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Abstract: This paper is about optimal estimation of the additive components
of a nonparametric, additive isotone regression model. It is shown that asymp-
totically up to first order, each additive component can be estimated as well as
it could be by a least squares estimator if the other components were known.
The algorithm for the calculation of the estimator uses backfitting. Conver-
gence of the algorithm is shown. Finite sample properties are also compared
through simulation experiments.

1. Introduction

In this paper we discuss nonparametric additive monotone regression models. We
discuss a backfitting estimator that is based on iterative application of the pool
adjacent violator algorithm to the additive components of the model. Our main
result states the following oracle property. Asymptotically up to first order, each
additive component is estimated as well as it would be (by a least squares estimator)
if the other components were known. This goes beyond the classical finding that
the estimator achieves the same rate of convergence, independently of the number
of additive components. The result states that the asymptotic distribution of the
estimator does not depend on the number of components.

We have two motivations for considering this model. First of all we think that this
is a useful model for some applications. For a discussion of isotonic additive regres-
sion from a more applied point, see also Bacchetti [1], Morton-Jones et al. [32] and
De Boer, Besten and Ter Braak [7]. But our main motivation comes from statistical
theory. We think that the study of nonparametric models with several nonparamet-
ric components is not fully understood. The oracle property that is stated in this
paper for additive isotone models has been shown for smoothing estimators in some
other nonparametric models. This property is expected to hold if the estimation of
the different nonparametric components is based on local smoothing where the lo-
calization takes place in different scales. An example are additive models of smooth
functions where each localization takes place with respect to another covariate. In
Mammen, Linton and Nielsen [28] the oracle property has been verified for the lo-
cal linear smooth backfitting estimator. As local linear estimators, also the isotonic
least squares is a local smoother. The estimator is a local average of the response
variable but in contrast to local linear estimators the local neighborhood is chosen
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by the data. This data adaptive choice is automatically done by the least squares
minimization. This understanding of isotonic least squares as a local smoother was
our basic motivation to conjecture that for isotonic least squares the oracle property
should hold as for local linear smooth backfitting.

It may be conjectured that the oracle property holds for a much larger class of
models. In Horowitz, Klemela and Mammen [19] a general approach was introduced
for applying one-dimensional nonparametric smoothers to an additive model. The
procedure consists of two steps. In the first step, a fit to the additive model is
constructed by using the projection approach of Mammen, Linton and Nielsen [28].
This preliminary estimator uses an undersmoothing bandwidth, so its bias terms
are of asymptotically negligible higher order. In a second step, a one-dimensional
smoother operates on the fitted values of the preliminary estimator. For the re-
sulting estimator the oracle property was shown: This two step estimator is as-
ymptotically equivalent to the estimator obtained by applying the one-dimensional
smoother to a nonparametric regression model that only contains one component.
It was conjectured that this result also holds in more general models where sev-
eral nonparametric components enter into the model. Basically, a proof could be
based on this two step procedures. The conjecture has been verified in Horowitz and
Mammen [20, 22] for generalized additive models with known and with unknown
link function.

The study of the oracle property goes beyond the classical analysis of rates of con-
vergence. Rates of convergence of nonparametric estimators depend on the entropy
of the nonparametric function class. If several nonparametric functions enter into
the model the entropy is the sum of the entropies of the classes of the components.
This implies that the resulting rate coincides with the rate of a model that only
contains one nonparametric component. Thus, rate optimality can be shown for a
large class of models with several nonparametric components by use of empirical
process theory, see e.g. van de Geer [39]. Rate optimality for additive models was
first shown in Stone [38]. This property was the basic motivation for using additive
models. In contrast to a full dimensional model it allows estimation with the same
rate of convergence as a one-dimensional model and avoids for this reason the curse
of dimensionality. On the other hand it is a very flexible model that covers many
features of the data nonparametrically. For a general class of nonparametric models
with several components rate optimality is shown in Horowitz and Mammen [21].

The estimator of this paper is based on backfitting. There is now a good under-
standing of backfitting methods for additive models. For a detailed discussion of the
basic statistical ideas see Hastie and Tibshirani [18]. The basic asymptotic theory
is given in Opsomer and Ruppert [34] and Opsomer [35] for the classical backfitting
and in Mammen, Linton and Nielsen [28] for the smooth backfitting. Bandwidth
choice and practical implementations are discussed in Mammen and Park [29, 30]
and Nielsen and Sperlich [33]. The basic difference between smooth backfitting and
backfitting lies in the fact that smooth backfitting is based on a smoothed least
squares criterion whereas in the classical backfitting smoothing takes place only for
the updated component. The full smoothing of the smooth backfitting algorithm
stabilizes the numerical and the statistical performance of the estimator. In par-
ticular this is the case for degenerated designs and for the case of many covariates
as was shown in simulations by Nielsen and Sperlich [33]. In this paper we use
backfitting without any smoothing. For this reason isotone additive least squares
will have similar problems as classical backfitting and these problems will be even
more severe because no smoothing is used at all. Smooth backfitting methods for
generalized additive models were introduced in Yu, Park and Mammen [42]. Haag
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[15] discusses smooth backfitting for nonparametric additive diffusion models. Tests
based on smooth backfitting have been considered in Haag [16] and Mammen and
Sperlich [31]. Backfitting tests have been proposed in Fan and Jiang [10]. Additive
regression is an example of a nonparametric model where the nonparametric func-
tion is given as a solution of an integral equation. This has been outlined in Linton
and Mammen [24] and Carrasco, Florens and Renault [6] where also other exam-
ples of statistical integral equations are given. Examples are additive models where
the additive components are linked as in Linton and Mammen [25] and regression
models with dependent errors where an optimal transformation leads to an additive
model, see Linton and Mammen [26]. The representation of estimation in additive
models as solving an empirical integral equation can also be used to understand
why the oracle property holds.

In this paper we verify the oracle property for additive models of isotone func-
tions. It is shown that each additive component can be estimated with the same
asymptotic accuracy as if the other components would be known. We compare the
performance of a least squares backfitting estimator with a least squares isotone
estimator in the oracle model where only one additive component is unknown. The
backfitting estimator is based on iterative applications of isotone least squares to
each additive component. Our main theoretical result is that the differences be-
tween these two estimators are of second order. This result will be given in the
next section. The numerical performance of the isotone backfitting algorithm and
its numerical convergence will be discussed in Section 3. Simulations for the com-
parison of the isotone backfitting estimator with the oracle estimator are presented
in Section 4. The proofs are deferred to the Appendix.

2. Asymptotics for additive isotone regression

We suppose that we have i.i.d. random vectors (Y 1, X1
1 , . . . , X1

d), . . . , (Y n, Xn
1 , . . . ,

Xn
d ) and we consider the regression model

(1) E(Y i|Xi
1, . . . , X

i
d) = c + m1(Xi

1) + · · · + md(Xi
d)

where mj(·)’s are monotone functions. Without loss of generality we suppose that
all functions are monotone increasing. We also assume that the covariables take
values in a compact interval, [0, 1], say. For identifiability we add the normalizing
condition

(2)
∫ 1

0

mj(xj) dxj = 0.

The least squares estimator for the regression model (1) is given as minimizer of

(3)
n∑

i=1

(Y i − c − µ1(Xi
1) − · · · − µd(Xi

d))
2

with respect to monotone increasing functions µ1, . . . , µd and a constant c that
fulfill

∫ 1

0
µj(xj) dxj = 0. The resulting estimators are denoted as m̂1, . . . , m̂d and ĉ.

We will compare the estimators m̂j with oracle estimators m̂OR
j that make use

of the knowledge of ml for l �= j. The oracle estimator m̂OR
j is given as minimizer
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of
n∑

i=1

(Y i − c − µj(Xi
1) −

∑
l �=j

ml(Xi
l ))

2

=
n∑

i=1

(mj(Xi
j) + εi − c − µj(Xi

1))
2

with respect to a monotone increasing function µj and a constant c that fulfill∫ 1

0
µj(xj)dxj = 0. The resulting estimators are denoted as m̂OR

j and ĉOR.
In the case d = 1, this gives the isotonic least squares estimator proposed by

Brunk [4] which is given by

(4) m̂1(X
(i)
1 ) = max

s≤i
min
t≥i

t∑
j=s

Y (j)/(t − s + 1)

where X
(1)
1 , . . . , X

(n)
1 are the order statistics of X1, . . . , Xn and Y (j) is the obser-

vation at the observed point X
(j)
1 . Properties and simple computing algorithms

are discussed e.g. in Barlow et al. [2] and Robertson, Wright, and Dykstra [36]. A
fast way to calculate the estimator is to use the Pool Adjacent Violator Algorithm
(PAVA). In the next section we discuss a backfitting algorithm for d > 1 that is
based on iterative use of PAVA.

We now state a result for the asymptotic performance of m̂j . We use the following
assumptions. To have an economic notation, in the assumptions and in the proofs
we denote different constants by the same symbol C.

(A1) The functions m1, . . . , md are differentiable and their derivatives are bounded
on [0, 1]. The functions are strictly monotone, in particular for G(δ) =
inf |u−v|≥δ,1≤j≤d |mj(v) − mj(u)| it holds G(δ) ≥ Cδγ for constants C, γ > 0
for all δ > 0.

(A2) The d-dimensional vector Xi = (Xi
1, . . . , X

i
d) has compact support [0, 1]d. The

density p of Xi is bounded away from zero and infinity on [0, 1]d and it is
continuous. The tuples (Xi, Y i) are i.i.d. For j, k = 1, . . . , d the density pXk,Xj

of (Xi
k, Xi

j) fulfills the following Lipschitz condition for constants C, ρ > 0

sup
0≤uj ,uk,vk≤1

|pXk,Xj (uk, uj) − pXk,Xj (vk, uj)| ≤ C|uk − vk|ρ.

(A3) Given Xi the error variables εi = Y i − c − m1(Xi
1) − · · · − md(Xi

d) have
conditional zero mean and subexponential tails, i.e. for some γ > 0 and C ′ >
0, it holds that

E
[
exp(γ|εi|)

∣∣∣Xi
]

< C ′ a.s.

The conditional variance of εi given Xi = x is denoted by σ2(x). The condi-
tional variance of εi given Xi

1 = u1 is denoted by σ2
1(u1). We assume that σ2

1

is continuous at x1.

These are weak smoothness conditions. We need (A3) to apply results from
empirical process theory. Condition (A1) excludes the case that a function mj has
flat parts. This is done for the following reason. Isotonic least squares regression
produces piecewise constant estimators where for every piece the estimator is equal
to the sample average of the piece. If the function is strictly monotone the pieces
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shrink to 0, a.s. If the function has flat parts these averages do not localize at
the flat parts. But in our proof we make essential use of a localization argument.
We conjecture that our oracle result that is stated below also holds for the case
that there are flat parts. But we do not pursue to check this here. It is also of
minor interest because at flat parts the monotone least squares estimator is of
order m̂OR

j −mj = oP (n−1/3). Thus the oracle result m̂j − m̂OR
j = oP (n−1/3) then

only implies that m̂j − mj = oP (n−1/3). In particular, it does not imply that m̂j

and m̂OR
j have the same asymptotic distribution limit.

For d = 1 the asymptotics for m̂1 are well known. Note that the estimator m̂1 for
d = 1 coincides with the oracle estimator m̂OR

1 for d > 1 that is based on isotonizing
Y i − c − m2(Xi

2) − · · · − md(Xi
d) = m1(Xi

1) + εi in the order of the values of Xi
1

(i = 1, . . . , n). For the oracle model (or for the model (1) with d = 1) the following
asymptotic result holds under (A1)–(A3):

For all x1 ∈ (0, 1) it holds that

m̂OR
1 (x1) − m1(x1) = OP (n−1/3).

Furthermore at points x1 ∈ (0, 1) with m′
1(x1) > 0, the normalized estimator

n1/3 [2p1(x1)]1/3

σ1(x1)2/3m′
1(x1)1/3

[m̂OR
1 (x1) − m1(x1)]

converges in distribution to the slope of the greatest convex minorant of W (t)+
t2, where W is a two-sided Brownian motion. Here, p1 is the density of Xi

1 .

The greatest convex minorant of a function f is defined as the greatest convex
function g with g ≤ f , pointwise. This result can be found, e.g. in Wright [41] and
Leurgans [23]. Compare also Mammen [27]. For further results on the asymptotic
law of m̂OR

1 (x1) − m1(x1), compare also Groeneboom [12, 13].
We now state our main result about the asymptotic equivalence of m̂j and m̂OR

j .

Theorem 1. Make the assumptions (A1)–(A3). Then it holds for c large enough
that

sup
n−1/3≤xj≤1−n−1/3

|m̂j(xj) − m̂OR
j (xj)| = oP (n−1/3),

sup
0≤xj≤1

|m̂j(xj) − m̂OR
j (xj)| = oP (n−2/9(log n)c)

The proof of Theorem 1 can be found in the Appendix. Theorem 1 and the above
mentioned result on m̂OR

1 immediately implies the following corollary.

Corollary 1. Make the assumptions (A1)–(A3). For x1 ∈ (0, 1) with m′
1(x1) > 0

it holds that

n1/3 [2p1(x1)]1/3

σ1(x1)2/3m′
1(x1)1/3

[m̂1(x1) − m1(x1)]

converges in distribution to the slope of the greatest convex minorant of W (t) + t2,
where W is a two-sided Brownian motion.

3. Algorithms for additive isotone regression

The one-dimensional isotonic least squares estimator can be regarded as a projection
of the observed vector (Y (1), . . . , Y (n)) onto the convex cone of isotonic vectors in R

n
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with respect to the scalar product 〈f, g〉 ≡
∑n

i=1 f (i)g(i) where f ≡ (f (1), . . . , f (n))
and g ≡ (g(1), . . . , g(n)) ∈ R

n . Equivalently, we can regard it as a projection of a
right continuous simple function with values (Y (1), . . . , Y (n)) onto the convex cone
of right continuous simple monotone functions which can have jumps only at X

(i)
1 ’s.

The projection is with respect to the L2 norm defined by the empirical measure,
Pn(y, x1) which gives mass 1/n at each observations (Y i, Xi

1). Other monotone
functions m with m(X(i)) = g(i) would also solve the least square minimization.

Now, we consider the optimization problem (3). Without loss of generality, we
drop the constant. Let Hj , j = 1, . . . , d be the sets of isotonic vectors of length n
or right continuous monotone simple functions which have jumps only at Xi

j ’s with
respect to the ordered Xj ’s. It is well known that these sets are convex cones. Then,
our optimization problem can be written as follows:

(5) min
g∈H1+···+Hd

n∑
i=1

(Y i − gi)2.

We can rewrite (5) as an optimization problem over a product sets H1 × · · · × Hd.
Say g = (g1, . . . , gd) ∈ H1 × · · · × Hd where gj ∈ Hj for j = 1, . . . , d. Then
the minimization problem (5) can be represented as minimizing a function over a
cartesian product of sets, i.e.,

(6) min
g∈H1×···×Hd

F (Y,g).

Here, F (Y,g) =
∑n

i=1(Y
i − gi

1 − · · · − gi
d)

2.
A classical way to solve an optimization problem over product sets is a cyclic

iterative procedure where at each step we minimize F with respect to one gj ∈ Hj

while keeping the other gk ∈ Hk, j �= k fixed. That is to generate sequences g
[r]
j ,

r = 1, 2, . . . , j = 1, . . . , d, recursively such that g
[r]
j minimizes F (y, g

[r]
1 , . . . , g

[r]
j−1, u,

g
[r−1]
j+1 , . . . , g

[r−1]
d ) over u ∈ Hj . This procedure for (6) entails the well known back-

fitting procedure with isotonic regressions on Xj , Π(·|Hj) which is given as

(7) g
[r]
j = Π

(
Y − g

[r]
1 − · · · − g

[r]
j−1 − g

[r−1]
j+1 − · · · − g

[r−1]
d

∣∣∣∣Hj

)
,

r = 1, 2, . . . , j = 1, . . . , d, with initial values g
[0]
j = 0 where Y = (Y 1, . . . , Y n). For

a more precise description, we introduce a notation Ỹ
i,[r]
j = Y i−g

i,[r]
1 −· · ·−g

i,[r]
j−1−

g
i,[r−1]
j+1 − · · · − g

i,[r−1]
d where g

i,[r]
k is the value of gk at Xi

k after the r-th iteration,

i.e. Ỹ
i,[r]
j is the residual at the j-th cycle in the r-th iteration. Then, we have

g
i,[r]
j = max

s≤i
min
t≥i

t∑
�=s

Ỹ
(�),[r]
j /(t − s + 1).

Here, Ỹ
(�),[r]
j is the residual at the k-th cycle in the r-th iteration corresponding to

the X
(�)
j .

Let g∗ be the projection of Y onto H1 + · · · + Hd, i.e., the minimizer of the
problem (5).

Theorem 2. The sequence, g(r,j) ≡
∑

1≤k≤j g
[r]
k +

∑
j≤k≤d g

[r−1]
k , converges to g∗

as r → ∞ for j = 1, . . . , d. Moreover if the problem (6) has a solution that is unique
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up to an additive constant, say g∗ = (g∗1 , . . . , g∗d), the sequences g
[r]
j converge to a

vector with constant entries as r → ∞ for j = 1, . . . , d.

In general, g∗ is not unique. Let g = (g1, . . . , gd) be a solution of (6). Suppose, e.g.
that there exists a tuple of non constant vectors (f1, . . . , fd) such that f i

1+· · ·+f i
d =

0 for i = 1, . . . , n and gj + fj are monotone. Then, one does not have the unique
solution for (6) since

∑d
j=1 gi

j =
∑d

j=1(g
i
j + f i

j) and gj + fj are monotone. This
phenomenon is similar to ’concurvity’, introduced in Buja et al. (1989). One simple
example for non-uniqueness is the case that elements of X are ordered in the same
way, i.e., Xp

j ≤ Xq
j ⇔ Xp

k ≤ Xq
k for any (p, q) and (j, k). For example when d = 2,

if g solves (5), then (αg, (1−α)g) for any α ∈ [0, 1] solve (6). Other examples occur
if elements of X are ordered in the same way for a subregion.

4. Simulations

In this section, we present some simulation results for the finite sample performance.
These numerical experiments are done by R on windows. We iterate 1000 times for
each setting. For each iteration, we draw random samples from the following model

(8) Y = m1(X1) + m2(X2) + ε,

where (X1, X2) has truncated bivariate normal distribution and ε ∼ N(0, 0.52).
In Table 1 and 2, we present the empirical MISE (mean integrated squared

error) of the backfitting estimator and the oracle estimator. We also report the
ratio (B/O), MISE of the backfitting estimator to MISE of the oracle estimator.
For Table 1, we set m1(x) = x3 and m2(x) = sin(πx/2). The results in Table 1
show that the backfitting estimator and the oracle estimator have a very similar
finite sample performance. See that the ratio (B/O) is near to one in most cases
and converges to one as sample size grows. We observe that when two covariates
have strong negative correlation, the backfitting estimator has bigger MISE than
the oracle estimator but the ratio (B/O) goes down to one as sample size grows.
Figure 1 shows typical curves from the backfitting and oracle estimators for m1. We
show the estimators that achieve 25%, 50% and 75% quantiles of the L2-distance

Table 1

Comparison between the backfitting and the oracle estimator: Model (8) with m1(x) = x3,
m2(x) = sin(πx/2), sample size 200, 400, 800 and different values of ρ for covariate distribution

m1 m2

n ρ Backfitting Oracle B/O Backfitting Oracle B/O
200 0 0.01325 0.01347 0.984 0.01793 0.01635 1.096

0.5 0.01312 0.01350 0.972 0.01817 0.01674 1.086
−0.5 0.01375 0.01345 1.022 0.01797 0.01609 1.117

0.9 0.01345 0.01275 1.055 0.01815 0.01601 1.134
−0.9 0.01894 0.01309 1.447 0.02363 0.01633 1.447

400 0 0.00824 0.00839 0.982 0.01068 0.01000 1.068
0.5 0.00825 0.00845 0.977 0.01070 0.01001 1.063

−0.5 0.00831 0.00830 1.001 0.01081 0.00997 1.084
0.9 0.00846 0.00814 1.040 0.01092 0.00997 1.095

−0.9 0.10509 0.00805 1.305 0.01311 0.00992 1.321
800 0 0.00512 0.00525 0.976 0.00654 0.00621 1.053

0.5 0.00502 0.00513 0.977 0.00646 0.00614 1.052
−0.5 0.00509 0.00513 0.994 0.00660 0.00620 1.066

0.9 0.00523 0.00500 1.046 0.00667 0.00611 1.091
−0.9 0.00603 0.00498 1.211 0.00757 0.00612 1.220
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between the backfitting and the oracle estimator for m1(x). We observe that the
backfitting and the oracle estimator produce almost identical curves.

Table 2 reports simulation results for the case that one component function is
not smooth. Here, m1(x) = x, |x| > 0.5; 0.5, 0 ≤ x ≤ 0.5;−0.5,−0.5 ≤ x < 0 and
m2(x) = sin(πx/2). Even in this case the backfitting estimator shows a quite good
performance. Thus the oracle property of additive isotonic least square regression

Table 2

Comparison between the backfitting and the oracle estimator: Model (8) with
m1(x) = x, |x| > 0.5; 0.5, 0 ≤ x ≤ 0.5;−0.5,−0.5 ≤ x < 0, m2(x) = sin(πx/2), sample size 200,

400, 800 and different values of ρ for covariate distribution

m1 m2

n ρ Backfitting Oracle B/O Backfitting Oracle B/O
200 0 0.01684 0.01548 1.088 0.01805 0.01635 1.104

0.5 0.01686 0.01541 1.094 0.01756 0.01604 1.095
−0.5 0.01726 0.01541 1.120 0.01806 0.01609 1.123

0.9 0.01793 0.01554 1.154 0.01852 0.01628 1.138
−0.9 0.02269 0.01554 1.460 0.02374 0.01633 1.454

400 0 0.01016 0.00950 1.071 0.01094 0.01014 1.079
0.5 0.00987 0.00944 1.046 0.01088 0.01025 1.062

−0.5 0.01010 0.00944 1.070 0.01084 0.00998 1.086
0.9 0.01000 0.00897 1.115 0.01105 0.00996 1.109

−0.9 0.01192 0.00897 1.330 0.01308 0.00996 1.314
800 0 0.00576 0.00552 1.044 0.00657 0.00622 1.056

0.5 0.00578 0.00555 1.041 0.00651 0.00617 1.055
−0.5 0.00588 0.00555 1.059 0.00657 0.00614 1.071

0.9 0.00598 0.00538 1.110 0.00670 0.00616 1.088
−0.9 0.00695 0.00538 1.291 0.00772 0.00612 1.262

Fig 1. The real lines, dashed lines and dotted lines show the true curve, backfitting estimates and
oracle estimates, respectively. The left, center and right panels represent fitted curves for the data
sets that produce 25%, 50% and 75% quantiles for the distance between the backfitting and the
oracle estimator in Monte Carlo simulations with ρ = 0.5 and 200 observations.
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is well supported by our asymptotic theory and by the simulations.

Appendix: Proofs

A.1. Proof of Theorem 1

The proof of Theorem 1 is divided into several lemmas.

Lemma 3. For j = 1, . . . , d it holds that

sup
n−2/9≤uj≤1−n−2/9

|m̂j(uj) − mj(uj)| = OP [(log n)n−2/9].

Proof. Because εi has subexponential tails (see (A3)) we get that sup1≤i≤n |εi| =
OP (log n). This implies that max1≤j≤d sup0≤uj≤1 |m̂j(uj)| = OP (log n). We now
consider the regression problem

Y i/(log n) = c/(log n) + m1(Xi
1)/(log n) + . . . + md(Xi

d)/(log n) + εi/(log n).

Now, in this model the least squares estimators of the additive components are
bounded and therefore we can use the entropy bound for bounded monotone func-
tions (see e.g. (2.6) in van de Geer [39] or Theorem 2.7.5 in van der Vaart and
Wellner [40]). This gives by application of empirical process theory for least squares
estimators, see Theorem 9.2 in van de Geer [39] that

1
n

n∑
i=1

[
m̂1(Xi

1) − m1(Xi
1) + . . . + m̂d(Xi

d) − md(Xi
d)

]2
= OP [(log n)2n−2/3].

And, using Lemma 5.15 in van de Geer [39], this rate for the empirical norm can
be replaced by the L2 norm:∫

[m̂1(u1) − m1(u1) + . . . + m̂d(ud) − md(ud)]
2
p(u) du = OP [(log n)2n−2/3].

Because p is bounded from below (see (A2)) this implies∫
[m̂1(u1) − m1(u1) + . . . + m̂d(ud) − md(ud)]

2
du = OP [(log n)2n−2/3].

Because of our norming assumption (2) for m̂j and mj the left hand side of the last
equality is equal to∫

[m̂1(u1) − m1(u1)]
2

du1 + . . . +
∫

[m̂d(ud) − md(ud)]
2

dud.

This gives

(9) max
1≤j≤d

∫
[m̂j(uj) − mj(uj)]

2
duj = OP [(log n)2n−2/3].

We now use the fact that for j = 1, . . . , d the derivatives m′
j are bounded. This

gives together with the last bound the statement of Lemma 3.
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We now define localized estimators m̂OR
j,loc and m̂j,loc. They are defined as m̂OR

j

and m̂j but now the sum of squares runs only over indices i with xj − (log n)1/γ ×
n−2/(9γ)cn ≤ Xi

j ≤ xj + (log n)1/γn−2/(9γ)cn, i.e. m̂OR
j,loc minimizes

∑
i:|Xi

j
−xj |≤(log n)1/γn−2/(9γ)cn

[
mj(Xi

j) + εi − m̂OR
j,loc(X

i
j)

]2

and m̂j,loc minimizes

∑
i:|Xi

j
−xj |≤(log n)1/γn−2/(9γ)cn


Y i −

∑
l �=j

m̂l(Xi
l ) − m̂j,loc(Xi

j)




2

.

Here cn is a sequence with cn → ∞ slowly enough (see below). We now argue that

m̂j,loc(xj) = m̂j(xj) for j = 1, . . . , d and 0 ≤ xj ≤ 1
with probability tending to 1.(10)

This follows from Lemma 3, the fact that mj fulfills (A1) and the representation
(compare (4)):

m̂j(xj) = max
0≤u≤xj

min
xj≤v≤1

∑
i:u≤Xi

j
≤v Ŷ i

j

#{i : u ≤ Xi
j ≤ v} ,(11)

m̂j,loc(xj) = max
xj−(log n)1/γn−2/(9γ)cn≤u≤xj(12)

min
xj≤v≤xj+(log n)1/γn−2/(9γ)cn

∑
i:u≤Xi

j
≤v Ŷ i

j

#{i : u ≤ Xi
j ≤ v}

with Ŷ i
j = Y i −

∑
l �=j m̂l(Xi

l ). Here #A denotes the number of elements of a set A.
Proceeding as in classical discussions of the case d = 1 one gets:

m̂OR
j,loc(xj) = m̂OR

j (xj) for j = 1, . . . , d and 0 ≤ xj ≤ 1
(13)

with probability tending to 1.

We now consider the functions

M̂j(uj , xj) = n−1
∑

i:Xi
j
≤uj

Ŷ i
j − n−1

∑
i:Xi

j
≤xj

Ŷ i
j ,

M̂OR
j (uj , xj) = n−1

∑
i:Xi

j
≤uj

[
mj(Xi

j) + εi
]
− n−1

∑
i:Xi

j
≤xj

[
mj(Xi

j) + εi
]
,

Mj(uj , xj) = n−1
∑

i:Xi
j
≤uj

mj(Xi
j) − n−1

∑
i:Xi

j
≤xj

mj(Xi
j).

For xj − (log n)1/γn−2/(9γ)cn ≤ uj ≤ xj + (log n)1/γn−2/(9γ)cn we consider the
functions that map #{i : Xi

j ≤ uj} onto M̂j(uj , xj), M̂OR
j (uj , xj) or Mj(uj , xj),

respectively. Then we get m̂j,loc(xj), m̂OR
j,loc(xj) and mj(xj) as the slopes of the

greatest convex minorants of these functions at uj = xj .
We now show the following lemma.
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Lemma 4. For α > 0 there exists a β > 0 such that uniformly for 1 ≤ l, j ≤ d,
0 ≤ xj ≤ 1 and xj − (log n)1/γn−2/(9γ)cn ≤ uj ≤ xj + (log n)1/γn−2/(9γ)cn

M̂OR
j (uj , xj) − Mj(uj , xj)(14)

= OP ({|uj − xj | + n−α}1/2n−1/2(log n)β),

M̂j(uj , xj) − M̂OR
j (uj , xj)(15)

= −
∑
l �=j

n−1


 ∑

i:Xi
j
≤uj

−
∑

i:Xi
j
≤xj


 ∫

[m̂l(ul) − ml(ul)] pXl|Xj
(ul|Xi

j) dul

+ OP ({|uj − xj | + n−α}2/3n−13/27(log n)β),

n−1


 ∑

i:Xi
j
≤uj

−
∑

i:Xi
j
≤xj


∫

[m̂l(ul) − ml(ul)] pXl|Xj
(ul|Xi

j) dul(16)

= n−1
[
#{i : Xi

j ≤ uj} − #{i : Xi
j ≤ xj}

]
×

∫
[m̂l(ul) − ml(ul)] pXl|Xj

(ul|xj) dul

+ OP ({|uj − xj | + n−1}n−2ρ/(9γ)(log n)β).

Proof. Claim (14) is a standard result on partial sums. Claim (16) directly follows
from (A2). For a proof of claim (15) we use the following result: For a constant C
suppose that ∆ is a difference of monotone functions on [0, 1] with uniform bound
supz |∆(z)| ≤ C and that Z1, . . . , Zk is a triangular array of independent random
variables with values in [0, 1]. Then it holds uniformly over all functions ∆

k∑
i=1

∆(Zi) − E[∆(Zi)] = OP (k2/3),

see e.g. van de Geer [39]. This result can be extended to

l∑
i=1

∆(Zi) − E[∆(Zi)] = OP (k2/3),

uniformly for l ≤ k and for ∆ a difference of monotone functions with uniform
bound supz |∆(z)| ≤ C. More strongly, one can show an exponential inequality for
the left hand side. This implies that up to an additional log-factor the same rate
applies if such an expansion is used for a polynomially growing number of settings
with different choices of k, Zi and ∆.

We apply this result, conditionally given X1
j , . . . , Xn

j , with Zi = Xi
l and ∆(u) =

I[n−2/9 ≤ u ≤ 1 − n−2/9][m̂l(u) − ml(u)]/(n−2/9 log n). The last factor is justified
by the statement of Lemma 3. This will be done for different choices of k ≥ n1−α.
Furthermore, we apply this result with Zi = Xi

l and ∆(u) = {I[0 ≤ u < n−2/9] +
I[1 − n−2/9 < u ≤ 1]}[m̂l(u) − ml(u)]/(log n) and k ≥ n1−α. This implies claim
(15).

We now show that Lemma 4 implies the following lemma.

Lemma 5. Uniformly for 1 ≤ j ≤ d and n−1/3 ≤ xj ≤ 1 − n−1/3 it holds that

(17) m̂j(xj) = m̂OR
j (xj)−

∑
l �=j

∫
[m̂l(ul) − ml(ul)] pXl|Xj

(ul|xj)dul +oP (n−1/3)
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and that with a constant c > 0 uniformly for 1 ≤ j ≤ d and 0 ≤ xj ≤ n−1/3 or
1 − n−1/3 ≤ xj ≤ 1

m̂j(xj) = m̂OR
j (xj) −

∑
l �=j

∫
[m̂l(ul) − ml(ul)] pXl|Xj

(ul|xj)dul

(18)
+ oP (n−2/9(log n)c).

Proof. For a proof of (17) we use that for n−1/3 ≤ xj ≤ 1 − n−1/3

m̂−
j (xj) ≤ m̂j(xj) ≤ m̂+

j (xj) with probability tending to 1,(19)

m̂OR,−
j (xj) ≤ m̂OR

j (xj) ≤ m̂OR,+
j (xj) with probability tending to 1,(20)

sup
0≤xj≤1

m̂OR,+
j (xj) − m̂OR,−

j (xj) = oP (n−1/3),(21)

where

m̂−
j (xj) = max

xj−en≤u≤xj−dn

min
xj≤v≤xj+en

∑
i:u≤Xi

j
≤v Ŷ i

j

#{i : u ≤ Xi
j ≤ v} ,

m̂+
j (xj) = max

xj−en≤u≤xj

min
xj+dn≤v≤xj+en

∑
i:u≤Xi

j
≤v Ŷ i

j

#{i : u ≤ Xi
j ≤ v} ,

m̂OR,−
j (xj) = max

xj−en≤u≤xj−dn

min
xj≤v≤xj+en

∑
i:u≤Xi

j
≤v mj(Xi

j) + εi

#{i : u ≤ Xi
j ≤ v} ,

m̂OR,+
j (xj) = max

xj−en≤u≤xj

min
xj+dn≤v≤xj+en

∑
i:u≤Xi

j
≤v mj(Xi

j) + εi

#{i : u ≤ Xi
j ≤ v} ,

compare (11) and (12). Here, en = (log n)1/γn−2/(9γ)cn and dn is chosen as dn =
n−δ with 1/3 < δ < 4/9. Claims (19) and (20) follow immediately from the def-
initions of the considered quantities and (10) and (13). Claim (21) can be estab-
lished by using well known properties of the isotone least squares estimator. Now,
(15),(16),(19) and (20) imply that uniformly for 1 ≤ j ≤ d and n−1/3 ≤ xj ≤
1 − n−1/3

m̂±
j (xj) = m̂OR,±

j (xj) −
∑
l �=j

∫
[m̂l(ul) − ml(ul)] pXl|Xj

(ul|xj)dul + oP (n−1/3).

This shows claim (17).
For the proof of (18) one checks this claim separately for n−7/9(log n)−1 ≤

xj ≤ n−1/3 or 1 − n−1/3 ≤ xj ≤ 1 − n−7/9(log n)−1 (case 1) and for 0 ≤ xj ≤
n−7/9(log n)−1 or 1 − n−7/9(log n)−1 ≤ xj ≤ 1 (case 2). The proof for Case 1
is similar to the proof of (17). For the proof in Case 2 one considers the set
Ij,n = {i : 0 ≤ Xi

j ≤ n−7/9(log n)−1}. It can be easily checked that with prob-
ability tending to 1 it holds that n−2/9 ≤ Xi

l ≤ 1 − n−2/9. Therefore it holds
that supi∈Ij,n

|m̂l(Xi
l ) − ml(Xi

l )| = OP [(log n)n−2/9], see Lemma 3. Therefore for
0 ≤ xj ≤ n−7/9(log n)−1 the estimators m̂j(xj) and m̂OR

j (xj) are local averages of
quantities that differ by terms of order OP [(log n)n−2/9]. Thus also the difference of
m̂j(xj) and m̂OR

j (xj) is of order OP [(log n)n−2/9]. This shows (18) for Case 2.

We now show that Lemma 5 implies the statement of the theorem.
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Proof of Theorem 1. We rewrite equations (17) and (18) as

(22) m̂ = m̂OR + H(m̂ − m) + ∆,

where m̂, m̂OR and ∆ are tuples of functions m̂j , m̂OR
j or ∆j , respectively. For ∆j

it holds that

sup
n−1/3≤xj≤1−n−1/3

|∆j(xj)| = oP (n−1/3),(23)

sup
0≤xj≤1

|∆j(xj)| = oP (n−2/9(log n)c).(24)

Furthermore, H is the linear integral operator that corresponds to the linear map
in (17) and (18). For function tuples f we denote by Nf the normalized function
tuple with (Nf)j(xj) = fj(xj) −

∫
fj(uj)duj and we introduce the pseudo norms

‖f‖2
2 =

∫
[f1(x1) + . . . + fd(xd)]2p(x) dx,

‖f‖∞ = max
1≤j≤d

sup
0≤xj≤1

|fj(xj)|.

Here pj is the marginal density of Xi
j and p is the joint density of Xi. We make use

of the following properties of H. On the subspace F0 = {f : f = Nf} the operator
H has bounded operator norm:

(25) sup
f∈F0,‖f‖2=1

‖Hf‖2 = O(1).

For the maximal eigenvalue λmax of H, it holds that

(26) λmax < 1.

Claim (25) follows directly from the boundedness of p. Claim (26) can be seen as
follows. Compare also with Yu, Park and Mammen [42].

A simple calculation gives

(27)
∫

(m1(u1) + · · · + md(ud))2p(u) du = ‖m‖2
2 =

∫
mT (I − H)m(u)p(u)du.

Let λ be an eigenvalue of H and mλ be an eigen(function)vector corresponding to
λ. With (27), we have

‖mλ‖2
2 =

∫
mT

λ (I − H)mλ(u)p(u)du = (1 − λ)
∫

mT
λ mλ(u)p(u)du.

Thus, the factor 1 − λ must be strictly positive, i.e. λ < 1. This implies I − H is
invertible and hence we get that

N(m̂ − m) = (I − H)−1N(m̂OR − m) + (I − H)−1N∆.

Here we used that because of (22)

N(m̂ − m) = N(m̂OR − m) − NH(m̂ − m) + N∆
= N(m̂OR − m) − HN(m̂ − m) + N∆.
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We now use

(I − H)−1 = I + H + H(I − H)−1H,

(I − H)−1 = I + H(I − H)−1.

This gives

N(m̂ − m) = N(m̂OR − m) + N∆ + HN(m̂OR − m)
+ H(I − H)−1HN(m̂OR − m) + H(I − H)−1∆.

We now use that

‖HN(m̂OR − m)‖2 ≤ ‖HN(m̂OR − m)‖∞ = oP (n−1/3),(28)
sup

f∈F0,‖f‖∞=1

‖Hf‖∞ = O(1).(29)

Claim (28) follows because m̂OR is a local average of the data, compare also Groene-
boom [12], Groeneboom, Lopuhaa and Hooghiemstra [14] and Durot [8]. Claim (29)
follows by a simple application of the Cauchy Schwarz inequality, compare also (85)
in Mammen, Linton and Nielsen [28].

This implies that

‖N(m̂ − m) − N(m̂OR − m) − N∆‖∞ = oP (n−1/3).

Thus,

sup
n−1/3≤xj≤1−n−1/3

|N(m̂ − m̂OR)j(xj)| = oP (n−1/3),

sup
0≤xj≤1

|N(m̂ − m̂OR)j(xj)| = oP (n−2/9(log n)c)

This implies the statement of Theorem 1.

A.2. Proof of Theorem 2

For a given closed convex cone K, we call K∗ ≡ {f : 〈f, g〉 ≤ 0 for all g ∈ K}
the dual cone of K. It is clear that K∗ is also a convex cone and K∗∗ = K. It is
pointed out in Barlow and Brunk [3] that if P is a projection onto K then I−P is a
projection onto K∗ where I is the identity operator. Let Pj be a projection onto Hj

then P ∗
j ≡ I − Pj is a projection onto H∗

j . The backfitting procedure (7) to solve
the minimization problem (5) corresponds in the dual problem to an algorithm
introduced in Dykstra [9]. See also Gaffke and Mathar [11]. We now explain this
relation. Let Hj , j = 1, . . . , d, be sets of monotone vectors in R

n with respect to
the orders of Xj and Pj = Π(·|Hj). Denote the residuals in algorithm (7) after the
k-th cycle in the r-th iteration with h(r,k). Then, we have

h(1,1) = Y − g
[1]
1 = P ∗

1 Y,

h(1,2) = Y − g
[1]
1 − g

[1]
2 = P ∗

1 Y − P2P
∗
1 Y = P ∗

2 P ∗
1 Y,

...
h(1,d) = Y − g

[1]
1 − · · · − g

[1]
d = P ∗

d · · ·P ∗
1 Y;(30)
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h(r,1) = Y − g
[r]
1 − g

[r−1]
2 − · · · − g

[r−1]
d = P ∗

1 (Y − g
[r−1]
2 − · · · − g

[r−1]
d ),

...
h(r,k) = Y − g

[r]
1 − · · · − g

[r]
k − g

[r−1]
k+1 − · · · − g

[r−1]
d

= P ∗
k (Y − g

[r]
1 − · · · − g

[r]
k−1 − g

[r−1]
k+1 − · · · − g

[r−1]
d ),

...
h(r,d) = Y − g

[r]
1 − · · · − g

[r]
d = P ∗

d (Y − g
[r]
1 − · · · − g

[r]
d−1).(31)

With the notation Ir,k ≡ −g
[r]
k for the incremental changes at the k-th cycle in

the r-th iteration, equations (30) and (31) form a Dykstra algorithm to solve the
following optimization problem:

(32) min
h∈H∗

1∩···∩H∗
d

n∑
i=1

(Y i − hi)2.

Denote the solutions of (32) with h∗. Theorem 3.1 of Dykstra [9] shows that
h(r,j) converges to h∗ as r → ∞ for j = 1, . . . , d. From the dual property, it is well
known g∗ = Y − h∗ and also it is clear that g(r,j) = Y − h(r,j) for j = 1, . . . , d.
Since h(r,j) converges to h∗, g(r,j) converge to g∗ as r → ∞ for j = 1, . . . , d. The
convergence of g

[r]
j follows from Lemma 4.9 of Han [17].

References

[1] Bacchetti, P. (1989). Additive isotonic models. J. Amer. Statist. Assoc. 84
289–294.

[2] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H.

D. (1972). Statistical Inference under Order Restrictions. Wiley, New York.
[3] Barlow, R. E. and Brunk, H. D. (1972). The isotonic regression problem

and its dual. J. Amer. Statist. Assoc. 67 140–147.
[4] Brunk, H. D. (1958). On the estimation of parameters restricted by inequal-

ities. Ann. Math. Statist. 29 437–454.
[5] Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and

additive models. Ann. Statist. 17 454–510.
[6] Carrasco, M., Florens, J.-P. and Renault, E. (2006). Linear inverse

problems in structural econometrics: Estimation based on spectral decompo-
sition and regularization. In Handbook of Econometrics (J. Heckman and E.
Leamer, eds.) 6. North Holland.

[7] De Boer, W. J., Besten, P. J. and Ter Braak, C. F. (2002). Statistical
analysis of sediment toxicity by additive monotone regression splines. Ecotox-
icology 11 435–50.

[8] Durot, C. (2002). Sharp asymptotics for isotonic regression. Probab. Theory
Related Fields 122 222–240.

[9] Dykstra, R. L. (1983). An algorithm for restricted least squares regression.
J. Amer. Statist. Assoc. 78 837–842.

[10] Fan, J. and Jiang, J. (2005). Nonparametric inference for additive models.
J. Amer. Statist. Assoc. 100 890–907.

[11] Gaffke, N. and Mathar, R. (1989). A cyclic projection algorithm via du-
ality. Metrika 36 29–54.



194 E. Mammen and K. Yu

[12] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of
the Berkeley Conference in Honor of Jerzy Neuman and Jack Kiefer (L. M.
LeCam and R. A. Olshen, eds.) 2 539–555. Wadsworth, Belmont, CA.

[13] Groeneboom, P. (1989). Brownian motions with a parabolic drift and airy
functions. Probab. Theory and Related Fields 81 79–109.

[14] Groeneboom, P., Lopuhaa, H. P. and Hooghiemstra, G. (1999). As-
ymptotic normality of the L1-error of the Grenander estimator. Ann. Statist.
27 1316–1347.

[15] Haag, B. (2006). Nonparametric estimation of additive multivariate diffusion
processes. Working paper.

[16] Haag, B. (2006). Nonparametric regression tests based on additive model
estimation. Working paper.

[17] Han, S.-P. (1988). A successive projection method. Mathematical Program-
ming 40 1–14.

[18] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models.
Chapman and Hall, London.

[19] Horowitz, J., Klemela, J. and Mammen, E. (2006). Optimal estimation
in additive regression models. Bernoulli 12 271–298.

[20] Horowitz, J. and Mammen, E. (2004). Nonparametric estimation of an
additive model with a link function. Ann. Statist. 32 2412–2443.

[21] Horowitz, J. and Mammen, E. (2007). Rate-optimal estimation for a gen-
eral class of nonparametric regression models. Ann. Statist. To appear.

[22] Horowitz, J. and Mammen, E. (2006). Nonparametric estimation of an
additive model with an unknown link function. Working paper.

[23] Leurgans, S. (1982). Asymptotic distributions of slope-of-greatest-convex-
minorant estimators. Ann. Statist. 10 287–296.

[24] Linton, O. B. and Mammen, E. (2003). Nonparametric smoothing methods
for a class of non-standard curve estimation problems. In Recent Advances and
Trends in Nonparametric Statistics (M.G. Akritas and D. N. Politis, eds.).
Elsevier, Amsterdam.

[25] Linton, O. and Mammen, E. (2005). Estimating semiparametric ARCH (∞)
models by kernel smoothing methods. Econometrika 73 771–836.

[26] Linton, O. and Mammen, E. (2007). Nonparametric transformation to white
noise. Econometrics. To appear.

[27] Mammen, E. (1991). Nonparametric regression under qualitative smoothness
assumptions. Ann. Statist. 19 741–759.

[28] Mammen, E., Linton, O. B. and Nielsen, J. P. (1999). The existence
and asymptotic properties of a backfitting projection algorithm under weak
conditions. Ann. Statist. 27 1443–1490.

[29] Mammen, E. and Park, B. U. (2005). Bandwidth selection for smooth back-
fitting in additive models. Ann. Statist. 33 1260–1294.

[30] Mammen, E. and Park, B. U. (2006). A simple smooth backfitting method
for additive models. Ann. Statist. 34 2252–2271.

[31] Mammen, E. and Sperlich, S. (2006). Additivity Tests Based on Smooth
Backfitting. Working paper.

[32] Morton-Jones, T., Diggle, P., Parker, L., Dickinson, H. O. and

Binks, K. (2000). Additive isotonic regression models in epidemiology. Stat.
Med. 19 849–59.

[33] Nielsen, J. P. and Sperlich, S. (2005). Smooth backfitting in practice. J.
Roy. Statist. Soc. Ser. B 67 43–61.

[34] Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model



Additive isotone regression 195

by local polynomial regression. Ann. Statist. 25 185–211.
[35] Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. J.

Multivariate Analysis 73 166–179.
[36] Robertson, T., Wright, F. and Dykstra, R. (1988). Order Restricted

Statistical Inference. Wiley, New York.
[37] Sperlich, S., Linton, O. B. and Härdle, W. (1999). Integration and
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