IMS Collections

High Dimensional Probability V: The Luminy Volume
Vol. 5 (2009) 37-42

© Institute of Mathematical Statistics, 2009

DOI: 10.1214/09-IMSCOLL503

Gaussian approximation of moments of
sums of independent symmetric random
variables with logarithmically concave
tails”

Rafal Latatal

University of Warsaw and Polish Academy of Sciences

Abstract: We study how well moments of sums of independent symmetric
random variables with logarithmically concave tails may be approximated by
moments of Gaussian random variables.

1. Introduction

Let €1,€9,... be a Bernoulli sequence, i.e. a sequence of independent symmetric
variables taking values +1. Hitczenko [4] showed that for p > 2 and S = ). a;e;,

(1) 151, ~ > ar + v )

i<p i>p

where (a}) denotes the nonincreasing rearrangement of (Ja;|) and f(p) ~ ¢g(p) means
that there exists a universal constant C such that C~1f(p) < g(p) < Cf(p) for
any parameter p (see also [8] and [5] for related results). Gluskin and Kwapieni
[2] generalized the result of Hitczenko and found two sided bounds for moments
of sums of independent symmetric random variables with logarithmically concave
tails (we say that X has logarithmically concave tails if InP(|X| > t) is concave
from [0, 00) to [—00,0]). In particular they showed that for a sequence (&;) of inde-
pendent symmetric exponential random variables with variance 1 (i.e. the density
2712 exp(—v2[z)), S = 3, a;€i, and p > 2,

(2) 1S1lp ~ pllallec + v/Pllallz,

where ||a||, = (3=, |a;|?)}/P for 1 < p < oo and ||a||o = sup |a;|. Two sided inequal-
ity for moments of sums of arbitrary independent symmetric random variables was
derived in [7].

Results (1) and (2) suggest that if all coefficients are of order o(1/p) then || S|,
should be close to the p-th norm of the corresponding Gaussian sum that is to
Ypllall2, where 4B = [IN(0,1)[|h = 2r/21(241) /\/7. The purpose of our note is to
verify this assertion.
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2. Results

First we show the intuitive result that in the class of normalized symmetric ran-
dom variables with logarithmically concave tails Bernoulli and exponential random
variables are extremal.

Proposition 1. Let X; be independent symmetric r.v.’s with logarithmically con-
cave tails such that EX? = 1. Then for any p > 3,

n n n
H E aigi|| < H E a; X;|| < H E a;&;
i=1 p i=1 p i=1

Proof. Lower bound follows from Theorem 1.1 of [1] (in fact we do not use here
the assumption of logconcavity of tails). To prove the upper bound it is enough to
show that for all a,b € R and p > 3,

p

E‘CL + inlp < E|(I—|— bg,'|p.

Let ¢(z) = (|la+bx|P+|a—bz|P), then ¢’ is convex on [0, 00) with ¢’(0) = 0. Since
EX? = 1 = E£? there exist ¢y such that P(|X;| > to) = P(|&| > to). Logconcavity
of tails implies that P(|X;| > t) < P(|&;| > t) for t > tg and the opposite inequality
holds for 0 < t < to. Let ¢'(tg) = cto for some ¢ > 0. Then by convexity of ¢’ we
have (¢'(t) — ct)(P(|&] > t) — P(|X;] > ¢)) > 0 for all ¢. Thus

0< /Om(@/(t) - Ct)(P(‘gll > t) — P(|X1| > t))dt
= E(p(&) — p(Xi)) — %E(é’f — XZZ) — Ela + b&P — Ela+ bXi|”. -

Next technical lemma will be used to compare characteristic functions of Bernoul-
li and exponential sums.

Lemma 1. Let |a1| > |ag| > -+ > |an|. Then for any t,

n

s 1 1
(3) Hcos(ait) + §a%t2 > H

242 /9"
bl pales 14 a?t?/2

Proof. We will consider 3 cases.
Case I |ait| < V2. Let x; = a?t?/2, then since cos(a;t) > 1 — a?t?/2 > 0, to
establish (3) it is enough to show that

n

~o1
H(l—xi)+$12H1+xl for1>a1 >29>--->2,>0.
1=2

7

=1
However,
T[]+ [Ha )+ xl} = (1 —a) JI@ - 23) + o ] + )
=2 =1 =2 =2
>(1—xz)(1— Za:f) + a1 (1 + le)

n n
§ : 2 § :

> 1-— Z; + T1T; > 1.
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Case IT /2 < |a;t| < 7/2. Then

n

1 1
2 2 2
HCOSGt+ (Zt 52 legw
Case III |aqt| > 7/2. Then

1

—Jeos(art)| > 1> H W. -

Hcosat + al

l\.’)l»—l

Using the above lemma we may now compare moments of Bernoulli and expo-
nential sums in the special case p € [2,4].

Lemma 2. Let |ai| > |az| > -+ > |an|. Then for any 2 < p < 4,

(1) E|Y e > B| S ae
i=1 i=2

Proof. Let S = E?:l a;g; and Sy = 2?22 a;&;, obviously we may assume that
2 < p < 4. By Lemma 4.2 of [3] we have for any random variable X with finite
fourth moment,

> 1
E|X|P = Cp/ (apx(t) -1+ 5t2E|X|2)t*P*1dt,
0

where ¢ is the characteristic function of X and C, = —Zsin(E5)['(p + 1) > 0.

Notice that by Lemma 1,

1 2
ps, () — @s, (t I | cos(a;t) I | 71 +a2t2/2 > a1t /2,
thus

E[S1|” — E|S,|” = Cp/ (¢,() = psu(t) + a322) 77Nt = 0.
0

To generalize the above result to arbitrary p > 2 we need one more easy estimate.

Lemma 3. For any real numbers a,b we have

-1
5 E|a& + b|P = |b|? + Ma2Ea5+bp_2 forp>2
2
and
-1
(6) Elac + b|P > [b]P + %aﬂbﬁ’” forp>3.

Proof. By integration by parts it is easy to show that for any f € C%(R) of at most
polynomial growth we have Ef(€) = f(0)+ 1Ef”(£). If we take f(z) = |az+b[? we
obtain (5). To prove (6) it is enough to notice that the function g(x) := E|ze + bJ?
satisfies g(0) = |b|?, ¢’(0) = 0 and g"(x) = p(p—1)E|ze+b[P~2 > p(p—1)[pP~2. O

Our first theorem shows that moments of Bernoulli sums dominate moments of
exponential sums up to few largest coeflicients.
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Theorem 1. Let |ai| > |ag| > -+ > |ayn|. Then for any p > 2,

(7) V£(ia?)p/2 > E‘ zn:aﬂi ' > E‘ Zn: ai&‘p > fyg( Zn: a?)p/2.
i=1 ;

i=1 i=[p/2] i=[p/2]

Proof. To establish the middle inequality we will show by double induction first on
k then on n that for p € (2k, 2k + 2],

(8) E| Z

For k£ = 1 this follows by Lemma 2. Suppose that our assertion holds for £ — 1 and
let p € (2k,2k + 2]. For n < k + 1 the inequality (7) is obvious. If n > k + 1 and
(8) holds for n — 1 then by (6), induction assumption, and (5),

: ZE‘ zn: Cligi p.

i=k+1

n P n P —1 n p—2
E‘Zaiai > E Zaiai —&—a?%E‘Zaisi
i=1 i=2 i=2
n » 1 n p—2
2B S wef vt P E) 3w
i=k+2 i=k+1
n P
=E Z G,igi‘
i=k+1

First inequality in (7) follows by the Khintchine inequality with optimal constant
[3] and the last inequality in (7) is an easy consequence of the fact that £ is a mixture
of gaussian r.v.’s (see Remark 5 in [6]). O

Next two corollaries present more precise versions of inequalities (1) and (2).

Corollary 1. For any p > 2 we have

max{*y,,( 3 (af)2>1/2,% 3 af}éHgam

i>[p/2] i<[p/2]

p

> <az>2)1/2+ S

i>[p/2] i<[p/2]

Proof. We have by the triangle inequality and the Khintchine inequality with op-
timal constant [3],

n
H Z a;E4
i=1

+ H Z G;Ei
p

| ¥
P i) i<[p/2]

<u( X @) Y

i>[p/2] i<[p/2]

p

To show the lower bound we use (7)

n n 1/2
HZaiei = HZafgi Z'yp( Z (af)Q)
i=1 P i=1 P

i>[p/2]
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and an easy estimate

el = (Pei=1fr1<i<[p2])"" 3 a
i=1 P i<[p/2] P i<[p/2] .

Corollary 2. For any p > 2 we have

; } H ”
max allz, —=|lal|eo ¢ < a;&;
(el 25 lallo} < |32

< lalle + plal

Proof. Let S = >"" | ;& and k = [p/2] — 1. We have ||S||, > 7p|la2 by the last
inequality in (7). Moreover

1 D
151, > llalleoll€llp = ||aHooﬁ(F(P+ 1))/ > EH@IIW

To get the upper bound we use twice bounds (7) and obtain

151, = pllallz < 181, = || S ar&|| <[ ar& < llalo| S &
i>k P i<k P i<k

< lalloo|| Y- & < 2klalloc < pllall.
i<k O

p

Now we may state a result that generalizes (up to a multiplicative constant)
previous corollaries.

Theorem 2. Let X; be independent symmetric r.v.’s with logarithmically concave
tails such that EX? =1 and |a1| > |as| > -+ > |ay,|. Then for any p > 3,

1/2 n
max{fyp( Z af) ,’ ZaiXi } < HZaiXi
i>[p/2] i<p P i=1 P
1/2
<'7’p( Z af) +HZ%X:'
i<p

i>[p/2]

p

Proof. Lower bound is an immediate consequence of Theorem 1 and Proposition 1.
To get the upper bound let k& = [p/2] — 1. Then

n 1/2
i=1 P i>2k P i<2k P ; i<2k

i>k
again by Theorem 1 and Proposition 1. O

P

Remark. By the result of Gluskin and Kwapien we have
H E aiX,' ~ Sup{ E aibi: E Mz(bz) < p},
. p - -
i<p 1<p <p

where M;(x) = 22 for |z| < 1 and M;(z) = —InP(|X;| > z) for |z| > 1.

We conclude with one more result about Gaussian approximation of moments.
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Corollary 3. Let X; be as in Theorem 2, then for any p > 3,

= wllall] < plals.

50
=1

Proof. The statement immediately follows by Proposition 1 and Corollaries 1 and 2.

O
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