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Abstract: The limit behavior is studied for the distributions of normalized U -
and V -statistics of an arbitrary order with canonical (degenerate) kernels,
based on samples of increasing sizes from a stationary sequence of observa-
tions satisfying ϕ- or α-mixing. The case of m-dependent sequences is sepa-
rately studied. The corresponding limit distributions are represented as infinite
multilinear forms of a centered Gaussian sequence with a known covariance ma-
trix. Moreover, under ϕ-mixing, exponential inequalities are obtained for the
distribution tails of these statistics with bounded kernels.

1. Introduction. Preliminary results

In the present paper, we study the limit behavior of the distributions of normal-
ized canonical U - and V -statistics based on stationary observations under ϕ- or
α-mixing. Moreover, the Hoeffding-type exponential inequalities are obtained for
the distribution tails of the statistics mentioned. The approach based on a kernel
representation of the statistics under consideration as a multiple series, is quite
similar to the approach in [16] where the analogous limit theorems were obtained
for independent observations. First of all, introduce some definitions and notions
(see [12, 13]).

Let X1, X2, . . . be a stationary sequence of random variables with values in an
arbitrary measurable space {X, A } and distribution F . In addition to the stationary
sequence introduced above, we need an auxiliary sequence {X∗

i } consisting of inde-
pendent copies of X1.

Denote by L2(Xr, F r) the space of measurable functions f(t1, . . . , tr) defined
on the corresponding Cartesian power of the space {X, A } with the corresponding
product-measure and satisfying the condition Ef2(X∗

1 , . . . , X∗
r ) < ∞.

Definition 1. A function f(t1, . . . , tr) ∈ L2(Xr, F r) is called canonical (or degene-
rate) if

(1.1) Ef(t1, . . . , tk−1, Xk, tk+1, . . . , tr) = 0
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for every k ≤ r and all tj ∈ X.

Introduce one more notation:

Ir
n = {(j1, . . . , jr) : jk ≤ n, jk �= jl for k �= l}.

Define a von Mises statistic (or a V -statistic) by the formula

(1.2) Vn ≡ Vn(f) := n−r/2
∑

1≤j1,...,jr ≤n

f(Xj1 , . . . , Xjr).

In the sequel, we consider only the statistics where the function f(t1, . . . , tr) (the
so-called kernel of the statistic) is canonical. In this case, the corresponding von
Mises statistic is also called canonical. For independent {Xi} (the i.i.d. case), such
statistics called canonical V -statistics as well, are studied during last sixty years
(see the reference and examples of such statistics in [13]). For the first time, some
limit theorems in the bivariate case were obtained in [15, 11]. In addition to V -
statistics, the so-called U -statistics were studied as well:

(1.3) Un ≡ Un(f) := n−r/2
∑

(j1,...,jr)∈Ir
n

f(Xj1 , . . . , Xjr).

Notice also that any U -statistic is represented as a finite linear combination of
canonical U -statistics of orders from 1 to m (called the Hoeffding decomposition,
see [13]). This fact allows us to reduce an asymptotic analysis of arbitrary U -
statistics to that for canonical ones.

In this connection, recall some classic results connected with the expansion of a
canonical function into a multiple orthogonal series with respect to an orthogonal
basis of the Hilbert space L2(X, F ). Let X be a separable metric space. Then the
Hilbert space L2(X, F ) is separable. It means that, in this space, there exists a
countable orthonormal basis. Put e0(t) ≡ 1. Using the Gram–Schmidt orthogonali-
zation [12], one can construct an orthonormal basis in L2(X, F ) containing the
constant function e0(t) ≡ 1. Denote by {ei(t)}i≥0 such basis. Then Eei(X1) = 0
for every i ≥ 1 due to the orthogonality of all the other basis elements to the
function e0(t). The normalizing condition means that Ee2

i (X1) = 1 for all i ≥ 1.
Notice that the collection of functions{

ei1(t1)ei2(t2) · · · eir (tr); i1, i2, . . . , ir = 0, 1, . . .
}

is an orthonormal basis in the Hilbert space L2(Xr, F r) (for example, see [12]).
Thus, one can represent the kernel f(t1, . . . , tr) of the statistics under consider-

ation as a multiple orthogonal series in L2(Xr, F r):

(1.4) f(t1, . . . , tr) =
∞∑

i1,...,ir=0

fi1,...,irei1(t1) · · · eir(tr),

where the series on the right-hand side of equality (1.4) converges in the norm
of L2(Xr, F r). Moreover, if the coefficients {fi1,...,ir } are absolutely summable then,
due to the B. Levi theorem and the simple estimate E|ei1(X

∗
1 ) · · · eir(X

∗
r )| ≤ 1, the

series in (1.4) converges almost surely with respect to the distribution F r of the
vector (X∗

1 , . . . , X∗
r ).

Consider the case r = 2 and the integral linear operator with a symmetric kernel
f ∈ L2(X2, F 2) mapping the space L2(X, F ) into itself. Since this linear operator is
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completely continuous and self-conjugate, in the separable Hilbert space L2(X, F ),
there exists an orthonormal basis consisting of eigenvectors of this integral operator
and, for this basis, representation (1.4) for r = 2 is valid. Multiply by an arbitrary
element ek(t2) the both sides of (1.4) and integrate these modified parts with respect
to the distribution F (dt2). Taking orthogonality of the basis elements into account
we obtain the new identity

λkek(t1) =
∞∑

i=0

fi,kei(t1),

where λk is the corresponding eigenvalue. From here it immediately follows that
fk,k = λk and fi,k = 0 for i �= k. Therefore, for this basis in the case r = 2, formula
(1.4) has the form

(1.5) f(t1, t2) =
∞∑

k=0

λkek(t1)ek(t2),

which was repeatedly employed by many authors.
Notice also the following property of canonical kernels.

Proposition 1 ([6]). If f(t1, . . . , tr) is a canonical kernel then e0(t) is absent in
expansion (1.4), i. e., expansion (1.4) has the form

(1.6) f(t1, . . . , tr) =
∞∑

i1,...,ir=1

fi1,...,irei1(t1) · · · eir(tr).

Notice also that if the kernel f(t1, t2) in (1.5) is canonical then the constant
function e0(t) is the eigenfunction corresponding to the eigenvalue λ0 = 0 of the
integral operator. So, in this case, the summation in (1.5) starts with k = 1.

Thus, after replacement of the vector (t1, . . . , tr) by the independent observa-
tions (X∗

1 , . . . , X∗
r ), the partial sums of the series on the right-hand side of (1.6)

(or of (1.5) in the case r = 2) mean-square converge to the random variable
f(X∗

1 , . . . , X∗
r ) and hence they converge in distribution. However, in the present

paper, we deal with dependent observations for which this property in general is
not valid.

2. Limit theorems for U- and V -statistics under α- or ϕ-mixing

We study stationary sequences {Xj } satisfying certain mixing conditions. Recall
the definitions of the most popular mixing conditions. For j ≤ k, denote by Mk

j the
σ-field of all events generated by the random variables Xj , . . . , Xk.

Definition 2. A sequence X1, X2, . . . satisfies α-mixing (or strong mixing) if

α(i) := sup
k≥1

sup
A ∈ Mk

1 , B ∈ M∞
k+i

∣∣P(AB) − P(A)P(B)
∣∣ → 0 as i → ∞.

Definition 3. A sequence X1, X2, . . . satisfies ϕ-mixing (or uniformly strong mix-
ing) if

ϕ(i) := sup
k≥1

sup
A ∈ Mk

1 , B ∈ M∞
k+i

, P(A)>0

∣∣P(AB) − P(A)P(B)
∣∣

P(A)
→ 0 as i → ∞.
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Definition 4. A sequence X1, X2, . . . satisfies ψ-mixing if

ψ(i) := sup
k≥1

sup
A ∈ Mk

1 , B ∈ M∞
k+i

, P(A)P(B)>0

∣∣P(AB) − P(A)P(B)
∣∣

P(A)P(B)
→ 0 as i → ∞

and ψ(1) < ∞.

It is clear that the sequences {α(i)},
{
ϕ(i)

}
, and {ψ(i)} are nondecreasing and

ψ-mixing is stronger than ϕ-mixing which in turn implies α-mixing.
In the sequel, in the case of ϕ-mixing, we assume that

(2.1)
∞∑

k=1

ϕ1/2(k) < ∞.

Note that this known condition provides the cental limit theorem for the corre-
sponding stationary sequences (for example, see [3]).

Introduce also the following restriction on finite-dimensional distributions of the
stationary sequence {Xi}.

(AC) For every collection of pairwise distinct subscripts (j1, . . . , jr), the distri-
bution of (Xj1 , . . . , Xjr) is absolutely continuous with respect to the distribution of
(X∗

1 , . . . , X∗
r ).

Notice that this restriction will be nontrivial only for sequences under α- or ϕ-
mixing because, in the case of ψ-mixing, by induction on r, from Definition 4 we
can easily deduce the inequality

P (Xj1 ∈ A1, . . . , Xjr ∈ Ar) ≤
(
1 + ψ(1)

)r
r∏

k=1

P (Xk ∈ Ak)

which is valid for every collection of Borel subsets (A1, . . . , Ar) and for every pair-
wise distinct subscripts (j1, . . . , jr). From here condition (AC) immediately follows.

Remark 1. As was mentioned before, the condition

(2.2)
∞∑

i1,...,ir=1

|fi1,...,ir | < ∞

implies convergence of the series in (1.6) almost surely with respect to the distribu-
tion of the vector (X∗

1 , . . . , X∗
r ). So, under condition (AC), this convergence is valid

almost surely with respect to the distribution of the random vector (Xj1 , . . . , Xjr).
In other words, if condition (AC) is fulfilled then, for any pairwise distinct sub-
scripts j1, . . . , jr, we can substitute the random variables Xj1 , . . . , Xjr for t1, . . . , tr
in (1.6).

Remark 2. Under restriction (2.2), one can sometimes obtain the above-mentioned
multiple series expansions without any restrictions like (AC) on joint distributions of
the initial stationary sequence. For example, if the kernel f(t1, . . . , tr) is continuous
in R

r and all the basis functions ek(t) are continuous and bounded uniformly in k
then, under condition (2.2), equality (1.6) is transformed into the identity in R

r (see
the proof of Theorem 2 below in [6]). Therefore, in this identity, one can substitute
arbitrarily dependent random variables Xj1 , . . . , Xjr (in particular, for coinciding
subscripts jk) for the arguments t1, . . . , tr.
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Under ϕ-mixing for the sequence {Xi} but without the restrictions mentioned
in Remarks 1 and 2, in general one cannot use expansions (1.5) or (1.6). Such
mistake is contained in [8] (see also [13]), where it is claimed that, in the case of
ϕ-mixing stationary observations for r = 2, under condition (2.1) only but without
any restrictions like (AC) and the regularity condition mentioned in Remark 2, the
following analogue of von Mises’ result [15] is valid:

(2.3) Un
d→

∞∑
k=1

λk(τ2
k − 1),

where {λk } are the eigenvalues of the integral operator with the symmetric ker-
nel f(t1, t2), which are assumed to be summable (i. e., under condition (2.2)), and
{τk } is a Gaussian sequence of centered random variables with the covariances

(2.4) Eτkτl = Eek(X1)el(X1) +
∞∑

j=1

[
Eek(X1)el(Xj+1) + Eel(X1)ek(Xj+1)

]
,

where {ek(t)} are the eigenfunctions corresponding to the eigenvalues {λk } and
forming an orthonormal basis in L2(X, F ) (actually, the first summand on the right-
hand side (2.4) is the Kronecker symbol δk,l). In (2.3) and in the sequel, we admit
degeneracy of some random variables τi. In other words, we add to the class of
Gaussian distributions the all weak limits when the variance tends to zero. Actually,
the similar agreement is contained in [3]. To prove relation (2.3) in [8], the author use
the expansion of the kernel f(t1, t2) in series (1.5) with respect to the basis {ek(t)}.
Due to the above-mentioned arguments, we could now substitute the independent
observations X∗

i and X∗
j for the variables t1 and t2. The same is true for a pair Xi

and Xj from a stationary sequence satisfying condition (AC). However, in [8], the
author substituted a pair Xi and Xj from an arbitrary stationary sequence under
ϕ-mixing with restriction (2.1) only, for the variables t1 and t2. But under this
replacement, the above-mentioned equalities may not be fulfilled with a nonzero
probability. Moreover, in this case, the limit law in (2.3) may change the form. The
idea of constructing examples of such a kind is very simple: We need to construct
a stationary sequence {Xi} with a non-atomic marginal distribution, such that its
elements Xi and Xj coincide with nonzero probability for some subscripts i �= j. We
then can change the values of f on diagonal subspaces to break the above-mentioned
identities with a nonzero probability when we replace the arguments X∗

i and X∗
j of

the kernel with the dependent pair Xi and Xj . The corresponding construction is
contained in the proof of the following assertion in [6].

Proposition 2. There exist a stationary sequence {Xi} and a canonical f(t1, t2)
satisfying all the restrictions in [8]. However, under substituting the observations X1

and X2 for t1 and t2 respectively, the series in (1.5) does not coincide with the ker-
nel. Moreover, the weak limit for the distributions of the corresponding U -statistics
differs from (2.3).

The proof of Proposition 2 is contained in Section 4.
So, under certain conditions (say, conditions (2.2) and (AC)), U -statistic (1.3)

can be represented as the following multiple series converging almost surely:

Un = n−r/2
∞∑

i1,...,ir=1

fi1,...,ir

∑
(j1,...,jr)∈Ir

n

ei1(Xj1) · · · eir(Xjr ).
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Further analysis is similar to that in the i.i.d. case, i. e., it is reduced to extraction
of V -statistics with splitting kernels from the multiple sum on the right-hand side
of this identity. The main fragment of the proof in [16] is as follows: The value

Un(ei1 · · · eir) = n−r/2
∑

(j1,...,jr)∈Ir
n

ei1(Xj1) · · · eir(Xjr )

is represented as a linear combination of products of the values

1√
n

n∑
j=1

ei(Xj),
1
n

n∑
j=1

ei1(Xj)ei2(Xj), . . . ,
1

nk/2

n∑
j=1

ei1(Xj) · · · eik
(Xj).

The proof has a combinatorial character and does not depend of joint distributions
of the random variables {Xj }. Further we apply the corresponding laws of large
numbers as well as the central limit theorem and the following simple assertion.

Proposition 3. Let Φ(x, y), x ∈ R
k, y ∈ R

l, be a continuous function. Let {ζn} be
an arbitrary sequence of random vectors in R

k weakly converging to some random
vector ζ. Let {ηn} be a sequence of random vectors in R

l defined on a common
probability space with {ζn}, which converges in probability to a constant vector c0.
Then the following weak convergence is valid:

Φ(ζn, ηn) d→ Φ(ζ, c0).

In the present section, Φ(x, y) is a polinomial of components of vectors x and y,
and the sequence ζn is defined by the formula

ζn :=

{
n−1/2

n∑
j=1

e1(Xj), . . . , n−1/2
n∑

j=1

eN (Xj)

}
,

and ηn is the finite collection (vector){
n−k/2

n∑
j=1

ei1(Xj) · · · eik
(Xj); 2 ≤ k ≤ r, i1, . . . , ik ≤ N

}
;

here N is an arbitrary natural number.
So, under the condition f(t1, . . . , tr) ∈ L2(Xr, F r), in the case of i.i.d. random

variables {Xi}, it was proved in [16] that

(2.5) Un
d→

∞∑
i1,...,ir=1

fi1,...,ir

∞∏
j=1

Hνj(i1,...,ir)(τj),

where {τi} is a sequence of independent random variables having the standard
Gaussian distribution, νj(i1, . . . , ir) :=

∑r
r=1 δj,ir , and Hk(x) are Hermite polyno-

mials defined by the formula

Hk(x) := (−1)kex2/2 dk

dxk

(
e−x2/2

)
or by the recurrent formula

H0(x) ≡ 1, H1(x) = x,

Hn+1(x) = xHn(x) − nHn−1(x).
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Thus, Hk(x) is a polynomial of degree k and the product on the right-hand side
of (2.5) can be represented in the form

(2.6)
max{ik }∏

j=min{ik }
Hνj(i1,...,ir)(τj) = Hr1(τj1) · · · Hrs(τjs),

where the natural numbers rk and jk are defined by the relation rk =
∑r

l=1 δjk,il
,

and at that,
∑

k≤s rk = r and min{ik } ≤ jl ≤ max{ik } for all l ≤ s. Therefore, the
right-hand of (2.6) is a polynomial of degree r of the variables τj1 , . . . , τjs and with
coefficients having a universal upper bound depending on r only.

The goal of the present section is to formulate limit representations of the
form (2.5) in the case of weakly dependent random variables {Xi}.

Introduce some additional restrictions on the mixing coefficients and the basis
functions in the expansion in (2.5). In the sequel, we assume that the stationary
sequence {Xi} satisfies either α-mixing or ϕ-mixing, and moreover, the orthonormal
basis {ei(t)} in L2(X, F ) with the original element e0(t) ≡ 1, satisfies the following
additional restrictions:

1. In the case of ϕ-mixing, we assume condition (2.1) to be satisfied and

(2.7) sup
i

E
∣∣ei(X1)

∣∣r < ∞;

2. In the case of α-mixing, we assume that, for some ε > 0 and an even num-
ber c ≥ r,

sup
i

E
∣∣ei(X1)

∣∣r+ε
< ∞,(2.8)

∞∑
k=1

kc−2αε/(c+ε)(k) < ∞.(2.9)

Further, introduce a sequence of centered Gaussian random variables {τi} with
the covariances

(2.10) Eτkτl = Eek(X1)el(X1) +
∞∑

j=1

[
Eek(X1)el(Xj+1) + Eel(X1)ek(Xj+1)

]
.

The existence of the series in (2.10) follows from the above-mentioned restrictions
on the mixing coefficients. In what follows, the Gaussian sequence {τi} will play a
role of the weak limit as n → ∞ for the sequence

{
n−1/2

n∑
j=1

e1(Xj), n−1/2
n∑

j=1

e2(Xj), . . .

}
.

We now formulate two limit theorems for the statistics under various mixing
conditions.

Theorem 1 ([6]). Let one of the following two conditions be fulfilled :

1. The stationary sequence {Xi} satisfies ϕ-mixing, (2.1), and (2.7);
2. The stationary sequence {Xi} satisfies α-mixing, (2.8), and (2.9).
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Then, for any canonical kernel f(t1, . . . , tr) ∈ L2(Xr, F r), under conditions (2.2)
and (AC), the following assertion holds :

(2.11) Un(f) d→
∞∑

i1,...,ir=1

fi1,...,ir

∞∏
j=1

Hνj(i1,...,ir)(τj),

where Un(f) is a statistic of the form (1.3) and the centered Gaussian sequence {τi}
has the covariance matrix defined in (2.10).

Theorem 2 ([6]). Let X be a separable metric space. Suppose that a canonical
kernel f(t1, . . . , tr) is continuous (in every argument) everywhere on Xr and con-
dition (2.2) is fulfilled. Moreover, if all the basis functions ek(t) in (1.6) are con-
tinuous, satisfy (2.7), and one of the two conditions of Theorem 1 is valid then, as
n → ∞,

(2.12) Vn(f) d→
∞∑

i1,...,ir=1

fi1,...,irτi1 · · · τir ,

where the Gaussian sequence {τi} is defined in Theorem 1.

Remark 3. It is known that, in the i.i.d. case, condition (2.2) of absolutely sum-
mability of the coefficients in the series expansion of the kernel can be omitted.
Recall that, in this case, summability of the coefficients squared is valid [16, 13]. In
the same time, in limit theorems for the corresponding V -statistics, the latter con-
dition does not describe the limit behavior since to define the weak limit, we need
the existence of moments of the kernel on all the diagonal subspaces. For example,
under the regularity conditions only (without (2.2)) of Theorem 2 for bivariate V -
statistics, the assumption of finiteness of E|f(X1, X1)| is equivalent to summability
of the sequence λk ≡ fk,k in representation (1.5), say, if all λk are positive. However,
in the i.i.d. case, for the kernels of a bigger order, we need no summability of the
coefficients fi1,...,ir on the set of all pairwise distinct subscripts.

As is noted in Proposition 4 below, in the case of dependent observations, we can-
not omit the above-mentioned restriction regarding summability of the coefficients
fi1,...,ir on the diagonal subspaces for U -statistics as well.

Proposition 4. There exist a stationary 1-dependent sequence {Xi} satisfying
condition (AC), and a canonical kernel f(t1, t2) ∈ L2(X2, F 2) such that the weak
limit of the corresponding U -statistics does not exist.

Remark 4. In [5], in the case of dependent observations, another approach was
proposed for description of the limit distribution of canonical von Mises statistics
as a multiple stochastic integral of the kernel under consideration, with respect
to increments of a centered Gaussian process with a covariance function defined
by joint distributions of the random variables {Xi}. In the i.i.d. case, such dual
description of the limit law is well known (for example, see [13]).

However, the stationary sequence {Xi} in [5] must satisfy a stronger ψ-mixing
condition. In the same time, in contrast to the present results, condition (2.2) and
the regularity conditions for the kernel and the basis functions of Theorem 2 were
replaced in [5] with the more natural condition of integrability of the kernel on all the
diagonal subspaces. Note that the above-mentioned regularity condition and (2.2)
imply the boundedness of the kernel under consideration, i. e., the above-mentioned
condition of the kernel integrability on the diagonal subspaces in [5] is fulfilled.
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It is not clear importance of restriction (2.2) outside the diagonal subspaces
(i. e., on the set of all pairwise distinct subscripts) to approximate U - and V -
statistics of an arbitrary order for dependent trials.

Mention also the important particular case when the bivariate kernel of a V -sta-
tistic is represented as an inner product f(x, y) = (x, y) in a separable Hilbert space.
In this case, the corresponding von Mises statistic coincides with the Euclidian norm
squared of a normalized sum of weakly dependent centered observations and we deal
with the Central Limit Theorem (with respect to the class of all centered balls) for
Hilbert-space-valued weakly dependent observations which was proved under var-
ious mixing conditions and the existence of the moment E(X1, X1) (for example,
see [17]).

3. Limit theorems for m-dependent stationary sequences

Definition 5. A sequence {Xi} is called a sequence of m-dependent random vari-
ables (or m-dependent sequence) if the two families of random variables {Xi; i ≤ k}
and {Xi; i > k + m} are independent for every natural k.

It is easy to see that a sequence of m-dependent random variables satisfies ϕ-
mixing condition. But some sequences of this type do not satisfy the crucial restric-
tions of Theorem 1. Proposition 2 in Section 2 asserts that there exist ϕ-mixing
stationary sequences satisfying all the conditions of Theorem 1 except (AC) such
that the weak limit for the distributions of the U -statistics differs from that in
Theorem 1. At the end of the present section, we will construct a sequence of
1-dependent random variables satisfying the conditions of Proposition 2.

The goal of the present section is to obtain the limit distributions of U - and V -
statistics based on samples from a stationary sequence of m-dependent observations
without additional non-classical restrictions from the previous section like (AC) or
the regularity conditions on the kernels and the basis functions.

For m-dependent sequences, the random vector {Xj1 , . . . , Xjr } (in the case of
V -statistics, multiplicities of the subscripts may exceed 1) can be divided into in-
dependent subvectors (or blocks) where the number of blocks can be varied from 1
to r. Let T = {jk1 , . . . , jkl

} ⊆ {j1, . . . , jr } be a well-ordered set. We call the vector
{Xπ(jk1 ), . . . , Xπ(jkl

)} an indivisible block if maxi<l(jki+1 − jki) ≤ m and the di-
mension l (the length of the block) is the largest possible among the all subsets of
{j1, . . . , jr } which contain the set T ; here π(·) is an arbitrary permutation of the
subscripts.

It is clear that the distribution of the vector {Xj1 , . . . , Xjr } (it is a sample from
a stationary sequence) is defined by the distributions of its blocks. On the other
hand, the distribution of a block is defined by the joint arrangement if its subscripts.
Thus, the number of different distributions of {Xj1 , . . . , Xjr } depends only on r and
m and we can divide all such subvectors into classes of identically distributed ones.

Let a random vector {Xj1 , . . . , Xjr } from a fixed class mentioned above can be
divided into s indivisible blocks. For s > r/2, we assume the following restriction:

(3.1) Ef2(Xj1 , . . . , Xjr ) < ∞.

If s ≤ r/2 then we assume that

(3.2) E|f(Xj1 , . . . , Xjr)| < ∞.

In the latter case, we actually may assume the existence of the moments of lower
orders than 1 in dependence on s as in the i.i.d. case (see [13]).
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As before, denote by {τi} a centered Gaussian sequence with covariance ma-
trix (2.10). It is easy to see that, in the case of m-dependency, expression (2.10)
transforms to the following:

(3.3) Mkl = Eτkτl = δkl +
m∑

j=1

[
Eek(X1)el(Xj+1) + Eel(X1)ek(Xj+1)

]
.

Recall that we admit degeneracy of some τi (the case Mii = 0).
Introduce some notation.
Let I(l1, . . . , ls, q) be the set of all ways to choose q various pairs from the

elements {l1, . . . , ls}, where q ≤ [s/2] ([·] is the entier of a number). The number of
elements of I(l1, . . . , ls, q) equals

s!
2q(s − 2q)!q!

.

Denote by p a concrete collection of the pairs described above:

p = { {li1 , li2 }, . . . , {li2q−1 , li2q }} ∈ I(l1, . . . , ls, q);

Moreover, put

(3.4) Mp = Mli1 li2
· · · · · Mli2q−1 ,li2q

;

p = {l1, . . . , ls} \ ({li1 , li2 } ∪ · · · ∪ {li2q−1 , li2q }).

Fix some class K of vectors containing s ≥ [r/2] + 1 indivisible blocks in which
the length of each block does not exceed 2, and {Xj1 , . . . , Xjr } ∈ K. Let 1 ≤ k1 <
· · · < ks1 ≤ r be the numbers of one-element blocks. Now, define the coefficients

(3.5) f
(K)
i1,...,is1

= Ef(Xj1 , . . . , Xjr)ei1(Xjk1
)...eis1

(Xjks1
).

The main results of the present section are contained in the following two theo-
rems.

Theorem 3. Let all the classes of vectors divided into no more than [r/2] indivisible
blocks, satisfy (3.2). The rest of the classes satisfies (3.1). Then
(3.6)

Vn
d→

[(r−1)/2]∑
k=0

∞∑
i1,...,ir−2k=1

∑
K

f
(K)
i1...ir−2k

[r/2−k]∑
q=0

(−1)q
∑

p∈I(i1,...,ir−2k,q)

Mp

∏
i∈p

τi + C,

where {τi} is a Gaussian centered sequence with covariance matrix (3.3),
∑

K is
the sum over the classes in which the numbers of two-element and one-element
indivisible blocks are equal to k and r − 2k respectively; if r is odd then C = 0,
otherwise,

C =
∑
K′

Ef(Xj′
1
, . . . , Xj′

r
),

where
∑

K′ is the sum over the classes in which the number of two-element blocks
equals r/2.
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Remark 5. The sum
∑

K can be represented as follows:

(3.7)
∑
K

=
∑

1≤kr−2k+1<···<kr ≤r

∑
p1∈I(kr−2k+1,...,kr,k)

∑
−m≤m1,...,mk ≤m

;

and the sum
∑

K′ , correspondingly, as

∑
K′

=
∑

p′ ∈I(1,...,r,r/2)

∑
−m≤m1,...,mr/2≤m

.

Theorem 4. Let the conditions of Theorem 3 be satisfied for the classes or blocks
consisting of pairwise distinct elements. Then
(3.8)

Un
d→

[(r−1)/2]∑
k=0

∞∑
i1,...,ir−2k=1

∑
K1

f
(K1)
i1...ir−2k

[r/2−k]∑
q=0

(−1)q
∑

p∈I(i1,...,ir−2k,q)

Mp

∏
i∈p

τi + C,

where τi are defined above, and∑
K1

=
∑

1≤kr−2k+1<···<kr ≤r

∑
p∈I(kr−2k+1,...,kr,k)

∑
1≤ |m1|,...,|mk |≤m

if r is odd then C = 0; otherwise,

C =
∑
K′

Ef(Xj′
1
, . . . , Xj′

r
),

where ∑
K′

1

=
∑

p′ ∈I(1,...,r,r/2)

∑
1≤ |m1|,...,|mr/2|≤m

.

4. Proofs of Theorems 3 and 4

Proof of Theorem 3. First, divide all the summands in (1.2) into classes of identi-
cally distributed ones (or the vectors {Xj1 , . . . , Xjr }), where the number of these
classes does not depend on n, and find the limit distribution of the normalized sum
over the vectors from a fixed class.

Let the vectors {Xj1 , . . . , Xjr } from this class are divided into s indivisible blocks.
It is worth noting, that the number of all vectors from this class does not exceed
ns and is equivalent to ns as n → ∞. In this case, we actually deal with statistics
of the form

n−r/2
∑

∗
f̃(X

(1)

i1 , . . . , X
(s)

is
),

where the summation is taken over all the vectors of the chosen class, and for every
fixed subscripts i1, . . . , is, the random subvectors X

(1)

i1 , . . . , X
(s)

is
are independent

identically distributed blocks defined by the class under consideration. In other
words, we actually deal with the decoupled–type V -statistics based on a finite
collection of independent stationary sequences each of them consists of kl-dependent
random subvectors, l = 1, . . . , s (k may be greater than m), with a personal margin
distribution.
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Then, due to (3.2) and the law of large numbers for such statistics which is easily
proved, we have for s = r/2

(4.1) n−r/2
∑

∗
f(Xj1 , . . . , Xjr )

P→ Ef(Xj0
1
, . . . , Xj0

r
)

as n → ∞; here {Xj0
1
, . . . , Xj0

r
} represents the class under consideration. If s < r/2

then, evidently,

(4.2) n−r/2
∑

∗
f(Xj1 , . . . , Xjr)

P→ 0

as n → ∞. Thus, we can see that the classes with s < r/2 are not essential for the
statistic’s weak limit. Therefore, we can add and subtract their summands in our
calculations without changing the limit expression.

Consider the case of even r and s = r/2. If the length of some block is greater
than 2 then there exists at least one another block with the length 1. Then, due to
the independence of different blocks and the canonical property of the kernel,

Ef(Xj0
1
, . . . , Xj0

r
) = 0.

Therefore the non-zero limit above can be obtained if only the lengths of all indi-
visible blocks are equal to 2.

So, consider the case when it is possible to divide {Xj1 , . . . , Xjr } into s > r/2
indivisible blocks:

{Xj1 , . . . , Xjr } = {X1, . . . , Xs},

where {X1, . . . , Xs} are indivisible independent blocks with the relative lengths
k1, . . . , ks. From condition (3.1) and the same argument as in the i.i.d. case, the
kernel can be represented as a mean-square converging series

(4.3) f(Xj1 , . . . , Xjr ) =
∞∑

l1,...,ls=0

fl1,...,lse
(1)
l1

(X1) · · · e
(s)
ls

(Xs),

where {e
(i)
li

} is an orthonormal basis of the corresponding space L2 with e
(i)
0 ≡ 1.

Due to the orthogonality with e0, we have Ee
(i)
li

(Xi) = 0 for all li > 0. As was
already noted, the number of different distributions of indivisible blocks depends
only on r and m. So, for identically distributed blocks in different classes, choose
the same basis {e

(i)
li

}. In particular, if ki = 1, let the corresponding basis coincide
with {el(t)} introduced before. Notice that, in this case, by the canonical property,
we have fl1,...,ls = 0 if li = 0 in (4.3) ([13], [6]).

If the distance between the closest subscripts of two or more blocks is less than
m + 1 then they form another indivisible block. Let X̃(j) be an indivisible block
coinciding with one of Xi, or formed by several ones, with the length k, 1 ≤ k ≤ rm,
and the minimal subscript equal j. Correspondingly, let ẽ be a fixed basis element
e
(i)
li

or a product of several ones. We now find the weak limit as n → ∞ of the
expression

(4.4) n−k/2
n−k∑
j=1

ẽ(X̃(j)).
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First, if k = 1, ẽ(X̃(j)) = ei(Xj). Moreover, in view of the argument above, we
need to consider only the case i ≥ 1. In [6], it was shown that the sequence

(4.5)

{
n−1/2

n∑
j=1

e1(Xj), n−1/2
n∑

j=1

e2(Xj), . . .

}

converges in distribution to a centered Gaussian sequence {τi} with covariance
matrix (3.3).

If k = 2 then we can apply the law of large numbers. Notice that if ẽ(X̃(j)) =
e
(i)
li

(Xi) with ki = 2 then we obtain the non-zero limit in probability only in the
case li = 0. Thus,

n−1
n−k∑
j=1

ẽ(X̃(j)) P→ 1.

We now show that, in the case k > 2, the normalized sum in (4.4) converges
to zero in probability. By definition, X̃(j) is formed by one or several blocks Xi.
The convergence required can be proved by showing that, for any i, as n → ∞, the
following assertion is valid:

max
1≤j≤n

n−1/2|e(i)
li

(Xi)| P→ 0,

where j is the minimal index of the block. The last assertion holds if for an arbitrary
ε > 0 P(|e(i)

li
(Xi)| > εn1/2) = o(1/n) or, otherwise, P(|e(i)

li
(Xi)| > x) = o(1/x2) as

x → ∞. By construction e
(i)
li

(Xi) has the finite second moment, and the property
required is fulfilled.

Now, find the weak limit of the expression

(4.6) n−r/2
∑

∗
e
(1)
l1

(X1) · · · e
(s)
ls

(Xs),

where
∑

∗, as before, means the summation over all the vectors from the fixed
class. By adding and subtracting some summands, one can represent (4.6) as a
linear combination of products of values (4.4). In view of the reasoning above, we
consider only the classes where there are one- and two-element blocks only, and
li ≥ 1 in (4.6) if the length of Xi equals 1, and li = 0 in the case ki = 2. Assume
that we have s1 one-element and (r − s1)/2 two-element blocks.

It was shown that expession (4.4) converges in probability to a constant or
coincides with some element of sequence (4.5). Since expression (4.6) is a linear
combination of products of sums (4.4), the aforesaid allows to obtain the limit in
distribution of (4.6) changing in this linear combination all values (4.4) for their
weak limits. We now find this limit.

As two-element blocks correspond only to zero basis element, they have effect
only on the number of the same summands in (4.6), with one-element blocks fixed.
It is easy to prove that this number is equivalent to n(r−s1)/2 as n → ∞. Thus,
taking into account finiteness of the expectations of the summands, the expression
in (4.6) is equivalent to the following:

n−s1/2
∑

|ui −uj |>m,1≤i �=j≤s1

el′
1
(Xu1) · · · el′

s1
(Xus1

) =: gs1(l
′
1, . . . , l

′
s1

).
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Lemma 1. As n → ∞,

(4.7) gs1(l1, . . . , ls1)
d→

[s1/2]∑
q=0

(−1)q
∑

p∈I(l1,...,ls1 ,q)

Mp

∏
i∈p

τi,

where {τi} is a centered Gaussian sequence with covariance matrix (3.3).

Proof. It is not difficult to obtain the next recurrent formula for gs1(l1, . . . , ls1):

gs1(l1, . . . , ls1)

= n−1/2
n∑

j=1

el1(Xj)gs1−1(l2, . . . , ls1)

−
s1∑

i=2

gs1−2(l2, . . . , li−1, li+1, . . . , ls1)n
−1

×
( n∑

j=1

el1(Xj)eli(Xj) +
m∑

k=1

n−k∑
j=1

(el1(Xj)eli(Xj+k) + el1(Xj+k)eli(Xj))
)

+ oP (1).(4.8)

As n → ∞, we obtain the following formula for the limits:

lim gs1(l1, . . . , ls1) = τl1 lim gs1−1(l2, . . . , ls1)

−
s1∑

i=2

Ml1li lim gs1−2(l2, . . . , li−1, li+1, . . . , ls1).(4.9)

Prove (4.7) by induction on s1. It is easy to see that, for s1 = 1 and s1 = 2, the
statement of the lemma holds (suppose that g0 ≡ 1). Let it hold for all s2 < s1.
Then

lim gs1(l1, . . . , ls1)

= τl1

[(s1−1)/2]∑
q=0

(−1)q
∑

p∈I(l2,...,ls1 ,q)

Mp

∏
i∈p

τi

−
s1∑

i=2

Ml1li

[(s1−2)/2]∑
q=0

(−1)q
∑

p∈I(l2,...,li−1,li+1,...,ls1 ,q)

Mp

∏
j∈p

τj .

For q ≤ [(s1 − 1)/2], the set I(l1, . . . , ls1 , q) consists of elements of I(l2, . . . , ls1 , q)
and elements like {l1, li} ∪ p, where p ∈ I(l2, . . . , li−1, li+1, . . . , ls1 , q − 1); in the case
of even s1 and q = s1/2, it consists of elements of the second type only. In view of
the aforesaid, we proved the statement.

Lemma 2. Let all the vectors of the fixed class are divided into s ≥ [r/2] + 1
indivisible blocks in which there are s1 one-element blocks. Then

1) if there exists a block with the length more than 2 then

(4.10) n−r/2
∑

1≤j1,...,jr ≤n:{Xj1 ,...,Xjr } ∈K

f(Xj1 , . . . , Xjr )
P→ 0;
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2) if the lengths of all blocks do not exceed 2 then

n−r/2
∑

1≤j1,...,jr ≤n:{Xj1 ,...,Xjr } ∈K

f(Xj1 , . . . , Xjr)

(4.11) d→
∞∑

i1,...,is1=1

f
(K)
i1,...,is1

[s1/2]∑
q=0

(−1)q
∑

p∈I(i1,...,is1 ,q)

Mp

∏
i∈p

τi,

where the series on the right-hand side of (4.11) mean-square converges.

Proof. In view of (4.3),

n−r/2
∑

1≤j1,...,jr ≤n:{Xj1 ,...,Xjr } ∈K

f(Xj1 , . . . , Xjr)

=
∞∑

l1,...,ls=0

fl1,...,lsn
−r/2

∑
e
(1)
l1

(X1) · · · e
(s)
ls

(Xs)

=
N∑

l1,...,ls=0

fl1,...,lsn
−r/2

∑
e
(1)
l1

(X1) · · · e
(s)
ls

(Xs)

(4.12) +
∑

max(l1,...,ls)>N

fl1,...,lsn
−r/2

∑
e
(1)
l1

(X1) · · · e
(s)
ls

(Xs).

If there exists a block with the length greater than 2 then from the arguments above
the first summand on the right-hand side of (4.12) converges to zero in probability.
Otherwise, from Lemma 1 it follows that

N∑
l1,...,ls=0

fl1,...,lsn
−r/2

∑
e
(1)
l1

(X1) · · · e
(s)
ls

(Xs)

d→
N∑

i1,...,is1=1

f
(K)
i1,...,is1

[s1/2]∑
q=0

(−1)q
∑

p∈I(i1,...,is1 ,q)

Mp

∏
i∈p

τi.

We now prove that the second summand on the right-hand side of (4.12) mean-
square converges to zero as N → ∞. For the convenience, denote different vectors
from the class K and the corresponding blocks by X

(i)
and X

(i)

j , respectively. We
have

E(n−r/2
∑

max(l1,...,ls)>N

fl1,...,lse
(1)
l1

(X1) · · · e
(s)
ls

(Xs))2

= n−r
∑

X
(1)

,X
(2)∈K

∑
max{lk },max{ik }>N

fl1,...,lsfi1...is

(4.13) ×Ee
(1)
l1

(X
(1)

1 ) · · · e
(s)
ls

(X
(1)

s )e(1)
i1

(X
(2)

1 ) · · · e
(s)
is

(X
(2)

s ).

Here we can permute the signs of the expectation and the sum due to the mean-
square convergence of the corresponding series.
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Note that, if there are s ≥ [r/2] + 1 indivisible blocks in the class then there are
among them at least 2s − r one-element blocks. Thus, among the blocks X

(1)

1 , . . . ,

X
(2)

s , there are no more than 2r − 2s blocks with the lengths greater than 1. If
there exists at least one such one-element block that the difference between its
subscript and the closest one in the class under consideration is greater than m,
then the expectation on the right-hand side of (4.13) vanishes (for all subscripts
l1, . . . , ls, i1, . . . , is). Then, for the non-zero summands, the distance between each
one-element block and the neighbor one is not greater than m. The number of ways
to choose X

(1)
and X

(2)
satisfying this condition, is equivalent to

C(r, m)n2r−2sn2s−r = C(r, m)nr,

where C(r, m) is a constant which depends only on r and m. And for fixed X
(1)

and X
(2)

,

E

∑
max{lk },max{ik }>N

fl1,...,lsfi1,...,ise
(1)
l1

(X
(1)

1 ) · · · e
(s)
ls

(X
(1)

s )e(1)
i1

(X
(2)

1 ) · · · e
(s)
is

(X
(2)

s )

≤ E
1/2

( ∑
max{lk }>N

fl1,...,lse
(1)
l1

(X
(1)

1 ) · · · e
(s)
ls

(X
(1)

s )
)2

×E
1/2

( ∑
max{ik }>N

fi1,...,ise
(1)
i1

(X
(2)

1 ) · · · e
(s)
is

(X
(2)

s )
)2

=
∑

max{lk }>N

f2
l1,...,ls .

Thus,
E(n−r/2

∑
max(l1,...,ls)>N

fl1,...,ls

∑
e
(1)
l1

(X1) · · · e
(s)
ls

(Xs))2

≤ C(r, m)
∑

max{lk }>N

f2
l1,...,ls → 0

as N → ∞, which required to be proved.
Now, show that the series in (4.11) mean-square converges.
Let {k1, . . . , ks1 } be some permutation of {1, . . . , s1}. First, prove that

∞∑
i1,...,is1 ,i′

1,...,i′
s1

=1

|fi1,...,is1
fi′

1,...,i′
s1

| |Mi1i′
k1

· · · Mis1 i′
ks1

| < ∞.

Due to the definition of Mkl, it is sufficient to show that, for arbitrary j1, . . . , js1 ,

∞∑
i1,...,is1 ,i′

1,...,i′
s1

=1

|fi1,...,is1
fi′

1,...,i′
s1

|

× |Eei1(X1)ei′
k1

(Xj1+1)| · · · |Eeis1
(X1)ei′

ks1
(Xjs1+1)| < ∞.

Fix all the subscripts except is1 , i
′
ks1

, and sum only over the last ones:

|Eei1(X1)ei′
k1

(Xj1+1)| · · · |Eeis1−1(X1)ei′
ks1−1

(Xjs1−1+1)|

×
∞∑

is1 ,i′
ks1

=1

|fi1,...,is1
fi′

1,...,i′
s1

| |Eeis1
(X1)ei′

ks1
(Xjs1+1)|
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≤ |Eei1(X1)ei′
k1

(Xj1+1)| . . . |Eeis1−1(X1)ei′
ks1−1

(Xjs1−1+1)|

×
( ∞∑

is1=1

f2
i1,...,is1

)1/2( ∞∑
i′
ks1

=1

f2
i′
1,...,i′

s1

)1/2
.

Similarly, summing over each pair of indices, we obtain

∞∑
i1,...,is1 ,i′

1,...,i′
s1

=1

|fi1,...,is1
fi′

1,...,i′
s1

| |Mi1i′
k1

...Mis1 i′
ks1

|

≤ (2m + 1)s1

∞∑
i1,...,is1=1

f2
i1,...,is1

.

Now, consider the second moment of the difference between two partial sums of the
series from (4.11):

M∑
max{i1,...,is1 },max{i′

1,...,i′
s1

}=N

f
(K)
i1,...,is1

f
(K)
i′
1,...,i′

s1

[s1/2]∑
q,q′=0

(−1)q+q′

×
∑

p∈I(i1,...,is1 ,q)

∑
p′ ∈I(i′

1,...,i′
s1

,q′)

MpMp′ E

∏
i∈p

τi

∏
i′ ∈p′

τi′ .

We now prove that

[s1/2]∑
q,q′=0

(−1)q+q′ ∑
p∈I(i1,...,is1 ,q)

∑
p′ ∈I(i′

1,...,i′
s1

,q′)

MpMp′ E

∏
i∈p

τi

∏
i′ ∈p′

τi′

(4.14) =
∑

{k1,...,ks1 }
Mi1i′

k1
...Mis1 i′

ks1
,

where the summation is over all different permutations of {1, . . . , s1}. Use the next
property of the product of the Gaussian random variables:

E

∏
i∈p

τi

∏
i′ ∈p′

τi′ =
∑

p0∈I(p,p′,2s1−2q−2q′)

Mp0 ,

thus,
[s1/2]∑
q,q′=0

(−1)q+q′ ∑
p∈I(i1,...,is1 ,q)

∑
p′ ∈I(i′

1,...,i′
s1

,q′)

MpMp′ E

∏
i∈p

τi

∏
i′ ∈p′

τi′

=
[s1/2]∑
q,q′=0

(−1)q+q′ ∑
p∈I(i1,...,is1 ,q)

∑
p′ ∈I(i′

1,...,i′
s1

,q′)

∑
p0∈I(p,p′,2s1−2q−2q′)

MpMp′ Mp0 .

It is easy to see, that the right-hand side of (4.14) corresponds to the part of
summands in the sum above with q = 0 and q′ = 0 because the summands of this
right-hand side consist of pairs with one subscript from {i1, . . . , is1 } and another
from {i′

1, . . . , i
′
s1

}. Consider the summands with q = 0 and q′ = 0 which are not
contained in the right-hand side of (4.14). Evidently, they correspond to different
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p0 ∈ I(i1, . . . , is1 , i
′
1, . . . , i

′
s1

, 2s1) including at least one pair with both subscripts
from {i1, . . . , is1 } or {i′

1, . . . , i
′
s1

}. Denote all such pairs by p1, . . . , pN , where N =
2C2

s1
= s1(s1 − 1). We have

∑
p0∈I(i1,...,i′

s1
,2s1):pj ∈p0,1≤j≤N

Mp0 .

Note that if different pairs pk and pl have a common subscript then the fixed p0

contains only one of them. Using the inclusion-exclusion formula and the formula
for the expectation of the product of the Gaussian variables also, we can write the
sum above as follows:

N∑
j=1

Mpj E

∏
i∈{i1,...,i′

s1
}/pj

τi −
∑

k<l:pk ∩pl=∅

Mpk
Mpl

E

∏
i∈{i1,...,i′

s1
}/(pk ∪pl)

τi

+ · · · −
∑

k1<···<k2[s1/2]:pki
∩pkj

=∅, i �=j

Mpk1
...Mpk2[s1/2]

E

∏
i∈{i1,...,i′

s1
}/(pk1 ∪··· ∪pk2[s1/2]

)

τi.

Note that this decomposition coincides with that part of the left-hand side of (4.14)
where at least one of q and q′ is positive, with the opposite sign. Thus, equality
(4.14) is proved. Then the sequence of partial sums of the series from (4.11) is
a Cauchy sequence in L2, and, consequently, the series from (4.11) mean-square
converges.

As was mentioned above, all the collections {Xj1 , . . . , Xjr } are divided into dis-
joint classes of identically distributed vectors where the number of classes depend
only on r and m. So, every V -statistic can be divided into normalized sums of
f(Xj1 , . . . , Xjr ) over the vectors from a certain class introduced above.

The limits in distribution of such normalized sums are obtained in Lemma 2, in
(4.1), and (4.2). Due to the arguments at the beginning of the proof, to get the
weak limit of the statistic we can sum the limit expressions on the right-hand sides
of (4.11) and (4.1) over the corresponding classes. Theorem 3 is proved.

Proof of Theorem 4. The proof repeats the proof of Theorem 3. In the case of U -
statistics, the only difference is that we consider only the classes of vectors with
pairwise disjoint elements. Then, in two-element blocks, the distance between the
observation subscripts cannot be equal to zero. The last fact explains the expressions
for

∑
K1

and
∑

K′
1
. Theorem 4 is proved.

Proof of Proposition 2. Let {Yi; i ≥ 1} be a sequence of independent random vari-
ables uniformly distributed on [0, 1], and let {ξi; i ≥ 1} be a sequence of independent
symmetric Bernoulli random variables which are independent of {Yi} as well. Set
Xi = Yi+ξi . The random variables {Xi} form a stationary 1-dependent sequence.
Notice that, in this case, the random variables Xi are uniformly distributed on [0, 1]
as well. Thus, the stationary sequence {Xi} satisfies ϕ-mixing condition and the
restriction in (2.1). It is clear that, for the corresponding independent copies X∗

1

and X∗
2 , we have P (X∗

1 = X∗
2 ) = 0, but for the originals, we obtain

P (X1 = X2) = P (ξ1 = 1)P (ξ2 = 0) = 1/4.
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Notice that, in the example under consideration, the basis functions and the coeffici-
ents in the series expansion in (1.6) do not depend on the values of the kernel f on
the diagonal due to continuity of the marginal distribution since, in this case, the
characteristic equation has the form

λkek(t) =
∫ 1

0

f(t, s)ek(s)ds.

For simplicity, let
sup

0≤t1,t2≤1

∣∣f(t1, t2)
∣∣ ≤ 1.

Now, change the diagonal values setting f(t, t) ≡ 1+β for all t ∈ [0, 1], where β > 0.
Then P (f(X1, X2) = 1 + β) = 1/4. In the same time, the series on the right-hand
side of (1.6) does not depend on β. It is easy to show that, in the example under
consideration, the limit law will essentially differs from (2.3). Indeed, using the
series expansion (1.5) and the result proved above we obtain the form of the limit
law:

Un
d→ 2Ef(X1, X2) +

∑
k≥1

λk

(
τ2
k − 3/2

)

= Ef(Y1, Y1)/2 +
∑
k≥1

λk

(
τ2
k − 3/2

)

due to the degeneracy of f and the relation E(f(X1, X2)|ξ2 − ξ1 = 0) = 0. The
right-hand side coincides with (2.3), say, under the conditions of Theorem 2, but
does not coincide under the above-mentioned restriction on the diagonal values of f
(for example, if 1 + β >

∑
k≥1 λk). Proposition 2 is proved.

5. Exponential inequalities for the distribution tails of U- and
V -statistics

For independent observations {Xi}, we give below a brief review of results directly
connected with the subject of the present paper. In this connection, we would
like to mention the results in [4, Theorem 1], [2, Proposition 2.2], [1, Theorem 7,
Corollary 3], and [9, Theorem 3.3].

One of the first papers where exponential inequalities for the distribution tails of
U -statistics are obtained, is the article by W. Hoeffding [10] although he considered
nondegenerated U -statistics only. In this case, the value (n − r)!/n! equivalent to
n−r as n → ∞, is used as the normalizing factor instead of n−r/2. In [10], the
following statement was proved:

(5.1) P(U − EU ≥ t) ≤ e−2kt2/(b−a)2 ,

where
U = (n − r)!/n!

∑
(j1,...,jr)∈Ir

n

f(Xj1 , . . . , Xjr ),

a ≤ f(t1, . . . , tr) ≤ b and k = [n/r]. In the case r = 1, inequality (5.1) is usu-
ally called Hoeffding’s inequality for sums of independent identically distributed
bounded random variables. Notice that, in this case, the sums mentioned may be
simultaneously considered as canonical or nondegenerate U -statistics.
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In [4], an improvement of (5.1) was obtained for the case when there exists a
splitting majorant of the canonical kernel under consideration:

(5.2)
∣∣f(t1, . . . , tr)

∣∣ ≤
∏
i≤r

g(ti),

and the function g(t) satisfies the condition

Eg(X1)k ≤ σ2Lk−2k!/2

for all k ≥ 2. In this case, the following analogue of Bernstein’s inequality holds:

(5.3) P
(

|Vn| ≥ t
)

≤ c1 exp
(

− c2t
2/r

σ2 + Lt1/rn−1/2

)
,

where the constants c1 and c2 depend only on r. Moreover, as noted in [4], inequal-
ity (5.3) cannot be improved in a sense.

It is clear that if supti
|f(t1, . . . , tr)| = B < ∞ then one can set in (5.3) σ = L =

B1/r. Then it suffices to consider only the deviation zone |t| ≤ Bnr/2 (otherwise,
the left-hand side of (5.3) vanishes). Therefore, for all t ≥ 0, inequality (5.3) yields
the upper bound

(5.4) P
(

|Vn| ≥ t
)

≤ c1 exp
(

− c2

2
(t/B)2/r

)
which is an analogue of Hoeffding’s inequality (5.1).

In [2], an inequality close to (5.3) is proved without condition (5.2), and rela-
tion (5.4) is given as a consequence. In [9], some refinement of (5.4) is obtained
for r = 2, and in [1], the later result was extended to canonical U -statistics of
an arbitrary order. The goal of the present section is to extend inequality (5.4) to
the case of stationary random variables under ϕ-mixing. For dependent observa-
tions, we do not yet know how to get more precise inequalities close to Bernstein’s
inequality (5.3), for unbounded kernels under some moment restrictions only.

As in the previous sections, we denote by {ei(t)} an orthonormal basis of the
separable Hilbert space L2(X, F ), with e0(t) ≡ 1. Consider only the spaces which
have a bounded basis:

(5.5) sup
i,t

|ei(t)| ≤ C.

Here, we consider only stationary sequences {Xj } satisfying ϕ-mixing condition.
Introduce some additional restrictions on the mixing coefficient and the kernels

of the statistics under consideration.

1. (A)
∑∞

i1,...,ir=1 |fi1,...,ir | < ∞ and ϕ(k) ≤ c0e
−c1k2

, where c1 > 0.
2. (B) There exists ε > 0 such that

∑∞
i1,...,ir=1 |fi1,...,ir |1−ε = c < ∞, and

ϕ :=
∑

ϕ(k) < ∞.

The following two theorems were proved in [7].

Theorem 5. Let a canonical kernel f(t1, . . . , tr) be continuous (in every argument)
everywhere on Xr and let condition (5.5) be fulfilled. Moreover, if ek(t) are continu-
ous and one of conditions (A) or (B) is fulfilled then the following inequality holds:

(5.6) P
(

|Vn| > x
)

≤ C1 exp
{

− C2x
2/r

/
B(f)

}
,
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where C2 > 0 depends only on ϕ(·); in case (A),

B(f) :=

⎛
⎝Cr

∞∑
i1,...,ir=1

|fi1,...,ir |

⎞
⎠

2/r

,

and in case (B),

B(f) := C2

⎛
⎝ ∞∑

i1,...,ir=1

|fi1,...,ir |1−ε

⎞
⎠

2
r(1−ε)

;

here the constant C is defined in (5.5).

Remark 6. Under condition (A), we may set C1 = 1. Under condition (B), the
value C1 depends on the constants r, ε, c, and C. The dependence on the values c
and C can be removed by considering “large enough”values of x, namely, satisfying
the inequality

x2/r ≥ ε−18r(1 − ε)eC2ϕc2/(r(1−ε)).

The following theorem is an analogue of statement (5.6) for U -statistics.

Theorem 6. Let the sequence X1, X2, . . . satisfy the following condition :

(AC) For every collection of pairwise distinct subscripts j1, . . . , jr, the distribution
of (Xj1 , . . . , Xjr ) is absolutely continuous with respect to the distribution of
(X∗

1 , . . . , X∗
r ).

Moreover, if the basis {ei(t)}i≥0 satisfies restriction (5.5) and one of conditions (A)
or (B) is valid then

(5.7) P
(

|Un| > x
)

≤ C1 exp
{

− C2x
2/r

/
B(f)

}
,

where, under condition (A), the constants C1 and C2 are the same as in Theorem 5,
and under condition (B), the constant C1 depends on r, ε, c, and C, and the constant
C2 depends on ϕ and r ; the value B(f) is defined in Theorem 5.

We now show that, for m-dependent trials, it is possible to obtain inequality
(5.4) without any additional restrictions like (AC).

Theorem 7. For any stationary m-dependent trials, inequality (5.4) is valid.

Proof. We use the following Chebyshev-type inequality which is the standard tool
to derive exponential inequalities for multilinear forms of random variables (inde-
pendent or not) (see [4], [9], [14], etc.):

(5.8) P(|Vn| ≥ x) ≤ min
N

EV 2N
n x−2N .

Let |f(t1, . . . , tr)| ≤ B. First we prove that

(5.9) EV 2N
n ≤ (KB2/rrN)rN .

We start with the i.i.d. case. There are the following two cases:
(I) n ≤ rN . We have

EV 2N
n = n−rN

∑
1≤j1,...,j2rN ≤n

Ef(Xj1 , . . . , Xjr)...f(Xj2rN −r+1 , . . . , Xj2rN
)
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(5.10) ≤ n−rNB2Nn2rN = B2NnrN ≤ B2N (rN)rN .

(II) n > rN . If the multiplicity of certain subscript among j1, . . . , j2rN equals
1 then the corresponding mixed moment in (5.10) vanishes due to the canonical
property. Then, in the non-zero expectations in (5.10), the multiplicity of each
subscript is no less than 2.

Let among j1, . . . , j2rN there are s different ones. Due to the note above, s ≤ rN .
The number of ways to choose them from n variants is Cs

n. Given a fixed variant
of this choice, the number of ways to distribute 2rN elements to s classes does not
exceed the value s2rN due to the polinomial scheme. Therefore,

EV 2N
n ≤ B2Nn−rN

rN∑
s=1

Cs
ns2rN ≤ B2N

rN∑
s=1

ns−rNs2rN (s!)−1

(5.11)

≤ B2N
rN∑
s=1

ns−rNs2rN −ses ≤ B2N
rN∑
s=1

ss−rN+2rN −ses ≤ B2NerN+1(rN)rN .

Now, consider the case of m-dependent trials. It suffices to consider only the case
n > rN . Denote by K1, K2, . . . , Ks the classes of identical subscripts mentioned
above. Among them, choose 1-element ones: K0

1 , K0
2 , . . . , K0

l . It is clear that s − l ≤
rN .

Let d(Ki, Kj) be the Hausdorff distance between sets. If there exists such a class
K0

i that minKj �=K0
i
d(K0

i , Kj) > m then the corresponding mixed moments in (5.10)
vanish. Otherwise, for each 1-element K0

i , there exists another set Kj (perhaps, 1-
element set too) such that d(K0

i , Kj) ≤ m. Unite these two sets into one. Given
a fixed Kj , there are no more than 2m variants for this union. Continuing this
procedure, we conclude that the final upper bound in (5.11) may increase to no
more than (2m)rN times. Inequality (5.9) is proved.

To estimate the minimum in (5.8), set N = εx2/r for some ε > 0. Then we have

P(|Vn| > x) ≤ x−2NB2N (Krε)rNx2N = exp
{
εr ln(KB2/rrε)x2/r

}
.

It is easy to verify that the multiplier εr ln(KB2/rrε) reaches its minimum at the
point ε = (KB2/rre)−1, and this minimal value equals −(KB2/re)−1. Then we
finally obtain

P
(

|Vn| > x
)

≤ exp
{

− (KB2/re)−1x2/r
}

what required to be proved.
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