ 1 since t2M2 > c/(2A). In addition by the selection of kA and
since δ ≤ 1/2 and tM ≤

√
c
8 , it follows that 
(t) ≤ kA. Notice also, by the bound

on tM and since A ≥ 4, we have

Aδ
(1 − δ)�(t)−1

2�(t)−1
>

cδ

2(tM)2
≥ 2.

Using the homogeneity properties of KA, the decomposition (4.9) and iterating
until 
(t), we get that

log E exp(tSKA
) ≤

2�∑
j=1

log E exp(tSKA,�,j
)

+
�−1∑
j=0

2j exp
(

− cAδ
(1 − δ)j

2j
+ 2tMA

(1 − δ)j+1

2j+1

)
.(4.11)

Consequently, for any t ≤ cδ/(2M),

(4.12) log E exp(tSKA
) ≤

2�∑
j=1

log E exp(tSKA,�,j
) +

�−1∑
j=0

2j exp
(

− cAδ

2
(1 − δ)j

2j

)
.

Whence, since 2�(t) ≤ A and tM ≤ cδ/2 we obtain

�(t)−1∑
j=0

2j exp
(

− cAδ

2
(1 − δ)j

2j

)
≤ 2�(t) exp

(
− c2δ/(2tM)2) ≤ A exp(−c/(2tM)

)
.
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Now we estimate each of the terms E exp(tSKA,�,j
). By the definition of 
(t) the

conditions of Lemma 8 are satisfied for SKA,�,j
with B = A((1 − δ)/2)�(t). Conse-

quently,
log E exp(tSKA,�,j

) ≤ B
(
6.2v2t2 + tM exp(−c/(2tM))

)
.

Therefore, by using (4.8), we derive that

log E exp(tSKA
) ≤ 6.2v2t2A + tMA−1 exp(−c/4tM) + A−1 exp(−c/(4tM))

≤ 6.2v2t2A + (c + 1)A−1 exp(−c/4tM).

This ends the proof of Inequality (4.5).
Proof of Inequality (4.6). The proof of this part uses the same construction with

the difference that we do not remove the holes from the set and we use instead their
upper bound. Once again if tM ≤ (c/(2A))1/2, applying Lemma 8 together with
the fact that exp(−c/(2tM)) ≤ 2tM/c and A ≥ 4, we derive that

log E exp(tS(0,A]) ≤ A log A(6.2t2v2 + (tM)2/c),

Taking into account that v2 ≤ KM2 with K = 1 + 8
∑

i≥1 αi, the inequality (4.6)
holds true with C ≥ 6.2K + 1/c. Then we can assume without loss of generality
in the rest of the proof that (c/(2A))1/2 < tM < c∧1

2 . We start by selecting δ =
2tM/c < 1. For this δ, we select kA as before and 
 = 
(t) as in relation (4.10). At
first stage we divide as before the interval [0, A] in 3 parts, the central one having a
Lebesgue measure Aδ. Notice that Aδ ≥ 2 since tM >

√
c/(2A) ≥ c/A by the fact

that A ≥ 2c. Consequently, since the variables are bounded by M , by condition
(1.3),

E exp(tS(0,A]) ≤ [E exp(tSKA,1,1) exp(tSKA,1,2)]e
tAMδ

≤ [E exp(tSKA,1,1)E exp(tSKA,1,2) + exp(−Aδc + AtM)]etAMδ.

Since the variables are centered, E exp(tSKA,1,i
)) ≥ 1 for i = 1, 2. Hence applying

(4.4) and recalling that δ = 2tM/c, we obtain

log E exp(tS[0,A]) ≤
∑2

i=1
log E exp(tSKA,1,i

)) + exp(−Aδc/2) + tAMδ.

Then, we repeat the same procedure starting with KA,1,1 and KA,1,2, and after

 = 
(t) iterations we obtain

log E exp(tS(0,A]) ≤
2�∑

i=1

log E exp(tSKA,�,i
)

+
�−1∑
i=0

2i

(
exp

(
−δc

A(1 − δ)i

2i+1

)
+ tMδ

A(1 − δ)i

2i

)
.

The above computation is valid since by the definition of 
(t)

Aδ
(1 − δ)�(t)−1

2�(t)−1
>

cδ

2(tM)2
=

2tM

2(tM)2
≥ 2.

By the above considerations and the selection of 
, proceeding as in the proof of
Inequality (4.5), we obtain

log E exp(tS(0,A]) ≤ 6.2v2t2A + A

(
tM

2
+ 1

)
exp(−c/(2tM)) + tMδA

� −1∑
i=0

(1 − δ)j .
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Now notice that for the selection δ = 2tM/c and since 
 ≤ kA, we have

tAMδ
 ≤ 2t2M2A log A/(c log 2).

Also since for any x ≥ 0, exp(x) ≥ x ∨ (x2/2), we get

exp(−c/(2tM)) ≤ (2tM/c) ∧ (8t2M2/c2).

Overall

log E exp(tS(0,A]) ≤ 6.2v2t2A + t2M2A(1/c + 8/c2) + 2t2M2A log A/(c log 2).

By taking into account that v2 ≤ KM2 we obtain the desired result with the
constant

(4.13) C = 6.2K + (1/c + 8/c2) + 2/(c log 2),

where K = (1 + 8
∑

i≥1 αi).

To prepare for the proof of Theorem 1 we shall reformulate the conclusions of
Lemma 10 in an alternative form. Keeping the same notations as in Lemma 10, the
following corollary holds.

Corollary 11. Let (Xi)i≥1 be as in Theorem 1. Assume that A ≥ 2(c ∨ 10) and

0 ≤ tM ≤ c0/(log A) with c0 = c
8 ∧

√
c log 2

8 . Then, there is a constant C ′ depending
only on c such that

(4.14) log E(exp(tSKA
)) ≤ C ′2A(v + M/A)2

1 − t(log A)/c0
.

Assume that A ≥ 2(c ∨ 10) and 0 ≤ tM < (c ∧ 1)/2, then for the constant C defined
in (4.13),

(4.15) log E(exp(tS(0,A]) ≤ Ct2AM2 log A

1 − 2tM/(c ∧ 1)
.

Before proving Theorem 1 we remark that the second part of the above corollary
already gives a bound on the tail probability with a correction in the quadratic
term in x.

Corollary 12. Under conditions of Theorem 1, for all n ≥ 2(c ∨ 2) and x ≥ 0,

(4.16) P(|Sn| ≥ x) ≤ exp
(

− x2

n(log n)4CM2 + 4Mx/(c ∧ 1)

)
,

where C is defined in (4.13).

4.2. Proof of Theorem 1

If n ≤ 16(c ∨ 10)2 then for any positive t such that tM < 1
4(c∨10)2 we get that

|tSn| ≤ 4. Hence as in the beginning of the proof of Lemma 8, we derive that

log E(exp(tSn)) ≤ 3.1
nv2t2

1 − 4tM(c ∨ 10)2
.
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We assume now that n ≥ 16(c ∨ 10)2. Let us first introduce the following nota-
tion: for any positive real A, let KA be the Cantor set as defined in step 1 of the
proof of Lemma 8, let λ(KA) be the Lebesgue measure of KA, and let FA be the
nondecreasing and continuous function from [0, A] onto [0, A − λ(KA)] defined by

(4.17) FA(t) = λ([0, t] ∩ Kc
A) for any t ∈ [0, A],

where Kc
A = [0, A] \ KA. Let F −1

A be the inverse function of FA. Let A0 = n. Define
then the real-valued process (X(1)

t )t from (Xt)t∈[0,A0] by

X
(1)
t = XF −1

A0
(t) for any t ∈ [0, A0 − λ(KA0)].

Let A1 = A0 − λ(KA0). Clearly, the random process (X(1)
t )t∈[0,A1] is uniformly

bounded by M and verifies (1.5) with the same constant. We now define inductively
the sequence (Ai)i≥0 and the random processes (X(i)

t )i∈[0,Ai] as follows. First A0 =
n and (X(0)

t ) = (Xt). And second for any nonnegative integer i, Ai+1 = Ai −λ(KAi)
and, for any t in [0, Ai+1],

(4.18) X
(i+1)
t = X

(i)

F −1
Ai

(t)
.

Then, for any nonnegative integer j, the following decomposition holds

(4.19)
∫ n

0

Xu du =
j−1∑
i=0

∫
KAi

X(i)
u du +

∫ Aj

0

X(j)
u du.

Let

(4.20) Yi =
∫

KAi

X(i)
u du for 0 ≤ i ≤ j − 1 and Zj =

∫ Aj

0

X(j)
u du.

Now set
L = Ln = inf{j ∈ N

∗, Aj ≤ n/(log n)}.

Notice that, since Aj ≤ n/2j ,

(4.21) L ≤ [(log log n)/(log 2)] + 1.

Also by the definition of L, AL−1 ≥ n/(log n). Since log n ≤ 2
√

n, it follows that

AL−1 ≥
√

n/2 ≥ 2(c ∨ 10).

Hence, we can apply the inequality (4.14) to each Yj for all 0 ≤ j ≤ Ln − 1. Conse-
quently for every 0 ≤ j ≤ Ln −1, and any positive t satisfying tM < c0/(log(n/2j)),

(4.22) log E(exp(tYj)) ≤ C ′2(v(n/2j)1/2 + (n/2j)−1/2M)2

1 − Mt(log(n/2j))/c0
.

To estimate ZL, we first assume that AL ≥ 2(c ∨ 2). Applying inequality (4.15) we
then obtain, for any positive t such that tM < (c ∧ 1)/2,

log E(exp(tZL)) ≤ Ct2M2n

1 − 2tM/(c ∧ 1)
.
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To aggregate all the contributions, we now apply Lemma 13 of Appendix with κi =
M(log(n/2j))/c0 and σ2

i = C ′j)1/2 +(n/2j)−1/2M)2 for 0 ≤ i ≤ L − 1, σ2
L = CnM2

and κL = 2M/(c ∧ 1). Consequently, by (4.21), there exists C1 depending only on
c such that

L∑
i=1

κi + κL ≤ C1M(log n)(log log n).

Furthermore

L−1∑
i=0

σi + σL ≤
√

C ′(4vn1/2 + 2M((log n)/n)1/2) +
√

CnM.

Hence by Lemma 13, for any n ≥ 4 and any positive t < 1/(MC1 log n(log log n))
there exists C2 depending only on c such that

log E(exp(tSn)) ≤ C2nt2M2

1 − tMC1(log n)(log log n)
,

and the result follows. If AL ≤ 2(c ∨ 2), it suffices to notice that if tM < 2/(c ∨ 2),
then |tZL| ≤ 4. Hence as in the proof of Lemma 8, we derive that

log E(exp(tZL)) ≤ 3.1
4(c ∨ 2)2t2M2

1 − tM(c ∨ 2)/2
,

and we proceed as before with κL = M(c ∨ 2)/2 and σL = 2(c ∨ 2)M . Inequality
(2.1) follows from the Laplace transform estimate by standard computations.

4.3. Proof of Theorem 2

We proceed as in the proof of Theorem 1 with the difference that for n ≥ 2(c ∨ 10),
we choose

L = Ln = inf{j ∈ N
∗, Aj ≤ 2(c ∨ 10)}.

Consequently,

L ≤
[ log(n) − log(2(c ∨ 10))

log 2

]
+ 1.

4.4. Proof of Theorem 4

The proof is based on the construction of the Cantor-like sets as described in the
proof of Lemma 10. Let (εn)n≥1 be a sequence converging to 0 that will be con-
structed later. Without loss of generality we assume εn < log 2 and define

(4.23) δn =
εn

log n
.

We impose for the moment that εn has to satisfy

(4.24) δn
√

nan → ∞.

(It is always possible to choose such an εn since (2.5) is assumed). Select in addition

kn = inf
{

j ∈ N
∗ : n

(1 − δn)j

2j
≤ √

nan

}
.
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Construct the intervals Kkn,i, 1 ≤ i ≤ 2kn , as in the step 1 of the proof of
Lemma 10. Then Rn = (0, n]\Kn, with Kn = ∪2kn

i=1Kkn,i, has a Lebesgue measure
smaller than δnnkn = o(n) and by inequality (2.1) there exists a constant C
depending only on c such that

an log P(|SRn | ≥ xσn/
√

an) ≤ − Cx2σ2
n

δnknnM2 + Mx
√

σ2
n/an(log n)(log log n)

.

Taking into account that lim infn→∞ σ2
n/n > 0, Condition (2.5) ensures that

lim
n→∞

an log P(|SRn | ≥ xσn/
√

an) = −∞.

According to Theorem 4.2.13 in Dembo and Zeitouni [12], SRn is negligible for
the moderate deviations type of behavior. To treat the main part we rewrite the
inequality (4.11) by using both sides of Lemma 15 from Appendix and the fact that
for n large enough, (4.24) entails that for any t

|tM |
σn

√
an

≤ δn/2 and nδn
(1 − δn)kn −1

2kn −1
> δn

√
nan ≥ 2,

(by using also the fact that lim infn σ2
n/n > 0). So, by definition of the sets Kkn,i

from relation (4.7), we get for any real t and n large enough,

∣∣∣ log E exp
( tSKn

σn
√

an

)
−

2kn∑
i=1

log E exp
( tSKkn,i

σn
√

an

)∣∣∣ ≤
kn −1∑
j=0

2j exp
(

− cnδn

2
(1 − δn)j

2j

)
.

Now, by the definition of kn notice that 2kn −1 ≤
√

n/an. Whence

kn −1∑
j=0

2j exp
(

−nδn
(1 − δn)j

2j

)
≤ 2kn exp

(
− c

2
δn

√
nan

)
≤ 2

√
n

an
exp

(
− c

2
δn

√
nan

)

≤ 2
√

nan

an
exp(−δn

√
nan) ≤ 2

an
exp

(
log(

√
nan) − c

2
δn

√
nan

)
.

We select now the sequence εn used in the construction of δn, in such a way that

(4.25) log(
√

nan) − c

2
δn

√
nan → ∞.

Denote

An =
√

nan

(log n)2
and Bn =

√
nan

(log n)(log log n)
.

If nan ≥ (log n)5 we select εn = A
−1/2
n . If nan < (log n)5 we take εn = B

−1/2
n .

Notice that by construction and by (2.5), εn → 0 as n → ∞ and (4.24) is satisfied.
It is easy to see that

log(
√

nan) − cδn
√

nan/2 → −∞ when n → ∞.

Indeed, if nan ≥ (log n)5, then εn = A
−1/2
n , so that

log(
√

nan) − cδn
√

nan/2 ≤ (log n)/2 − c

log n

An

2A
1/2
n

(log n)2

= (log n)(1 − cA1/2
n )/2.
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If nan < (log n)5, then εn = B
−1/2
n , so that

log(
√

nan) − cδn
√

nan/2 = log(
√

nan

(log n)5/2
) + log[(log n)5/2]

−cεnBn(log log n)/2 ≤ (5/2) log log n − cB1/2
n (log log n)/2.

Consequently, for any real t, we get

an

∣∣∣ log E exp
( tSKn

σn
√

an

)
−

2kn∑
i=1

log E exp
( tSKkn,i

σn
√

an

)∣∣∣ → 0 as n → ∞.

Therefore the proof is reduced to proving the MDP for a triangular array of
independent random variables S∗

Kkn,i
, 1 ≤ i ≤ 2kn , each having the same law as

SKkn,i
. By the selection of kn, for any 1 ≤ i ≤ 2kn , ‖SKkn,i

‖ ∞ ≤ M
√

nan. In
addition, for each ε > 0

lim
n→∞

1
σ2

n

∑2kn

j=1
E(S2

Kkn,j
I(|SKkn,j

| > εσn
√

an)) = 0,

by using inequality (2.1) to give an upper bound of P(|SKkn,i
| ≥ x). Hence, by

Lemma 14, we just have to prove that

(4.26) lim
n→∞

1
σ2

n

2kn∑
j=1

E(SKkn,j
)2 = 1.

With this aim we first notice that since CardRn = o(n), it follows that when n → ∞,
Var(SRn)/n → 0. Hence to prove (4.26), it suffices to prove that

(4.27) Var

(
2kn∑
i=1

SKkn,i

)/ 2kn∑
i=1

Var(SKkn,i
) → 1 as n → ∞.

Between the two sets Kkn,i and Kkn,j , for i �= j, there is a gap at least equal to
nδn21−kn(1 − δn)kn −1 > δn

√
nan, by the selection of kn. Consequently, since for all

j, ‖SKkn,j
‖ ∞ ≤ M

√
nan, by (1.2) we get

(4.28)∑2kn −1

i=1

∑2kn −1

j=i+1
cov(SKkn,i

, SKkn,j
) ≤ 4 × 2knM2nan

∑
j≥1

exp(−cjδn
√

nan).

Since 2kn ≤ 2
√

n/an, by using (4.25), it follows that

(4.29)
∑2kn −1

i=1

∑2kn −1

j=i+1
Cov(SKkn,i

, SKkn,j
) = o(n),

which together with the fact that C1n ≤ Var(
∑2kn

i=1 SKk,i
) ≤ C2n implies (4.27).

4.5. Proof of Theorem 6

The proof is similar to that of Theorem 4 with the following modifications. Inequal-
ity (2.3) is used instead of Inequality (2.1) (notice that (2.8) implies n/M2

n → ∞),
and the sequences εn (defining δn) and kn are selected as follows:

(4.30) εn → 0 and εn

√
nan

Mn(log n)2
→ ∞,
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and

kn = inf
{

j ∈ N
∗ : n(Mn ∨ 1)

(1 − δn)j

2j
≤ √

nan

}
.

Notice that with this selection, 2kn ≤ 2(Mn ∨ 1)
√

n/an. By the selection of εn, all
the steps of the previous theorem can be done similarly. Also to prove that

Var

(
2kn∑
i=1

SKkn,i

)
/

2kn∑
i=1

Var(SKkn,i
) → 1 as n → ∞,

we make use of Condition (2.7) together with the fact that by the selection of kn,
for all j, ‖SKkn,j

‖ ∞ ≤ √
nan. The inequality (4.28) becomes

2kn −1∑
i=1

2kn −1∑
j=i+1

Cov(SKkn,i
, SKkn,j

)

≤ 8(Mn ∨ 1)nan

√
n/an

∑
j≥1

exp(−cjδn(Mn ∨ 1)−1√
nan),

which implies (4.29) by the selection of δn and the fact that Mn = o(
√

n).

4.6. Proof of Corollary 7

For each n ≥ 1, let us construct the following sequence of triangular arrays: for any
i ∈ Z,

Xn,i =
1√
δhT

{ ∫ iδ

(i−1)δ

K
(x − Xt

hT

)
dt − E

∫ iδ

(i−1)δ

K
(x − Xt

hT

)
dt

}
,

where nδ = T , n = [T ] , (T ≥ 1) and consequently 2 > δ ≥ 1. Notice that

n∑
i=1

Xn,i = T
(
fT (x) − EfT (x)

)
.

Now for any k ≥ 1, the strong mixing coefficients αn(k) of the processes (Xn,i)i∈Z

are uniformly bounded by the strong mixing coefficient αk−1 of the process
(Xt, t ∈ R). Hence to apply Theorem 6, it suffices to show (2.7) and to prove
that

T −1Var

(
n∑

i=1

Xn,i

)
→ 2

∫ ∞

0

gu(x, x)du as n → ∞.

The above convergence was proved by Castellana and Leadbetter [7] under assump-
tions on gu. To prove (2.7), we first notice that for all j > i,

Cov(Xi,n, Xj,n) =
1

δh2
T

∫
R2

K
(x − y

hT

)
K

(x − z

hT

) ∫ iδ

iδ−δ

∫ jδ

jδ−δ

gt−s(y, z)dsdtdydz.

Consequently, since K is a kernel, for all j > i,

∣∣Cov(Xi,n, Xj,n)
∣∣ ≤

∫ (j−i+1)δ

(j−i−1)δ

sup
x,y

|gu(x, y)|du.
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Similarly

Var(Xi,n) ≤ 2
∫ δ

0

sup
x,y

|gu(x, y)|du.

Hence (2.7) holds with

v2 ≤ 2
∫ δ

0

sup
x,y

|gu(x, y)|du + 4
∫ ∞

0

sup
x,y

|gu(x, y)|du.

To finish the proof, it remains to notice that if f is differentiable and such that f ′

is l-Lipschitz for a positive constant l then, since K is a kernel,

|EfT (x) − f(x)| = O(h2
T )

(see for instance relation 4.15 in Bosq [3]).

Appendix

One of our tools is the technical lemma below, which provides bounds for the
log-Laplace transform of any sum of real-valued random variables. It comes from
Lemma 3 in Merlevède, Peligrad and Rio [17].

Lemma 13. Let Z0, Z1, . . . be a sequence of real valued random variables. Assume
that there exists positive constants σ0, σ1, . . . and κ0, κ1, . . . such that, for any i ≥ 0
and any t in [0, 1/ci[,

log E exp(tZi) ≤ (σit)2/(1 − κit).

Then, for any positive n and any t in [0, 1/(κ0 + κ1 + · · · + κn)[,

log E exp(t(Z0 + Z1 + · · · + Zn)) ≤ (σt)2/(1 − κt),

where σ = σ0 + σ1 + · · · + σn and κ = κ0 + κ1 + · · · + κn.

The next lemma is due to Arcones [2, Lemma 2.3] and it permits us to derive
the MDP for triangular array of independent r.v.’s.

Lemma 14 (Arcones [2]). Let {Xn,j ; 1 ≤ j ≤ kn} be a triangular array of inde-
pendent r.v.’s with mean zero. Let {an}n≥1 be a sequence of real numbers converging
to 0. Suppose that:
(i) The following limit exists and is finite:

lim
n→∞

∑kn

j=1
E(X2

n,j) = σ2,

(ii) There exists a constant C such that for each 1 ≤ j ≤ kn,

|Xn,j | ≤ C
√

an,

(iii) For each ε > 0

lim
n→∞

∑kn

j=1
E(X2

n,jI(|Xn,j | > ε
√

an) = 0.

Then for all real t, an

∑kn

j=1 log E exp(tXn,j) → t2σ2/2 and consequently the MDP

holds for (
∑kn

j=1 Xj,n) with speed an and good rate function I(t) = t2/(2σ2).
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We first recall the following lemma, which is a well-known corollary of Ibragi-
mov’s covariance inequality for nonnegative and bounded random variables.

Lemma 15 (Ibragimov [14]). Let Z1, . . . , Zp be real-valued nonnegative random
variables each a.s. bounded, and let

α = sup
k∈[1,p]

α(σ(Zi : i ≤ k), σ(Zi : i > k)).

Then
E(Z1 · · · Zp) ≤ E(Z1) · · · E(Zp) + (p − 1)α‖Z1‖ ∞ · · · ‖Zp‖ ∞,

and
E(Z1) · · · E(Zp) ≤ E(Z1 · · · Zp) + (p − 1)α‖Z1‖ ∞ · · · ‖Zp‖ ∞.
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