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Reproducing kernel Hilbert spaces of

Gaussian priors

A. W. van der Vaart1 and J. H. van Zanten1,∗

Vrije Universiteit Amsterdam

Abstract: We review definitions and properties of reproducing kernel Hilbert
spaces attached to Gaussian variables and processes, with a view to applica-
tions in nonparametric Bayesian statistics using Gaussian priors. The rate
of contraction of posterior distributions based on Gaussian priors can be de-
scribed through a concentration function that is expressed in the reproducing
Hilbert space. Absolute continuity of Gaussian measures and concentration
inequalities play an important role in understanding and deriving this result.
Series expansions of Gaussian variables and transformations of their reproduc-
ing kernel Hilbert spaces under linear maps are useful tools to compute the
concentration function.
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1. Introduction

Ghosal, Ghosh and van der Vaart considered in [4] the rate of contraction of a
posterior distribution based on i.i.d. observations to the true density. Given prior
probability measures Πn defined on a set P of densities p relative to a given σ-
finite measure on a measurable space (such that the maps (x, p) �→ p(x) are jointly
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measurable) and observations X1, . . . , Xn, they characterized the rate εn ↓ 0 at
which the posterior distribution

(1.1) Πn(B|X1, . . . , Xn) =

∫
B

∏n
i=1p(Xi) dΠn(p)∫ ∏n

i=1p(Xi) dΠn(p)

contracts to p0 if the observations are an i.i.d. sample from this density, i.e. the
rate for which

Ep0Πn

(
p: d(p, p0) > Mεn|X1, . . . , Xn

)
→ 0,

for sufficiently large M . In their results d can be the Hellinger distance, the L1-
distance, or the L2-distance if the densities are uniformly bounded above.

The paper [15] applied these results to priors Πn constructed from Gaussian
processes. They consider a prior Πn constructed as the distribution of pW , for W
a Gaussian random element in a Banach space (B, ‖ · ‖) and w �→ pw a map such
that, for some constant C and all v, w ∈ B with ‖v − w‖ bounded above by some
fixed constant,

d(pv, pw) ≤ C‖v − w‖,
K(pv, pw) ≤ C‖v − w‖2,

V (pv, pw) ≤ C‖v − w‖2.

Here K(p, q) =
∫

log(p/q) p dμ is the Kullback–Leibler divergence and V (p, q) =∫ (
log(p/q)

)2
p dμ. This setting covers, for instance, the case of density estimation

on [0, 1] as considered in Tokdar and Ghosh [14], with d the Hellinger distance, the
Banach space equal to B = C[0, 1] and

pw(x) =
ewx∫ 1

0
ewy dy

.

It also covers logistic or probit regression as considered in [5] with appropriate
choices and several other situations, as shown in [15].

In the latter paper it is shown that if the true density takes the form p0 = pw0 ,
then the rate of posterior contraction εn is characterized by the pair of equations

inf
h∈H:‖h−w0‖<εn

‖h‖2
H ≤ nε2

n,(1.2)

− log P
(
‖W‖ < εn

)
≤ nε2

n.(1.3)

Here (H, ‖ · ‖H) is the reproducing kernel Hilbert space (RKHS) of the Gaussian
variable, and P(‖W‖ < ε) is its small ball probability (cf. [11]). Both equations
have a minimal solution εn, and the rate is the worse of the two solutions. The
second depends only on the prior, and gives a maximal rate regardless of the true
parameter w0, whereas the first involves the true parameter.

The reproducing kernel Hilbert space arises because it determines the support
and the “geometry” of the concentration of the Gaussian measure, which are crucial
for its success as a prior. Results on RKHSs of Gaussian variables are spread over
many research papers, and sometimes seem to belong to what is “well known” with-
out clear references. Moreover, there are different definitions for stochastic processes
and Borel measurable maps in a separable Banach space. In this paper we review
definitions, investigate when the different definitions agree, and derive results that
are useful for the construction of priors and the study of posterior distributions.
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2. Definitions and elementary properties

In this section we give and compare two definitions of RKHS, one for stochastic
processes and one for Borel measurable maps in a Banach space.

2.1. Gaussian processes

A zero-mean Gaussian stochastic process W = (Wt: t ∈ T ) is a set of random vari-
ables Wt indexed by an arbitrary set T and defined on a common probability space
(Ω,U , P) such that each finite subset possesses a zero-mean multivariate normal
distribution. The finite-dimensional distributions of such a process are determined
by the covariance function K: T × T → R, defined by

K(s, t) = EWsWt.

The reproducing kernel Hilbert space (RKHS) attached to the Gaussian process W
is the completion H of the linear space of all functions

(2.1) t �→
k∑

i=1

αiK(si, t), α1, . . . , αk ∈ R, s1, . . . , sk ∈ T, k ∈ N,

relative to the norm induced by the inner product

(2.2)
〈 k∑

i=1

αiK(si, ·),
l∑

j=1

βjK(tj , ·)
〉

H

=
k∑

i=1

l∑
j=1

αiβjK(si, tj).

It can be checked that this definition is independent of the representation of the
functions on the left, and that this defines a valid inner product.

The completion of the collection of functions (2.1) is an abstract metric-topolo-
gical operation using the metric induced by the inner product (2.2) only. As such
the completion is not a space of functions f : T → R. However, it can be identified
with a space of functions f : T �→ R, through the reproducing formula

f(t) = 〈f, K(t, ·)〉H.

For f a linear combination of the form
∑k

i=1αiK(si, ·) this formula follows from the
definition (2.2) of the inner product 〈·, ·〉H. For general f ∈ H the (extended) inner
product on the right (with the extended function K(t, ·)) is well defined through
the completion operation, and can be used to define a function f : T �→ R.

Alternatively, the function in (2.1) can be written as

(2.3) t �→ EWtH, H =
∑

i

αiWsi .

With the function in the display written as EW·H, the inner product (2.2) is equal
to 〈

EW·H1, EW·H2

〉
H

= EH1H2.

Thus the map H �→ EW·H is an isometry for the norm of the L2-space attached to
the probability space (Ω,U , P) on which the process W is defined and the RKHS-
norm. The stochastic process RKHS H, which is defined as the completion of the
set of functions (2.3), is therefore precisely the set of functions t �→ EWtH with
H ranging over the closure of the set of linear combinations H =

∑
i αiWsi in

L2(Ω,U , P) (known as the first order chaos of W ). It follows again that we can
view H as a Hilbert space of functions on T .
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2.2. Gaussian elements in a Banach space

A Borel measurable random element W with values in a separable Banach space
(B, ‖ · ‖) is called Gaussian if the random variable b∗W is normally distributed for
any element b∗ of the dual space B

∗ of B, and it is called zero-mean if the mean
of every such variable b∗W is zero. Henceforth we shall only consider zero-mean
Gaussian variables.

It is well known that the norm ‖W‖ of a zero-mean Gaussian variable, which is
a finite random variable by the assumption that W takes its values in B, has sub-
Gaussian tails. (cf. Corollary 5.1 below, or, e.g., [17], Propositions A.2.1 and A.2.3,
for a direct proof.) In particular, all moments E‖W‖p are finite. We set

σ2(W ) = sup
b∗∈B∗:‖b∗‖=1

Eb∗(W )2.

This is a finite number, bounded by E‖W‖2.
For every element b∗ ∈ B

∗ we define Sb∗ ∈ B as the Pettis integral EWb∗(W )
of the B-valued random element Wb∗(W ). By definition, this Pettis integral is an
element Sb∗ of B such that b∗2(Sb∗) = Eb∗2(W )b∗(W ) for every b∗2 ∈ B

∗. The following
lemma allows us to derive the existence of the Pettis integral from the fact that
E‖W‖2 < ∞.

Lemma 2.1. If X is a Borel measurable map in a separable Banach space B with
E‖X‖ < ∞, then there exists an element b ∈ B such that b∗(b) = Eb∗(X) for every
b∗ ∈ B

∗.

Proof. Because the Banach space is assumed separable, the map X is automatically
tight (e.g. [17], 1.3.2). Therefore, for any n ∈ N there exists a compact set K such
that E‖X‖1X /∈K < 1/n. This compact set can be partitioned into finitely many
sets Bi of diameter smaller than 1/n. Without loss of generality these partitions
can be chosen as successive refinements for increasing n. Let Xn =

∑
i bi1X∈Bi

for bi arbitrary points in the partitioning sets. Then EXn: =
∑

i biP(X ∈ Bi)
satisfies b∗(EXn) = Eb∗(Xn) for every b∗ ∈ B

∗. Furthermore, the sequence EXn is
a Cauchy sequence in B, because ‖EXn − EXm‖ = sup‖b∗‖=1 |Eb∗(Xn − Xm)| ≤
E‖Xn − Xm‖ → 0 as n, m → ∞. Because E‖Xn − X‖ < 2/n, we have that
b∗(EXn) = Eb∗(Xn) → Eb∗(X) for every b∗ ∈ B. The strong limit b of the sequence
EXn is of course also a weak limit, whence b∗(b) = Eb∗(X) for every b∗ ∈ B∗.

The reproducing kernel Hilbert space (RKHS) H attached to W is the completion
of the range SB

∗ of the map S: B∗ → B defined by Sb∗ = EWb∗(W ) for the inner
product

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W ).

By the Hahn–Banach theorem and the Cauchy–Schwarz inequality,

‖Sb∗‖ = sup
b∗2∈B∗:‖b∗2‖=1

|b∗2(Sb∗)| = sup
b∗2∈B∗:‖b∗2‖=1

|Eb∗2(W )b∗(W )|

≤ σ(W )
(
Eb∗(W )2

)1/2 = σ(W )‖Sb∗‖H.(2.4)

It follows that the RKHS-norm on the set SB
∗ is stronger than the original norm,

so that a ‖ · ‖H-Cauchy sequence in SB
∗ ⊂ B is a ‖ · ‖-Cauchy sequence in B.

Consequently, the RKHS, which is by definition the completion of the set SB
∗
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under the RKHS norm, can be identified with a subset of B. In terms of the unit
balls B1 and H1 of B and H the preceding display can be written as

(2.5) H1 ⊂ σ(W )B1.

In other words, the norm of the embedding i: H → B is bounded by σ(W ).

Lemma 2.2. The map S: B∗ → H is weak-* continuous.

Proof. The unit ball B
∗
1 of the dual space is weak-* metrizable ([12], 3.16). Therefore

the restricted map S: B∗
1 → H is weak-* continuous if and only if weak-* convergence

of a sequence b∗n in B
∗
1 to an element b∗ implies that Sb∗n → Sb∗ in H. Now the weak-*

convergence b∗n → b∗ is by definition pointwise convergence on B. Then the sequence
(b∗n − b∗)(W ) tends to zero (almost) surely, and hence also in distribution. Because
each of these variables is zero-mean Gaussian, this implies that the variances tend
to zero, i.e. ‖Sb∗n − Sb∗‖2

H
= E(b∗n − b)2(W ) → 0. (Alternatively, use the uniform

integrability of the variables b∗W instead of the Gaussianity.)
This concludes the proof that the restriction of S to the unit ball B

∗
1 is continuous.

A weak-* converging net b∗n in B
∗ is necessarily bounded in norm, by the Banach–

Steinhaus theorem ([12], 2.5), and hence is contained in a multiple of the unit ball.
The continuity of the restriction then shows that Sb∗n → Sb∗, which concludes the
proof.

Corollary 2.1. If B
∗
0 is a weak-* dense subset of B

∗, then H is the completion of
SB

∗
0.

By the definitions 〈Sb∗, Sb∗〉H = Eb∗Wb∗W = b∗(Sb∗), for any b∗, b∗ ∈ B
∗. By

continuity of the inner product this extends to the reproducing formula:

(2.6) 〈Sb∗, h〉H = b∗(h),

which is valid for every h ∈ H and b∗ ∈ B
∗.

Just as for stochastic processes there is an alternative representation of the RKHS
through “first chaos”, in the present setting defined as the closed linear span of the
variables b∗W in L2(Ω,U , P). The elements Sb∗ of the RKHS can be written Sb∗ =
EHW for H = b∗W , and the RKHS-norm of Sb∗ is by definition the L2(Ω,U , P)-
norm of this H. This immediately implies the following lemma. Note that EHW is
well defined as a Pettis integral for every H ∈ L2(Ω,U , P), by Lemma 2.1.

Lemma 2.3. The RKHS is the set of Pettis integrals EHW for H ranging over the
closed linear span of the variables b∗W in L2(Ω,U , P) with inner product 〈EH1W,
H2W 〉H = EH1H2.

It is useful to decompose the map S: B∗ → B as S = A∗A for A∗: L2(Ω,U , P) → B

and A: B∗ → L2(Ω,U , P) given by

A∗H = EHW,

Ab∗ = b∗W.

It may be checked that the operators A and A∗ are indeed adjoints, after identifying
B with a subset of its second dual space B

∗ under the canonical embedding ([12],
3.15, 4.5), as the notation suggests. By the preceding lemma the RKHS is the
image of the first chaos space under A∗. Because R(A)⊥ = N(A∗) the full range
R(A∗) = A∗(L2(Ω,U , P)

)
is not bigger than the image of the first chaos, although
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the map A∗: L2(Ω,U , P) → H is an isometry only if restricted to the first chaos
space.

Recall that an operator is compact if it maps bounded sets into precompact sets,
or, equivalently, maps bounded sequences into sequences that possess a converging
subsequence.
Lemma 2.4. The maps A∗: L2(Ω,U , P) → B and A: B∗ → L2(Ω,U , P) and S: B∗ →
B are compact for the norms.

Proof. In general an operator is compact if and only if its adjoint is compact,
and a composition with a compact operator is compact (see ([12], 4.19). To prove
the compactness of A fix some sequence b∗n in the unit ball B

∗
1. As the unit ball

is weak-* compact by the Banach–Alaoglu theorem ([12], 4.3(c)), there exists a
subsequence along which b∗nj

converges pointwise on B to a limit b∗. Consequently
b∗nj

(W ) → b∗(W ) almost surely, and hence in second mean.

As a consequence we can conclude that the unit ball of the RKHS is precompact
in B. Indeed, H1 = A∗

U1 for U1 the unit ball of L2(Ω,U , P), and hence is precompact
by the compactness of A∗.

Example 2.1 (Hilbert space). The covariance operator of a mean zero Gaussian
random element W in a Hilbert space B with inner product 〈·, ·〉 is the map S: B → B

that satisfies E〈W, b1〉〈W, b2〉 = 〈b1, Sb2〉. It is well known that S is continuous,
linear, positive, self-adjoint, and of finite trace, and hence it possesses a square root,
which is another positive, self-adjoint operator S1/2: B → B such that S1/2S1/2 = S.
(The square root can also be described as having the same eigenfunctions as S with
eigenvalues the square roots of the eigenvalues of S.) The RKHS of W can be
characterized as the range of S1/2 equipped with the norm ‖S1/2b‖H = ‖b‖.

To see this note that the covariance operator S is exactly the operator S as
defined previously, after the usual identification of the dual space B

∗ with B itself:
b ∈ B corresponds to the element b1 �→ 〈b, b1〉 of B

∗. Hence the RKHS is the
completion of the elements Sb under the square norm ‖Sb‖2

H
= E〈W, b〉2 = 〈b, Sb〉 =

‖S1/2b‖2. This is the same as the completion of the set of functions S1/2c (with
c = S1/2b) under the norm ‖S1/2c‖2

V = ‖c‖2. The latter set is of course already
complete, so that completion is superfluous.

2.3. Comparison

If the sample paths t �→ Wt of a stochastic process W = (Wt: t ∈ T ) belong to
a Banach space of functions, then the process can be viewed as a map W into
the Banach space. If it is a Borel measurable map, then the preceding gives two
definitions of a RKHS. The two definitions will coincide provided the dual space
can be appropriately related to the covariance function. In particular, if the coor-
dinate projections πt: B → R, defined by b �→ b(t), are elements of the dual space,
then Wt = πt(W ) and the covariance function K(s, t) = EWsWt takes the form
Eπs(W )πt(W ) = 〈Sπs, Sπt〉H. If the other elements Sb∗ are determined by the ele-
ments Sπt, then the two definitions should be the same. It appears that in general
some conditions are needed to make the link between the two definitions. For the
Banach space �∞(T ) of uniformly bounded functions z: T → R equipped with the
uniform norm ‖z‖ = sup{|z(t)|: t ∈ T}, this can always be done.

The following result is probably known to the experts, but we do not know a
published reference.
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Theorem 2.1. If W is a Borel measurable zero-mean Gaussian random element
in a complete separable subspace of �∞(T ) equipped with the uniform norm, then
the Banach space RKHS and the stochastic process RKHS coincide. Furthermore
Sπt = K(t, ·).
Proof. For a given tight Borel measurable random element W in �∞(T ) there exists
a semimetric ρ on T under which T is totally bounded and such that W takes
its values in the subspace UC(T, ρ) of functions f : T → R that are uniformly
continuous relative to ρ (e.g. [17], Lemma 1.5.9). Thus we may assume without loss
of generality that W takes its values in UC(T, ρ) for such a semimetric ρ. The space
UC(T, ρ) is a Banach space under the supremum norm ‖f‖ = sup{|f(t)|: t ∈ T}.
Let K(s, t) = EWsWt.

The coordinate projections πt: f �→ f(t) belong to the dual space UC(T, ρ)∗. The
corresponding Pettis integral Sπt is the function K(t, ·). This follows because it is
contained in UC(T, ρ) and, furthermore, for every s ∈ T ,

πs

(
K(t, ·)

)
= K(t, s) = EWsWt = Eπs(W )πt(W ).

Because the coordinate projections πtf identify f uniquely it follows that K(t, ·) =
EWπt(W ) = Sπt.

Thus the stochastic process RKHS, defined as the completion of the linear com-
binations (2.1), is contained in the Banach space RKHS. The inner products on the
two spaces agree, because

〈Sπs, Sπt〉H = Eπt(W )πs(W ) = K(s, t) =
〈
K(s, ·), K(t, ·)

〉
H
.

By the Riesz representation theorem an arbitary element of UC(T, ρ)∗ is a map
f �→

∫
f̄(t) dμ(t) for a signed Borel measure on the completion T̄ of T and f̄ : T̄ → R

is the continuous extension of f . Because T is totally bounded we can write it for
each m ∈ N as a finite union of sets of diameter smaller than 1/m. If we define μm

as the measure obtained by concentrating the masses of μ on the partitioning sets
in a fixed, single point in the partitioning set, then

∫
f̄ dμm →

∫
f̄ dμ as m → ∞,

for each f ∈ UC(T, ρ). The map f �→
∫

f̄ dμm is a linear combination of coordinate
projections. It follows that for any b∗ ∈ UC(T, ρ)∗ there exists a sequence b∗m of
linear combinations of coordinate projections that converges pointwise on UC(T, ρ)
to b∗. In other words, the linear span B

∗
0 of coordinate projections is weak-* dense

in UC(T, ρ)∗, and hence the RKHS is the completion of SB
∗
0, by Lemma 2.1.

Example 2.2. The preceding theorem applies, for instance, to the space of con-
tinuous functions z: T → R on a compact metric space T . For instance C[0, 1].

A more general connection between the two definitions of a RKHS can be made
by embedding the Banach space B in its second dual (see [12], 4.15). This is some-
what technical and will not be needed in the rest of the paper. The canonical
embedding is, as usual, the identification of b ∈ B with the map b∗∗: B∗ → R de-
fined by b∗∗(b∗) = b∗(b). A Borel measurable random element W in B becomes
identified in this way with the stochastic process W ∗∗ =

(
b∗(W ): b∗ ∈ B

∗), which
has covariance function

K(b∗1, b
∗
2) = Eb∗1(W )b∗2(W ).

The stochastic process RKHS H attached to this process in Section 2.1 is the
completion of the set of functions K(b∗, ·): B∗ → R relative to the inner product

〈K(b∗1, ·), K(b∗2, ·)〉H = K(b∗1, b
∗
2) = Eb∗1(W )b∗2(W ).
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The function K(b∗, ·) is exacly the Pettis integral EWb∗(W ), written Sb∗ in the
preceding and now viewed as an element of B

∗∗; and the inner product in the
display is exactly 〈Sb∗1, Sb∗2〉H. Thus the two definitions of RKHS coincide, after
identification of B and its image in B∗∗ under the canonical embedding.

3. Absolute continuity

Given a zero-mean Gaussian process W = (Wt: t ∈ T ) with covariance kernel K
defined on a probability space (Ω,U , P) with RKHS H as defined in Section 2.1, we
can define a map U : H → L2(Ω,U , P) by defining

(3.1) UK(t, ·) = Wt,

and extending linearly and continuously. This map is an Hilbert space isometry,
since

EUK(s, ·)UK(t, ·) = EWsWt = K(s, t) =
〈
K(s, ·), K(t, ·)

〉
H
.

This isometry property also implies the existence of the extension. It follows that
the process (Uh: h ∈ H) is the iso-Gaussian process indexed by H: a mean-zero
Gaussian process with covariance function EUgUh = 〈g, h〉H.

The process W induces a distribution PW on the product σ-field of RT . For
a function f : T �→ R the process (Wt + f(t): t ∈ T ) induces another distribution
PW+f on the same space.

Lemma 3.1. If f ∈ H, then PW+f and PW are equivalent and

dPW+f

dPW
(W ) = eUf−1

2‖f‖2
H , a.s.

Proof. The process W is the “subprocess” W G = (Ug: g ∈ G) of the iso-Gaussian
process W H = (Uh: h ∈ H) for G the set of functions K(t, ·) with t ranging over T .
From the general theory of Gaussian processes

(3.2)
dPW H+(〈h,f〉H:h∈H)

dPW H

(
W H

)
= eUf−1

2‖f‖2
H , a.s.

The process W G arises from the iso-Gaussian process by the projection πG:RH →
RG. The corresponding Radon–Nikodym derivative can be found as the conditional
expectation

dPW G+(〈g,f〉H:g∈G)

dPW G

(
W G

)
= E

(dPW H+(〈h,f〉H:h∈H)

dPW H

(
W H

)
|W G

)
.

Because lin (G) is dense in H by construction and U is continuous, the variable Uf is
the L2(Ω,U , P)-limit of a sequence Ugn with (gn) ⊂ lin (G) and hence is measurable
relative to the completion of the σ-field generated by W G. Consequently, the right
side of (3.2) is WG-measurable as well and hence the conditional expectation in the
preceding display is unnecessary.

Finally, note that the shift 〈g, f〉H is exactly the function f after the identification
g ↔ K(t, ·), by the reproducing property: f(t) = 〈K(t, ·), f〉H for every t ∈ T .

Let H be the abstract RKHS attached to a zero-mean, Borel measurable,
Gaussian random element W in a separable Banach space B defined on a prob-
ability space (Ω,U , P). Let U : H → L2(Ω,U , P) be the isometry defined by

(3.3) U(Sb∗) = b∗(W ), b∗ ∈ B
∗,
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and extending continuously. It is the same map U as in (3.1) if we make the iden-
tification Sπt = K(t, ·) of Theorem 2.1; also US = A for A defined in Section 2.2.
As before the map U is an isometry. The preceding lemma can be translated to the
present situation.

Lemma 3.2. If h ∈ H then the distributions PW+h and PW of W + h and W on
B are equivalent and

dPW+h

dPW
(W ) = eUh−1

2‖h‖2
H , a.s.

Proof. The process W ∗∗ =
(
b∗(W ): b∗ ∈ B

∗) arising from W through the canonical
embedding generates the same σ-field on the underlying probability space as W
and can be viewed as a measurable transformation of W under the map φ: B →
RB

∗
given by φ(b)(b∗) = b∗(b). The process W + h is transformed in the process

W ∗∗ + h∗∗ = φ(W + h). The result therefore follows from Lemma 3.1.
The following alternative proof is given in Proposition 2.1 in [3]. The isometry

property of U shows that E(Uh)2 = ‖h‖2
H
. Because Uh is in the closed linear span

of the zero-mean Gaussian variables USb∗ = b∗W , it is itself zero-mean Gaussian.
It follows that

dQ = eUh−1
2‖h‖2

H dP

defines a probability measure on (Ω,U). For any b∗1, b
∗
2 ∈ B

∗ the joint distribution
of (USb∗1, USb∗2) = (b∗1W, b∗2W ) is bivariate normal with mean zero and covariance
matrix

(
〈Sb∗i , Sb∗j 〉H

)
i,j=1,2

. By taking limits we see that for every h ∈ H the joint
distribution of (b∗1W, Uh) is bivariate normal with mean zero and covariance matrix
Σ with Σ1,1 = ‖Sb∗1‖2

H
, Σ1,2 = 〈Sb∗1, h〉H and Σ2,2 = ‖h‖2

H
. Thus

EQeib∗1W = Eeib∗1W eUh−1
2‖h‖2

H = e
1
2 (i,1)Σ(i,1)T

e−
1
2‖h‖2

H = e−
1
2Σ1,1+iΣ1,2 .

The right side is also equal to

Eeib∗1W+i〈Sb∗1 ,h〉H = Eeib∗1(W+h).

The last step follows from the reproducing formula (2.6). We conclude that the
distribution of W + h under P is the same as the distribution of W under Q, i.e.
P(W + h ∈ B) = EQ1B(W ) = E1B(W )(dQ/dP).

The preceding lemma requires that the shift h is contained in the RKHS. If this
is not the case, then there is no density.

Lemma 3.3. If b /∈ H then the distributions PW+b and PW of W + b and W on
B are orthogonal.

Proof. By Lemma 5.1 (below) the closure H̄ of H in B is the support of W . Because
the affine spaces H̄ and H̄+b are disjoint if b /∈ H̄, the assertion is clear if b ∈ B−H̄.
Therefore, it is not a loss of generality to assume that B is the closure of H.

Fix a sequence {b∗n} ⊂ B
∗ whose linear span is dense (for the norm) in B

∗ and
is such that the variables b∗nW are i.i.d. standard normal variables. We prove the
existence of such a sequence at the end of the proof. We claim that H = {b ∈
B:

∑∞
n=1(b

∗
nb)2 < ∞}. Indeed, the sequence hn = Sb∗n is orthonormal in H by the

definition of the inner product in H and lin (hn) = S lin (b∗n) is dense in SB
∗ by

construction of the sequence b∗n and continuity of S. By the reproducing formula
b∗nh = 〈h, hn〉H for every h ∈ H, whence

∑
n(b∗nh)2 < ∞. Conversely, if

∑
n(b∗nb)2 <
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∞, then h: =
∑

n(b∗nb)hn is a well-defined element of H, with b∗mh = b∗mb for every
m because b∗mhn = 〈hn, hm〉H = δmn. Because the linear span of the sequence (b∗n)
is dense in B

∗ it follows that b∗h = b∗b for every b∗ and hence b = h, which is
contained in H.

The map φ: B → R∞ defined by b �→ (b∗nb) is well defined and measurable. It
maps W onto a sequence (Zn) = φ(W ) of standard normal variables and maps
W + b onto the sequence (Zn + b∗nb) of independent shifted normal variables. By
Kakutani’s dichotomy the latter two laws are orthogonal if

∑
n(b∗nb)2 = ∞. This

implies the orthogonality of the laws of W and W + b.
Finally we prove the existence of (b∗n) as claimed. Starting with an arbitrary

dense sequence (b∗n) in B
∗, we can make this linearly independent by removing

from left to right in the sequence b∗1, b
∗
2, . . . every b∗n that can be written as a

linear combination of the preceding (left-over) b∗j . This procedure yields a linearly
independent sequence (b∗n) whose span is dense in B

∗. The random variables b∗nW
are automatically linearly independent in L2(Ω,U , P), because

∑
n λnb∗nW = 0,

almost surely for a sequence λn with finitely many nonzero elements. This implies
that

∑
n λnb∗n is zero on a set with probability one under the law of W , and hence

by continuity also on the support of this law, which is B by assumption. Thus
we can apply the Gramm–Schmidt procedure to turn the sequence b∗nW into a
sequence of standard normal variables (Zn). Then Zn =

∑n
i=1λi,nb∗i W for every n

for a triangular array of coefficients (λi,n) with λn,n 
= 0 for every n. The sequence∑n
i=1λi,nb∗i has the desired properties.

4. Series representation

Suppose that the covariance kernel K of the Gaussian process W = (Wt: t ∈ T ),
defined on the probability space (Ω,U , P), can be written in the form

(4.1) K(s, t) =
∞∑

j=1

λjφj(s)φj(t)

for positive numbers λ1, λ2, . . . and arbitrary functions φj : T → R, where the series
is assumed to converge pointwise on T ×T . The convergence on the diagonal implies
that

∑
j λjφ

2
j (t) < ∞ for all t ∈ T . Then by the Cauchy–Schwarz inequality the

series
∑∞

j=1 wjφj(t) converges absolutely for every sequence (wj) of numbers with∑
j w2

j /λj < ∞, for every t, and hence defines a function from T to R. We assume
that the functions φj are linearly independent in the sense that

∑
j wjφj(t) = 0 for

every t ∈ T for some sequence (wj) with
∑

j w2
j /λj < ∞ implying that wj = 0 for

every j ∈ N.

Theorem 4.1. If the covariance function K of the mean-zero Gaussian process
W = (Wt: t ∈ T ) can be represented as in (4.1) for numbers λj and functions
φj : T → R which satisfy

∑∞
j=1 λjφ

2
j (t) < ∞ for every t ∈ T and are linearly

independent as indicated, then the RKHS of the stochastic process W is the set of
all functions

∑∞
j=1 wjφj(t) with

∑∞
j=1 w2

j /λj < ∞, and the inner product is given
by

(4.2)
〈 ∞∑

i=1

viφi,

∞∑
j=1

wjφj

〉
H

=
∞∑

j=1

vjwj

λj
.
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Proof. Under the condition that
∑∞

k=1 λkφ2
k(t) < ∞ for every t ∈ T , the infinite

sum defining K(s, t) converges for every (s, t) ∈ T × T , by the Cauchy–Schwarz
inequality, and hence the kernel is well defined. Let H be the set of all series∑∞

k=1 fkφk when (fk) ranges over the sequences with
∑∞

k=1 f2
k/λk < ∞. (These

series were noted to converge pointwise absolutely before the statement of the the-
orem.) By the assumed linear independence of the functions φj , the coefficients
(fj) are identifiable from the corresponding functions

∑
j fjφj ∈ H. Therefore we

can define a bijection i: H → �2 by i:
∑

k fkφk �→ (fk/
√

λk). The set H becomes a
Hilbert space under the inner product induced from �2, which is given on the right
side of (4.2), and which we denote by 〈·, ·〉H . We must prove that this inner product
agrees with the inner product of H and that H and H are the same as sets.

The function K(s, ·) has a representation
∑∞

k=1 fkφk for fk = λkφk(s), and hence
is contained in H. It also follows that

〈
K(s, ·), K(t, ·)

〉
H

=
∞∑

k=1

λkφk(s)λkφk(t)
λk

= K(s, t) =
〈
K(s, ·), K(t, ·)

〉
H
,

where the second equality follows from the series representation of K, and the third
is (2.2). Thus the inner products of H and H agree. We conclude that H contains
H isometrically.

The space H has the reproducing property: 〈f, K(t, ·)〉H = f(t) for every t ∈ T
and f ∈ H. This follows from

〈
f, K(t, ·)

〉
H

=
〈∑

k

fkφk,
∑

k

λkφk

〉
H

=
∑

k

fkλkφk(t)
λk

= f(t).

If f ∈ H with f ⊥ H, then in particular f ⊥ K(t, ·) for every t ∈ T and hence
f(t) = 0 by the reproducing formula. Thus H = H.

Series expansions of the type (4.1) are not unique, and some may be more useful
than others. They may arise as an eigenvalue expansion of the operator correspond-
ing to the covariance function. However, this is not a requirement of the proposition,
which applies to arbitrary functions φj .

Example 4.1. Suppose that (T, Θ, ν) is a measurable space and∫ ∫
K2(s, t) dν(s) dν(t) < ∞.

Then the integral operator K: L2(T, Θ, ν) → L2(T, Θ, ν) defined by

Kf(t) =
∫

f(s)K(s, t) dν(t)

is compact and positive self-adjoint. Thus there exists a sequence of eigenvalues
λk ↓ 0 and an orthonormal system of eigenfunctions φk ∈ L2(T, Θ, ν) (thus Kφk =
λkφk for every k ∈ N) such that (4.1) holds, where the series converges in L2(T ×
T, Θ×Θ, ν × ν). The series

∑
k fkφk now converges in L2(T, Θ, ν) for any sequence

(fk) in �2. By the orthonormality of the functions φk, they are certainly linearly
independent.

If the series (4.1) also converges pointwise on T ×T , then in particular K(t, t) =∑
k λkφ2

k(t) < ∞ for all t ∈ T and Theorem 4.1 shows that the RKHS is the set of
all functions

∑
k fkφk for sequences (fk) such that (fk/

√
λk) ∈ �2.

If the kernel is suitably regular, then we can apply the preceding with many
choices of measure ν, leading to different eigenfunction expansions.
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If the process itself can be expanded as a series

W =
∞∑

j=1

μjZjφj ,

for a sequence of i.i.d. standard normal variables (Zj) and suitable functions φj ,
where the series converges in L2(Ω,U , P), then (4.1) holds with λj = μ2

j and the
stochastic process RKHS takes the form given by the preceding proposition. The
following proposition gives a Banach space version of this result.

Theorem 4.2. Let (hi) be a sequence of elements in a separable Banach space B

such that
∑∞

i=1 wihi = 0 for a sequence w ∈ �2, where the convergence is in B,
implying that w = 0. Let (Zi) be an i.i.d. sequence of standard normal variables
and assume that the series W =

∑∞
i=1 Zihi converges almost surely in B. Then the

RKHS of W as a map in B is given by H = {
∑∞

i=1 wihi: w ∈ �2 < ∞} with squared
norm ‖

∑
wihi‖2

H
=

∑
i w2

i .

Proof. The almost sure convergence of the series W =
∑∞

i=1 Zihi in B implies
the almost sure convergence of the series b∗W =

∑∞
i=1 Zib

∗hi in R, for any b∗ ∈
B
∗. Because the partial sums of the last series are zero-mean Gaussian, the series

converges also in L2(Ω,U , P). Hence for any b∗, b∗ ∈ B
∗,

Eb∗Wb∗W = E
∞∑

i=1

Zib
∗hi

∞∑
i=1

Zib
∗hi =

∞∑
i=1

b∗hib
∗hi.

In particular, the sequence (b∗hi) is contained in �2 for every b∗ ∈ B
∗, with square

norm E(b∗W )2.
For w ∈ �2 and natural numbers m < n, by the Hahn–Banach theorem and the

Cauchy–Schwarz inequality,
∥∥∥ ∑

m<i≤n

wihi

∥∥∥2

= sup
‖b∗‖≤1

∥∥∥ ∑
m<i≤n

wib
∗hi

∥∥∥2

≤
∑

m<i≤n

w2
i sup

‖b∗‖≤1

∑
m<i≤n

(b∗hi)2.

As m, n → ∞ the first factor on the far right tends to zero, since w ∈ �2. By the first
paragraph the second factor is bounded by sup‖b∗‖≤1 E(b∗W )2 ≤ E‖W‖2. Hence
the partial sums of the series

∑
i wihi form a Cauchy sequence in B, whence the

infinite series converges.
Because

∑
i(b

∗hi)2 was seen to converge, it follows that
∑

i(b
∗hi)hi converges

in B, and hence b∗(
∑

i(b
∗hi)hi) =

∑
i b∗hib

∗hi = Eb∗Wb∗W , for any b∗ ∈ B
∗.

This shows that Sb∗ =
∑

i(b
∗hi)hi and the RKHS is not bigger than the space, as

claimed.
The space would be smaller than claimed if there existed w ∈ �2 that is not in

the closure of the linear span of the elements (b∗hi) of �2 when b∗ ranges over B
∗.

We can take this w without loss of generality as orthogonal to the latter collection,
i.e.

∑
i wib

∗hi = 0 for every b∗ ∈ B
∗. This is equivalent to

∑
i wihi = 0, which has

been excluded for any w 
= 0.

It should be noted that the sequence (hi) in the preceding lemma consists of
arbitrary elements of the Banach space, only restricted by the linear independence
condition that

∑
i wihi = 0 for w ∈ �2, implying that w = 0 (and the convergence of
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the random sequence
∑

i Zihi). Combined with an i.i.d. standard normal sequence
as coefficients, this sequence turns into an orthonormal basis of the RKHS.

From the proof it can be seen that the linear independence is necessary. If it
fails, then the RKHS is the set of linear combinations

∑
i wihi with w restricted to

the closure in �2 of the set of sequences (b∗hi) when b∗ ranges over B
∗ and square

norm
∑

i w2
i . (Taking these linear combinations for all w ∈ �2 gives the same set,

but the �2-norm should be computed for a projected w.)

Example 4.2. For Z0, . . . , Zk i.i.d. standard normal variables consider the polyno-
mial process t �→

∑k
i=0 Zit

i/i! viewed as a map in (for instance) C[0, 1]. The RKHS
of this process is equal to the set of kth degree polynomials Pa(t) =

∑k
i=0 ait

i/i!
with square norm ‖Pa‖2

H
=

∑k
i=0 a2

i , i.e., the kth degree polynomials P with square
norm ‖P‖2

H
=

∑k
i=0 P (i)(0)2.

Conversely, any Gaussian random element W in a separable Banach space can
be expanded in a series W =

∑∞
j=1 Zjhj for i.i.d. standard normal variables Zi and

any orthonormal basis (hi) of its RKHS, where the series converges in the norm of
the Banach space. Because we can rewrite this expansion as W =

∑
j ‖hj‖Zj h̃j ,

where h̃j = hj/‖hj‖ is a sequence of norm one, the corresponding “eigenvalues” λi

are in this case the square norms ‖hi‖2. To prove this result, recall the isometry
U : H → L2(Ω,U , P) defined in (3.3).

Theorem 4.3. Let (hi) be a complete orthonormal system in the RKHS H of a
Borel measurable, zero-mean Gaussian random element W in a separable Banach
space B. Then Uh1, Uh2, . . . is an i.i.d. sequence of standard normal variables and
W =

∑∞
i=1(Uhi)hi, where the series converges in the norm of B, almost surely.

Proof. It is immediate from the definitions of U and the RKHS that U : H →
L2(Ω, U,P) is an isometry. Because U maps the subspace SB

∗ ⊂ H into the Gaussian
process b∗W , it maps the completion H of SB

∗ into the completion of the linear
span of this process in L2(Ω,U , P), which consists of normally distributed variables.
Because U retains inner products, it follows that Uh1, Uh2, . . . is a sequence of i.i.d.
standard normal variables.

By the definition of U and its continuity, for any b∗ ∈ B
∗,

b∗W = U(Sb∗) = U
( ∞∑

i=1

〈Sb∗, hi〉Hhi

)
=

∞∑
i=1

〈Sb∗, hi〉HUhi =
∞∑

i=1

b∗(hi)Uhi,

where the last equality follows from the reproducing formula (2.6) and the series
converges in L2(Ω,U , P). In other words, for any b∗ ∈ B

∗, b∗
(∑n

i=1hi(Uhi)
)
≡∑n

i=1(b
∗hi)Uhi converges in L2(Ω,U , P) to b∗W . We wish to strengthen this to

convergence almost surely of Wn: =
∑n

i=1hi(Uhi) to W in B. This is an immediate
consequence of the Lévy–Ito–Nisio theorem, as given in, e.g., ([9], Theorem 2.4),
according to which convergence in distribution of all “marginals” b∗

∑n
i=1Xi to the

marginals b∗W of some Borel measurable map W in a separable Banach space, for
b∗ ∈ B

∗, implies the almost sure convergence of the series
∑

i Xi.
An alternative proof based on a martingale argument is given in ([9], Proposi-

tion 3.6). Let Z1, Z2, . . . be an orthonormal basis of the closed linear span of the vari-
ables b∗W in L2(Ω,U , P). Then it can be seen that, for every n, E(W |Z1, . . . , Zn) =∑n

i=1Zihi in a Banach space sense, for hi = EZiW . Convergence of the infinite series
follows by a martingale convergence theorem for Banach space valued variables.
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5. Support and concentration

The RKHS of a zero-mean Gaussian random element W in a separable Banach
space B is essential for an understanding of the spread of its distribution.

To begin with, the support of W , the smallest closed set B0 in B with P(W ∈
B0) = 1, is the closure of the RKHS.

Lemma 5.1. The support of a mean-zero Gaussian random element W in a sepa-
rable Banach space B is the closure of its RKHS in B. It is also the closure of the
set SB

∗ in B.

Proof. We first show that the probability P
(
‖W‖ < ε

)
of an arbitrary open ball

centered around 0 is positive. Let V be an independent copy of W . Because we can
cover B with countably many balls of radius ε, there exists some ball B(h, ε) with
positive measure under the law of W . The difference B(h, ε)−B(h, ε) is contained
in the ball of radius 2ε around 0. It follows that

P
(
V − W ∈ B(0, 2ε)

)
≥ P(V ∈ B(h, ε)

)
P(W ∈ B(h, ε)

)
> 0.

Now (V −W )/
√

2 is a zero-mean Gaussian process with the same covariance func-
tion as W , and hence has the same distribution as W . It follows that P(W ∈
B(0,

√
2ε)

)
> 0 for every ε > 0.

Since the distribution of W − h is equivalent to the distribution of W for any h
in the RKHS, by Lemma 3.2, it follows that P

(
‖W − h‖ < ε

)
> 0 for any ε > 0

and h ∈ H.
This remains true for an element h ∈ B that can be approximated arbitrarily

closely by elements from the RKHS. Thus the support of W contains the closure of
the RKHS in B.

By the Hahn–Banach theorem this closure H̄ can be written as

H̄ =
⋂

b∗∈B∗:b∗H=0

N(b∗),

where b∗H = 0 means b∗h = 0 for all h ∈ H and N(b∗) = {b ∈ B: b∗(b) = 0}
is the kernel of b∗. If b∗H = 0, then in particular b∗(Sb∗) = E(b∗(W ))2 = 0, and
hence b∗(W ) = 0 almost surely. It follows that P

(
W ∈ N(b∗)

)
= 1 for every b∗

in the display. By the preceding display the complement B − H̄ is a union of the
open sets N(b∗)c. Because an open set in a separable metric space is Lindelöf ([6],
section 10) this union can be written as a union of countably many of the sets
N(b∗)c. Equivalently, the intersection in the preceding display can be restricted to
a suitable countable subset. It follows that P(W ∈ H̄) = 1.

The second assertion follows, because the RKHS-norm is stronger than the norm
of the containing Banach space. Completing the set SB∗ for the RKHS-norm before
taking the closure in B does therefore not give a bigger set.

An inequality of [1] gives further insight in the concentration of the distribution
of W . Let H1 and B1 be the unit balls of the RKHS and the space B, respectively.
The inequality involves the (centered) small ball probability

e−φ0(ε) = P(W ∈ εB1).

Theorem 5.1. (Borell’s inequality.) For any ε > 0 and M ≥ 0,

P
(
W ∈ εB1 + MH1

)
≥ Φ

(
Φ−1(e−φ0(ε)) + M

)
.
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Here Φ is the cumulative distribution function of the standard normal distribu-
tion. For fixed ε > 0 the right side decreases as M → ∞ according to the tails of the
standard normal distribution. This shows that the “geometry of the concentration”
of W is given by the unit ball of the RKHS. Summing the small ball εB1 to the
multiple MH1 can be seen as enlarging the latter set with an ε-neighbourhood. In
general this is necessary to capture the mass of the W , because the support of W is
the closure of the RKHS; the RKHS itself may have probability zero. For M → ∞
we obtain the equality P(W ∈ εB1 + H) = 1, for any ε > 0, which (again) shows
that W is supported within the closure of H.

Example 5.1. For a mean-zero normal vector W in B = Rk with covariance matrix
Σ, the RKHS is the range of the covariance matrix equipped with the inner product
〈Σg, Σh〉H = gT Σh. This follows, because B

∗ = Rk and, for the element g ∈ B
∗

given by h �→ hT g, we have Sg = EWWT g = Σg. The inner product of the RKHS
is 〈Sg, Sh〉H = EgT WhT W = gT Σh.

The unit ball H1 is the set {Σh: hT Σh ≤ 1}. For nonsingular Σ this set is the
ellipsoid determined by the inverse matrix Σ−1, i.e., the ellipsoid determined by
the level sets of the density. For singular Σ the distribution is concentrated on a
lower-dimensional subspace, and we have a similar interpretation after projection
on this subspace.

Borell’s inequality is often quoted as only an exponential inequality on the norm
‖W‖, but this is in fact a consequence. The distribution of the norm ‖W‖ of a
non-zero Borel measurable Gaussian map W does not have atoms (cf., [2]) and
therefore has a unique median M(W ).

Corollary 5.1. For any x > 0,

P
(
‖W‖ − M(W ) > x

)
≤ 1 − Φ

(
x/σ(W )

)
.

Proof. For ε = M(W ) we have P(W ∈ εB1) = P
(
‖W‖ ≤ M(W )

)
= 1/2. Hence

the choices ε = M(W ) and M = x/σ(W ) in Borell’s inequality yield the inequality
P

(
W ∈ M(W )B1 + (x/σ(W ))H1

)
≥ Φ

(
x/σ(W )

)
. Because H1 ⊂ σ(W )B1 by (2.5),

the left side is smaller than P
(
W ∈ (M(W ) + x)B1

)
, which is 1 minus the left side

of the corollary.

According to Anderson’s lemma (e.g., [9], p. 73, [16], p. 72, or [17], 3.11.4) a
ball of fixed radius receives maximum mass of a zero-mean Gaussian distribution
if centered at the origin. The following lemma gives a lower bound on the decrease
in mass if the ball is centered at an element of the RKHS. The lemma is implicit
in the proof of the main result in [7], and appears explicitly as (4.16) in [8].

Lemma 5.2. If h ∈ H, then for every Borel measurable set C ⊂ B with C = −C,

P(W − h ∈ C) ≥ e−
1
2‖h‖2

HP(W ∈ C).

Proof. By symmetry W and −W are identically distributed and hence P(W + h ∈
C) = P(−W + h ∈ −C) = P(W − h ∈ C). By Lemma 3.2,

P(W + h ∈ C) = E1C(W + h) = EeUh−1
2‖h‖2

H1C(W ).

This is true with −h instead of h as well. Combining these facts yields that

P(W − h ∈ C) = 1
2EeUh−1

2‖h‖2
H1C(W ) + 1

2EeU(−h)−1
2‖−h‖2

H1C(W )
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= e−
1
2‖h‖2

HE cosh(Uh)1C(W ) ≥ e−
1
2‖h‖2

HP(W ∈ C),

since cosh x = (ex + e−x)/2 ≥ 1 for every x.

The lemma with C equal to the ball of radius ε around 0 refers to the noncentered
small ball probabilities P

(
‖W −w‖ < ε

)
, for every w in the RKHS. Up to constants

these can be completely characterized through the corresponding centered small
ball probabilities and approximation of the center w from the RKHS. Define

(5.1) φw(ε) = inf
h∈H:‖h−w‖≤ε

1
2‖h‖

2
H − log P

(
‖W‖ < ε

)
.

For w = 0 this agrees with the negative exponent φ0(ε) of the small ball probability
P

(
‖W‖ < ε

)
= e−φ0(ε) defined previously. Up to constants this quantity gives the

exponent of the small ball probability at center w.

Lemma 5.3. For any w in the support of W and every ε > 0,

φw(ε) ≤ − log P
(
‖W − w‖ < ε

)
≤ φw(ε/2).

Proof. For any h ∈ H with ‖h − w‖ ≤ ε we have ‖W − w‖ ≤ ε + ‖W − h‖ and
hence P

(
‖W −w‖ < 2ε

)
≥ P

(
‖W −h‖ < ε

)
. The latter probability can be bounded

below by exp
(
−1

2‖h‖2
H

)
P

(
‖W‖ < ε

)
, in view of the preceding lemma. We conclude

by optimizing over h ∈ H.
The set Bε = {h ∈ H: ‖h − w‖ ≤ ε} is convex and closed in H, because the

RKHS topology is stronger than the norm topology. Therefore the (convex) map
h �→ ‖h‖2

H
attains a minimum on Bε at some point hε. Because (1−λ)hε +λh ∈ Bε

for every h ∈ Bε and 0 ≤ λ ≤ 1, it follows that ‖(1 − λ)hε + λh‖2
H
≥ ‖hε‖2

H
, which

implies that 2λ〈h− hε, hε〉H + λ2‖h− hε‖2
H
≥ 0. The fact that this is true for every

0 ≤ λ ≤ 1 can be seen to imply that 〈h, hε〉H ≥ ‖hε‖2
H

for every h ∈ Bε.
By Theorem 4.3 the process W can be written as W =

∑∞
i=1(Uhi)hi, for any

given complete orthonormal system h1, h2, . . . in H, where the series converges al-
most surely in norm. The truncated series Wm =

∑m
i=1(Uhi)hi takes its values

in H. If ‖W − g − w‖ < ε and some arbitrary g ∈ H, then ‖Wm − g − w‖ < ε
for sufficiently large m, almost surely. Equivalently, Wm − g ∈ Bε and hence the
preceding paragraph implies that 〈Wm − g, hε〉H ≥ ‖hε‖2

H
, eventually as m → ∞,

almost surely. Here 〈Wm, hε〉H =
∑m

i=1(Uhi)〈hi, hε〉H = U
∑m

i=1 hi〈hi, hε〉H. By
the continuity of U the right side converges in L2(Ω,U , P) to Uhε as m → ∞, and
hence almost surely along a subsequence. We conclude that Uhε−〈g, hε〉H ≥ ‖hε‖2

H

almost surely on the event {‖W − g − w‖ < ε}. In particular the choice g = −hε

yields that Uhε ≥ 0 almost surely on the event {‖W + hε − w‖ < ε}.
By Lemma 3.2,

P
(
W ∈ w + εB1

)
= P

(
W − hε ∈ w − hε + εB1

)

= Ee−Uhε−1
2‖hε‖2

H1W∈w−hε+εB1 ≤ e−
1
2‖hε‖2

HE1W∈w−hε+εB1 ,

by the preceding paragraph. The probability on the right side is smaller than P(W ∈
εB1) by Anderson’s lemma.

6. Small ball probability and entropy

The unit ball of the RKHS not only expresses the shape of the Gaussian mea-
sure, but also allows a quantitative estimate of the small ball probability e−φ0(ε) =
P

(
‖W‖ < ε

)
through its entropy within the Banach space.
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Let N
(
ε, H1, ‖ · ‖

)
be the smallest number of balls of radius ε > 0 needed to

cover the unit ball H1 of the RKHS. This is bounded by the maximal number D(ε)
of points hi in H1 with ‖hi − hj‖ ≥ ε for i 
= j. Because each ball of radius ε/2
around a point hi has probability at least e−1/2P

(
‖W‖ < ε/2

)
by Lemma 5.2 and

these balls are disjoint, it follows that 1 ≥ D(ε)e−1/2P
(
‖W‖ < ε/2

)
, whence D(ε)

is finite for every ε > 0. This shows that the RKHS unit ball H1 is precompact in
B.

The following results, which were proved by [7] and [10], refine this argument,
and show roughly that for regularly behaved entropy ε �→ log N

(
ε, H1, ‖ · ‖

)
and

small ball exponent ε �→ φ0(ε), and for small ε,

log N
( ε√

φ0(ε)
, H1, ‖ · ‖

)
� φ0(ε).

However, the exact statement has several constants in it.

Lemma 6.1. Let f : (0,∞) → (0,∞) be regularly varying at zero. Then

(i) log N
(
ε/

√
2φ0(ε), H1, ‖ · ‖

)
� φ0(2ε).

(ii) If φ0(ε) � f(ε), then log N
(
ε/

√
f(e), H1, ‖ · ‖

)
� f(ε).

(iii) If log N
(
ε, H1, ‖ · ‖

)
� f(ε), then φ0(ε) � f

(
ε/

√
φ0(ε)

)
.

(iv) If log N
(
ε, H1, ‖ · ‖

)
� f(ε), then φ0(2ε) � f

(
ε/

√
φ0(ε)

)
.

Lemma 6.2. For α > 0 and β ∈ R, as ε ↓ 0, φ0(ε) � ε−α(log 1/ε)β if and only if
log N

(
ε, H1, ‖ · ‖

)
� ε−2α/(2+α)(log 1/ε)2β/(2+α).

7. RKHS under transformation

If a Gaussian process is transformed into another Gaussian process under a one-to-
one, continuous, linear map, then the RKHS is transformed in parallel.

Lemma 7.1. Let T : B → B be a one-to-one, continuous, linear map from a sep-
arable Banach space B into a Banach space B and let W be a Borel measurable,
zero-mean Gaussian random element in B with RKHS H. Then the RKHS of the
Gaussian random element TW in B is equal to TH and T : H → H is an isometry
for the RKHS-norms.

Proof. Let T ∗: B∗ → B
∗ be the adjoint of T . The RKHS H of TW is by definition

the completion of the set of Pettis integrals

Sb∗ = E(TW )b∗(TW ) = T (EWb∗(TW )) = TST ∗b∗,

for the inner product

〈Sb∗1, Sb∗2〉H = Eb∗1(TW )b∗2(TW ) = E(T ∗b∗1W )(T ∗b∗2W ) = 〈ST ∗b∗1, ST ∗b∗2〉H.

It follows that the element Sb∗ of H is the image under T of the element ST ∗b∗ of
H, and its norm is the same: ‖Sb∗‖H = ‖ST ∗b∗‖H. Thus T : ST ∗

B
∗ ⊂ H → H is an

isometry for the RKHS-norms. It extends by continuity to a linear map from the
completion H0 of ST ∗

B
∗ in H to H. Because T is continuous for the norm of B, this

extension agrees with T . Because T : ST ∗
B
∗ → SB

∗ is onto, T is an isometry for
the RKHS-norms, and H0 and H are by definition the completions of ST ∗

B
∗ and

SB
∗, we have that T : H0 → H is an isometry onto H. It remains to be shown that

H0 = H.
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Because T is one-to-one, the range T ∗
B
∗ of its adjoint is weak-* dense in B

∗

([12], Corollary 4.12). By Lemma 2.2 the map S:
B
∗ → H is continuous relative to

the weak-* and RKHS topologies. Combined this yields that S(T ∗
B
∗) is dense in

SB∗ for the RKHS-norm of H and hence is dense in H.
Taken together the preceding shows that T : H → H is an isometry onto H.

8. RKHS relative to different norms

A stochastic process W can often be viewed as a map into several Banach spaces.
For instance, a process indexed by the unit interval with continuous sample paths
is a Borel measurable map in the space C[0, 1], but also in the space L2[0, 1]; a
process with continuously differentiable sample paths is a map in C[0, 1], but also
in C1[0, 1]. The RKHS obtained from using a weaker Banach space is typically the
same.

Lemma 8.1. Let (B, ‖ ·‖) be a separable Banach space on B and let ‖ ·‖′ be a norm
on B with ‖b‖′ ≤ ‖b‖. Then the RKHS of a Borel measurable zero-mean Gaussian
random element in (B, ‖ · ‖) is the same as the RKHS of this map viewed in the
completion of B under ‖ · ‖′.
Proof. Let B

′ be the completion of B relative to ‖ · ‖′. The assumptions imply that
the identity map I: (B, ‖ · ‖) → (B′, ‖ · ‖′) is continuous, linear and one-to-one. The
proposition therefore is a consequence of Lemma 7.1.

Example 8.1. Let W be a mean zero Gaussian process indexed by the unit interval
[0, 1] with covariance function K(s, t) = EWsWt.

If W has continuous sample paths, then it is a random element in C[0, 1]. The
RKHS of W viewed as a random element in C[0, 1] is the completion of the linear
span of the functions K(t, ·) under the inner product (2.2).

If W is a measurable process and
∫ 1

0
W 2

s ds < ∞ surely, then W is a random el-
ement in L2[0, 1]. The dual space of L2[0, 1] consists of the maps g �→

∫
g(s)f(s) ds

for f ranging over L2[0, 1], and Sf(t) = EWt

∫
Wsf(s) ds =

∫
K(s, t)f(s) ds. There-

fore, the RKHS of W viewed as a random element in L2[0, 1] is the completion of
the linear span of the functions t �→

∫
K(s, t) f(s) ds for f ranging over L2[0, 1]

under the inner product 〈Sf, Sg〉H =
∫ ∫

K(s, t)f(s)g(t) ds dt.
If W has continuous sample paths, then its covariance kernel is continuous, and

it can be shown by direct arguments that the two RKHSs agree. This also follows
from the preceding lemma.

9. RKHS under independent sums

If a given Gaussian prior misses certain desirable “directions” in its RKHS, then
these can be filled in by adding independent Gaussian components in these direc-
tions. A closed linear subspace B0 ⊂ B of a Banach space B is complemented if
there exists a closed linear subspace B1 with B = B0 + B1 and B0 ∩ B1 = {0}.

Lemma 9.1. Let V and W be independent Borel measurable, zero-mean, jointly
Gaussian maps from a given probability space into a separable Banach space with
supports B

V and B
W such that B

V ∩ B
W = {0} and the subspace B

V is comple-
mented by a subspace that contains B

W . Then the RKHS of V + W is the direct
sum of the RKHSs of V and W and the RKHS norms satisfy ‖hV + hW ‖2

HV +W =
‖hV ‖2

HV + ‖hW ‖2
HW .
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Proof. By the independence of V and W the Pettis integral SV +W b∗ = E(W +
V )b∗(V + W ) can be written as SV +W b∗ = SV b∗ + SW b∗. The assumptions of
trivial intersection B

V ∩B
W = {0} and of complementation of B

V entail that there
exists a continuous linear map Π: B → BV such that Πb = b if b ∈ BV and Πb = 0
if b ∈ B

W ; (cf., [6], 29.2). Then b∗ ◦ Π ∈ B
∗, ΠV = V and ΠW = 0 almost

surely, whence SW (b∗ ◦ Π) = 0 and hence SV +W (b∗ ◦ Π) = SV b∗. It follows that
SV

B
∗ ⊂ SV +W

B
∗ and by symmetry SW

B
∗ ⊂ SV +W

B
∗. Also, for any b∗1, b

∗
2 ∈ B

∗,

〈SV b∗1, S
W b∗2〉HV +W = 〈SV +W b∗1 ◦ Π, SV +W b∗2 ◦ (I − Π)〉HV +W

= E
(
b∗1 ◦ Π(V + W )

) (
b∗2 ◦ (I − Π)(V + W )

)
= E(b∗1V ) (b∗2W ) = 0.

We conclude that SV
B
∗ ⊥ SW

B
∗ in H

V +W , so that H
V +W is the direct (orthogonal)

sum of H
V and H

W . Furthermore ‖SV +W b∗‖2
HV +W = E(b∗(V + W ))2 = E(b∗V )2 +

E(b∗W )2.

By the Hahn–Banach theorem the assumption of complementation is certainly
satisfied as soon as one of the supports of V and W is finite-dimensional.

The assumption that B
V ∩ B

W = {0} can be interpreted as requiring “linear
independence” rather than some form of orthogonality of the supports of V and
W . The stochastic independence of V and W translates the linear independence
into orthogonality in the RKHS of V + W .

The assumption requires trivial intersection of the supports of the variables V
and W , rather than of sets that carry probability one. Because the RKHS is in-
dependent of the norm (Lemma 8.1) the closure operation involved in computing
the support may be taken for the strongest norm which is defined on the random
elements.

The assumption that BV ∩ BW = {0} cannot be removed. For instance, if V =∑
i μiZiψi and W =

∑
i μ′

iZ
′
iψi are series expansions with independent standard

normal variables (Zi), (Z ′
i) on a common basis (ψi), then the sum process can be

written V + W =
∑

i μ′′
i Z ′′

i ψi for μ′′
i =

√
μ2

i + (μ′
i)2 and Z ′′

i independent standard
normal variables. The RKHS of V + W is then the set of series

∑
i wiψi with

coefficients (wi) satisfying
∑

i(wi/μ′′
i )2 < ∞ (see Section 4). Thus the RKHS is

not an orthogonal sum and, asymptotically as i → ∞, the eigenvalues (μ′′
i )2, which

determine the presence of the directions ψi in the RKHS, are determined by the
slowest of the two sequences μi and μ′

i. If μi/μ′
i → 0, then the RKHS of V + W is

essentially the same as the RKHS of W .

10. Examples

The RKHS of standard Brownian motion, viewed as a random element in C[0, 1],
is well known to be the set

(10.1)
{
f : [0, 1] → R, f ∈ AC, f(0) = 0,

∫
f ′(t)2 dt < ∞},

where f ∈ AC is the assumption that f is absolutely continuous. The RKHS inner
product is

〈f, g〉H =
∫ 1

0

f ′(t)g′(t) dt.

Lemma 10.1. The RKHS of a standard Brownian motion W on [0, 1] is given by
(10.1) with the inner product as indicated.
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Proof. We use the definition of the RKHS in Section 2.1 and the fact that the
covariance kernel of Brownian motion is given by s∧t. The RKHS is the completion
of the linear span of the functions t �→ s ∧ t as s ranges over [0, 1], under the inner
product determined by

〈s1 ∧ ·, s2 ∧ ·〉H = s1 ∧ s2 =
∫

(s1 ∧ t)′(s2 ∧ t)′ dt,

where the prime denotes differentiation relative to t, in the sense of absolute con-
tinuity.

The linear span of the functions t �→ s∧ t contains every function that is 0 at 0,
continuous, and piecewise linear on a partition 0 = s0 < s1 · · · < sN = 1. Indeed to
obtain such a function with slopes α1, . . . , αN on the intervals (s0, s1), . . . , (sN−1,
sN ), first determine the coefficient of sN ∧ · to have a correct slope on (sN−1, sN ),
next determine the coefficient of sN−1 ∧ · to have a correct slope on (sN−2, sN−1),
etc. The derivatives of these functions are piecewise constant, and the set of piece-
wise constant functions is dense in L2[0, 1].

Given the RKHS of Brownian motion it is now easy to derive the RKHS of
several processes related to it.

• To release Brownian motion at zero, we may start it at an independent standard
normal variable Z, giving the process t �→ Z + Wt. The RKHS of the constant
process t �→ Z are the constant functions, which have trivial intersection with the
RKHS of Brownian motion. A given function f : [0, 1] → R can be decomposed as
f = f(0)+

(
f −f(0)), where the second part is in the RKHS of Brownian motion

if it is absolutely continuous with square integrable derivative. By Lemma 9.1,
the RKHS of Z +W is the set of all absolutely continuous functions f : [0, 1] → R
equipped with the inner product 〈f, g〉H = f(0)g(0) +

∫
f ′(s)g′(s) ds.

• To smooth Brownian motion we may consider its k-fold integral Ik
0+W , where

(I1
0+f)(t) =

∫ t

0
f(s) ds and Ik

0+ = Ik−1
0+ I1

0+. Taking a primitive is a continuous,
linear, one-to-one map from C[0, 1] → C[0, 1], and hence by Lemma 7.1 the RKHS
of Ik

0+W is the set of functions Ik
0+f for f in the RKHS of Brownian motion,

equipped with the inner product 〈Ik
0+f, Ik

0+g〉H =
∫ 1

0
f ′(s)g′(s) ds. This space

can be described simply as the set of all functions f : [0, 1] → R that are k-times
differentiable with an absolutely continuous kth derivative with square-integrable
f (k+1), equipped with the inner product 〈f, g〉H =

∫ 1

0
f (k+1)(s)g(k+1)(s) ds.

• The sample paths of k-fold integrated Brownian motion Ik
0+W have k vanish-

ing derivatives at zero, which negatively affects its approximation properties to
smooth functions. (See Example 10.1 below.) We can release the derivatives by
adding a polynomial and considering the process t �→

∑k
i=0 Zit

i/i! + (Ik
0+W )t,

for Z0, . . . , Zk i.i.d. standard normal variables, independent of W . The sup-
ports of the polynomial process t �→

∑k
i=0 Zit

i/i! and Ik
0+W in C[0, 1] do not

have a trivial intersection, and hence we cannot apply Lemma 9.1 in that set-
ting. However, we may consider these processes as Borel measurable random
elements in the space C(k)[0, 1] of k-times differentiable functions, equipped
with the norm ‖f‖k = ‖f‖∞ + ‖f (k)‖∞. According to Lemma 8.1, this does
not change the RKHS. The support of the process Ik

0+W in C(k)[0, 1] contains
only functions with k vanishing derivatives at 0, and hence does have triv-
ial intersection with the support of the polynomial process t �→

∑k
i=0 Zit

i/i!,
which is the set of kth degree polynomials. Applied in this setting Lemma 9.1
yields that the RKHS of the process t �→

∑k
i=0 Zit

i/i! + (Ik
0+W )t is the set
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of functions f : [0, 1] → R that are k-times differentiable with an absolutely
continuous kth derivative with square-integrable f (k+1), equipped with the in-
ner product 〈f, g〉H =

∑k
i=0 f (i)(0)g(i)(0) +

∫ 1

0
f (k+1)(s)g(k+1)(s) ds. To see the

latter, note that any f can be uniquely written as f = Pk + (f − Pk) for
Pk(t) =

∑k
i=0 f (i)(0)ti/i!, the kth degree Taylor polynomial and f − Pk a func-

tion with k vanishing derivatives at zero. The polynomial Pk is contained in
the RKHS of the polynomial process t �→

∑k
i=0 Zit

i/i! with square RKHS-norm∑k
i=0 P

(i)
k (0)2 by Example 4.2, and the function f −Pk is contained in the RKHS

of Ik
0+W by the preceding.

The preceding can be extended to fractional integrals of Brownian motion.
Rather than studying the fractional integral operator in detail, we give a direct
derivation of the RKHSs. For α > 0 and W a standard Brownian motion the
Riemann–Liouville process with Hurst parameter α > 0 is defined as

Rα
t =

∫ t

0

(t − s)α−1/2 dWs, t ≥ 0.

The process Rα is a centered Gaussian process with continuous sample paths. It
can be viewed as a multiple of the (α + 1/2)-fractional integral of the “derivative
dW of Brownian motion”. For α > 0 and a (deterministic) measurable function f
on [0, 1] the (left-sided) Riemann–Liouville fractional integral of f of order α (if it
exists) is defined as (cf. [13])

Iα
0+f(t) =

1
Γ(α)

∫ t

0

(t − s)α−1f(s) ds.

For α a natural number, the function Iα
0+f is just the α-fold iterated integral of f ,

and for α > 1/2 the Rieman–Liouville process is equal to Γ(α + 1/2)Iα−1/2
0+ W for

Iα
0+ the fractional integral.

Lemma 10.2. The RKHS of the Riemann–Liouville process with parameter α > 0
viewed as a random element in C[0, 1] is H = I

α+1/2
0+ (L2[0, 1]) and the RKHS-norm

is given by

‖Iα+1/2
0+ f‖H =

‖f‖2

Γ(α + 1/2)
.

Proof. We use the characterization of the RKHS as the completion of the functions
(2.1) under the inner product (2.2). With fs the function defined by fs(u) = (s −
u)α−1/2

+ , we have, for all s, t ≥ 0 and 〈·, ·〉2 the inner product of L2[0, 1],

ERα
t Rα

s =
∫

(t − u)α−1/2
+ (s − u)α−1/2

+ du = 〈ft, fs〉2 = Γ(α + 1/2)Iα+1/2
0+ fs(t).

Hence every simple element of H of the form (2.1) is given by I
α+1/2
0+ f for some

f ∈ L2[0, 1]. Moreover, the inner product (2.2) of two such elements I
α+1/2
0+ f and

I
α+1/2
0+ g is given by

(10.2)
〈
I

α+1/2
0+ f, I

α+1/2
0+ g

〉
H

=
〈f, g〉2

Γ2(α + 1/2)
.

It follows that the RKHS H is a subspace of the Hilbert space obtained by endowing
I

α+1/2
0+ (L2[0, 1]) with the inner product (10.2). To prove the converse inclusion,
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suppose that g ∈ I
α+1/2
0+ (L2[0, 1]) is orthogonal to H. Then g = I

α+1/2
0+ f for some

f ∈ L2[0, 1] and g is, in particular, orthogonal to every element I
α+1/2
0+ ft of H.

Hence, for every t ∈ [0, 1],

0 =
〈
I

α+1/2
0+ f, I

α+1/2
0+ ft

〉
H

=
〈f, ft〉2

Γ2(α + 1/2)
=

I
α+1/2
0+ f(t)

Γ(α + 1/2)
.

The injectivity of the operator I
α+1/2
0+ : L2[0, 1] → L2[0, 1] (see [13], Theorem 13.1)

then implies that f = 0, whence g = 0. We conclude that H = I
α+1/2
0+ (L2[0, 1]), and

the inner product on H is given by (10.2).

Example 10.1. The process t �→ Z +
∫ t

0
Ws ds, for Z a standard normal variable

and W an independent Brownian motion, has sample paths of regularity 3/2 and
can take any value at 0, but the derivative at 0 is 0. We shall show that the latter
makes the process inappropriate as a prior model for 3/2-smooth functions.

By similar arguments as before the RKHS H of the process can be seen to be
the set of all functions h: [0, 1] → R with absolutely continuous derivative such that∫ 1

0
h′′(s)2 ds < ∞ and h′(0) = 0, with square norm

‖h‖2
H = ‖h′′‖2

2 + h(0)2.

We shall show that for the identity function id we have

inf{‖h‖2
H: h ∈ H, ‖h − id‖∞ < ε} � 1

ε
.

This may be contrasted with the approximation by the RKHS of the process t �→
Z0 + Z1t +

∫ t

0
Ws ds, which is of order (1/ε)2/3 for every function in C3/2[0, 1] (see

[15]).
To prove the claim note that ‖h − id‖∞ < ε implies that h(3ε) − h(0) > ε.

Therefore the quantity in the display is bounded below by

inf
{∫ 3ε

0

h′′(s)2 ds: h(3ε) − h(0) > ε, h′(0) = 0
}
.

For a given h as in the display we can define g by

g(y) =
h(3εy) − h(0)

ε
.

Then g′(y) = 3h′(3εy), g′′(y) = 9h′′(3εy)ε, and

g(0) = 0, g′(0) = 0, g(1) > 1.

∫ 3ε

0

h′′(s)2 ds =
∫ 3ε

0

g′′(s/(3ε))2
1

(9ε)2
ds =

∫ 1

0

g′′(u)2
1

27ε
du.

Thus the preceding display is bigger than

( 1
27ε

)
inf

{∫ 1

0

g′′(u)2 du: g(1) > 1, g(0) = g′(0) = 0
}

.

The infimum is nonzero, because g′′ = 0 implies that g is a linear function, hence
identically 0 because g(0) = g′(0) = 0, contradicting g(1) > 1.
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