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Asymptotic oracle properties of

SCAD-penalized least squares estimators

Jian Huang1 and Huiliang Xie

University of Iowa

Abstract: We study the asymptotic properties of the SCAD-penalized least
squares estimator in sparse, high-dimensional, linear regression models when
the number of covariates may increase with the sample size. We are particularly
interested in the use of this estimator for simultaneous variable selection and
estimation. We show that under appropriate conditions, the SCAD-penalized
least squares estimator is consistent for variable selection and that the esti-
mators of nonzero coefficients have the same asymptotic distribution as they
would have if the zero coefficients were known in advance. Simulation studies
indicate that this estimator performs well in terms of variable selection and
estimation.

1. Introduction

Consider a linear regression model

Y = β0 + X′β + ε,

where β is a p × 1 vector of regression coefficients associated with X. We are
interested in estimating β when p → ∞ as the sample size n → ∞ and when β
is sparse, in the sense that many of its elements are zero. This is motivated from
biomedical studies investigating the relationship between a phenotype of interest
and genomic covariates such as microarray data. In many cases, it is reasonable
to assume a sparse model, because the number of important covariates is usually
relatively small, although the total number of covariates can be large.

We use the SCAD method to achieve variable selection and estimation of β
simultaneously. The SCAD method is proposed by Fan and Li [1] in a general
parametric framework for variable selection and efficient estimation. This method
uses a specially designed penalty function, the smoothly clipped absolute deviation
(hence the name SCAD). Compared to the classical variable selection methods such
as subset selection, the SCAD has two advantages. First, the variable selection with
SCAD is continuous and hence more stable than the subset selection, which is a
discrete and non-continuous process. Second, the SCAD is computationally feasible
for high-dimensional data. In contrast, computation in subset selection is combina-
torial and not feasible when p is large. In addition to the SCAD method, several
other penalized methods have also been proposed to achieve variable selection and
estimation simultaneously. Examples include the bridge penalty (Frank and Fried-
man [3]), LASSO (Tibshirani [11]), and the Elastic-Net (Enet) penalty (Zou and
Hastie [14]), among others.
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Fan and Li [1] and Fan and Peng [2] studied asymptotic properties of SCAD
penalized likelihood methods. Their results are concerned with local maximizers of
the penalized likelihood, but not the maximum penalized estimators. These results
do not imply existence of an estimator with the properties of the local maximizer
without auxiliary information about the true parameter value. Therefore, they are
not applicable to the SCAD-penalized maximum likelihood estimators, nor the
SCAD-penalized estimator. Knight and Fu [7] studied the asymptotic distributions
of bridge estimators when the number of covariates is fixed. Huang, Horowitz and
Ma [4] studied the bridge estimators with a divergent number of covariates in a
linear regression model. They showed that the bridge estimators have an oracle
property under appropriate conditions if the bridge index is strictly between 0 and 1.
Several earlier studies have investigated the properties of regression estimators with
a divergent number of covariates. See, for example, Huber [5] and Portnoy [9, 10].
Portnoy proved consistency and asymptotic normality of a class of M-estimators of
regression parameters under appropriate conditions. However, he did not consider
penalized regression or selection of variables in sparse models.

In this paper, we study the asymptotic properties of the SCAD-penalized least
squares estimator, abbreviated as LS-SCAD estimator henceforth. We show that
the LS-SCAD estimator can correctly select the nonzero coefficients with prob-
ability converging to one and that the estimators of the nonzero coefficients are
asymptotically normal with the same means and covariances as they would have if
the zero coefficients were known in advance. Thus, the LS-SCAD estimators have
an oracle property in the sense of Fan and Li [1] and Fan and Peng [2]. In other
words, this estimator is asymptotically as efficient as the ideal estimator assisted
by an oracle who knows which coefficients are nonzero and which are zero.

The rest of this article is organized as follows. In Section 2, we define the LS-
SCAD estimator. The main results for the LS-SCAD estimator are given in Section
3, including the consistency and oracle properties. Section 4 describes an algorithm
for computing the LS-SCAD estimator and the criterion to choose the penalty para-
meter. Section 5 offers simulation studies that illustrate the finite sample behavior
of this estimator. Some concluding remarks are given in Section 6. The proofs are
relegated to the Appendix.

2. Penalized regression with the SCAD penalty

Let (Xi, Yi), i = 1, . . . , n be n observations satisfying

Yi = β0 + X′
iβ + εi, i = 1, . . . , n,

where Yi ∈ R is a response variable, Xi is a pn×1 covariate vector and εi has mean
0 and variance σ2. Here the superscripts are used to make it explicit that both the
covariates and parameters may change with n. For simplicity, we assume β0 = 0.
Otherwise we can center the covariates and responses first.

In sparse models, the pn covariates can be classified into two categories: the
important ones whose corresponding coefficients are nonzero and the trivial ones
whose coefficients are zero. For convenience of notation, we write

β = (β′
1,β

′
2)

′,

where β′
1 = (β1, . . . , βkn) and β′

2 = (0, . . . , 0). Here kn(≤ pn) is the number of
nontrivial covariates. Let mn = pn − kn be the number of zero coefficients. Let
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Y = (Y1, . . . , Yn)′ and let X = (Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ pn) be the n × pn design
matrix. According to the partition of β, write X = (X1, X2), where X1 and X2 are
n × kn and n × mn matrices, respectively.

Given a > 2 and λ > 0, the SCAD penalty at θ is

pλ(θ; a) =


λ|θ|, |θ| ≤ λ,
−(θ2 − 2aλ|θ| + λ2)/[2(a − 1)], λ < |θ| ≤ aλ,
(a + 1)λ2/2, |θ| > aλ.

More insight into it can be gained through its first derivative:

p′λ(θ; a) =


sgn(θ)λ, |θ| ≤ λ,
sgn(θ)(aλ − |θ|)/(a − 1), λ < |θ| ≤ aλ,
0, |θ| > aλ.

The SCAD penalty is continuously differentiable on (−∞, 0) ∪ (0,∞), but not dif-
ferentiable at 0. Its derivative vanishes outside [−aλ, aλ]. As a consequence, SCAD
penalized regression can produce sparse solutions and unbiased estimates for large
coefficients. More detailed discussions of this penalty can be found in Fan and Li
(2001).

The penalized least squares objective function for estimating β with the SCAD
penalty is

(1) Qn(b; λn, a) = ‖Y − Xb‖2 + n

pn∑
j=1

pλn(bj ; a),

where ‖ · ‖ is the L2 norm. Given penalty parameters λn and a, the LS-SCAD
estimator of β is

β̂n ≡ β̂(λn; a) = arg minQn(b; λn, a).

We write β̂n = (β̂
′
1n, β̂

′
2n)′ the way we partition β into β1 and β2.

3. Asymptotic properties of the LS-SCAD estimator

In this section we state the results on the asymptotic properties of the LS-SCAD
estimator. Results for the case of fixed design are slightly different from those for
the case of random design. We state them separately.

For convenience, the main assumptions required for conclusions in this section
are listed here. (A0) through (A4) are for fixed covariates. Let ρn,1 be the smallest
eigenvalue of n−1X′X. πn,kn and ωn,mn are the largest eigenvalues of n−1X′

1X1 and
n−1X′

2X2, respectively. Let X′
i1 = (Xi1, . . . , Xikn) and X′

i2 = (Xi,kn+1, . . . , Xipn).

(A0) (a) εi’s are i.i.d with mean 0 and variance σ2;
(b) For any j ∈ {1, . . . , pn}, ‖X·j‖2 = n.

(A1) (a) limn→∞
√

knλn/
√

ρn,1 = 0;
(b) limn→∞

√
pn/

√
nρn,1 = 0.

(A2) (a) limn→∞
√

knλn/
(√

ρn,1 min1≤j≤kn |βj |
)

= 0;
(b) limn→∞

√
pn/
(√

nρn,1 min1≤j≤kn |βj |
)

= 0;
(c) limn→∞

√
pn/n/ρn,1 = 0.

(A3) limn→∞
√

max(πn,kn , ωn,mn)pn/(
√

nρn,1λn) = 0.
(A4) limn→∞ max1≤i≤n X′

i1(
∑n

i=1 Xi1X′
i1)

−1Xi1 = 0.
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For random covariates, we require conditions (B0) through (B3). Suppose (X′
i,

εi)’s are independent and identically distributed as (X′, ε) = (X1, . . . , Xpn , ε). Anal-
ogous to the fixed design case, ρ1 denotes the smallest eigenvalue of E[XX′]. Also
πkn and ωmn are the largest eigenvalues of E[Xi1X′

i1] and E[Xi2X′
i2], respectively.

(B0) (X′
i, εi) = (Xi1, . . . , Xipn , εi), i = 1, . . . , n are i.i.d. with

(a) E[Xij ] = 0, Var(Xij) = 1;
(b) E[ε|X] = 0, Var(ε|X) = σ2.

(B1) (a) limn→∞ p2
n/(nρ2

1) = 0;
(b) limn→∞ knλ2

n/ρ1 = 0.
(B2) (a) limn→∞

√
pn/(

√
nρ1 min1≤j≤kn |βj |) = 0;

(b) limn→∞ λn

√
kn/(

√
ρ1 min1≤j≤kn |βj |) = 0.

(B3)

lim
n→∞

√
max(πkn , ωmn)pn√

nρ1λn
= 0.

Theorem 1 (Consistency in the fixed design setting). Under (A0)–(A1),

‖β̂n − β‖ P→ 0 as n → ∞.

A similar result holds for the random design case.

Theorem 2 (Consistency in the random design setting). Suppose that there
exists an absolute constant M4 such that for all n, max1≤j≤pn E[Xj

4] ≤ M4 < ∞.
Then under (B0)–(B1),

‖β̂n − β‖ P→ 0 as n → ∞.

For consistency, λn has to be kept small so that the SCAD penalty would not
introduce any bias asymptotically. Note that in both design settings, the restriction
on the penalty parameter λn does not involve mn, the number of trivial covariates.
This is shared by the Lq(0 < q < 1)-penalized estimators in Huang, Horowitz
and Ma [4]. However, unlike the bridge estimators, no upper bound requirement
is imposed on the components of β1, since the derivative of the SCAD penalty
vanishes beyond a certain interval while that of the Lq penalty does not. In the fixed
design case, (A1.b) is needed for model identifiability, as required in the classical
regression. For the random design case, a stricter requirement on pn is entailed by
the need of the convergence of n−1X′X to E[XX′] in the Frobenius norm.

The next two theorems state that the LS-SCAD estimator is consistent for vari-
able selection.

Theorem 3 (Variable selection in the fixed design setting). Under (A0)–
(A3), β̂2n = 0mn with probability tending to 1.

Theorem 4 (Variable selection in the random design setting). Suppose
there exists an absolute constant M such that max1≤j≤pn |Xj | ≤ M < ∞. Then
under (B0)–(B3), β̂2n = 0mn with probability tending to 1.

(A2.a) and (A2.b) are identical to (A1.a) and (A1.b), respectively, provided that

lim inf
n→∞

min
1≤j≤kn

|βj | > 0.

(B2) has a requirement for min1≤j≤kn |βj | similar to (A2). (A3) concerns the largest
eigenvalues of n−1X′

1X1 and n−1X′
2X2. Due to the standardization of covariates,

πn,kn ≤ kn and ωn,mn ≤ mn.
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So (A3) is implied by

lim
n→∞

pn√
nρn,1λn

= 0.

Likewise, (B3) can be replaced with

lim
n→∞

pn√
nρ1λn

= 0.

Both (A3) and (B3) require λn not to converge too fast to 0 in order for the
estimator to be able to “discover” the trivial covariates. It may be of concern if there
are λn’s that simultaneously satisfy (A1)–(A3) (in the random design setting (B1)–
(B3)) under certain conditions. When lim inf ρn,1 > 0 and lim infn→∞ min1≤j≤kn

|βj | > 0, it can be checked that there exists λn that meets both (A2) and (A3) as
long as pn = o(n1/3). If we further know either that kn is fixed, or that the largest
eigenvalue of n−1X′X is bounded from above, as is assumed in Fan and Peng [2],
pn = o(n1/2) is sufficient. When both of these are true, pn = o(n) is adequate
for the existence of such λn’s. Similar conclusions hold for the random design case
except that pn = o(n1/2) is indispensable there.

The advantage of the SCAD penalty is that once the trivial covariates have been
correctly picked out, regression with or without the SCAD penalty will make no
difference to the nontrivial covariates. So it is expected that β̂1n is asymptotically
normally distributed. Let {An, n = 1, 2, . . .} be a sequence of matrices of dimension
d × kn with full row rank.

Theorem 5 (Asymptotic normality in the fixed design setting). Under
(A0)–(A4),

√
nΣ−1/2

n An(β̂1n − β1)
D→ N(0d, Id),

where Σn = σ2An(
∑n

i=1 Xi1X′
i1/n)−1A′

n.

Theorem 6 (Asymptotic normality in the random design setting). Suppose
that there exists an absolute constant M such that max1≤j≤pn ‖Xj‖ ≤ M < ∞ and
a σ4 such that E[ε4|X11] ≤ σ4 < ∞ for all n. Then under (B0)–(B3),

n−1/2 Σ−1/2
n AnE−1/2[Xi1X′

i1]
n∑

i=1

Xi1X′
i1(β̂1n − β1)

D→ N(0d, Id),

where Σn = σ2AnA′
n.

For the random design the assumptions for asymptotic normality are no more
than those for variable selection. While for the fixed design, a Lindeberg-Feller
condition (A4) is needed in addition to (A0)–(A3).

4. Computation

We use the algorithm of Hunter and Li [6] to compute the LS-SCAD estimator
for a given λn and a. This algorithm approximates a nonconvex target function
with a convex function locally at each iteration step. We also describe the steps to
compute the approximate standard error of the estimator.
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4.1. Computation of the LS-SCAD estimator

Given λn and a the target function to be minimized is

Qn(b; λn, a) =
∑
i=1

(Yi − X′
ib)2 + n

pn∑
j=1

pλn(bj ; a).

Hunter and Li [6] proposes to minimize its approximation

Qn,ξ(b; λn, a) =
n∑

i=1

(Yi − X′
ib)2 + n

pn∑
j=1

pλn,ξ(bj ; a)

=
n∑

i=1

(Yi − X′
ib)2 + n

pn∑
j=1

(
pλn(bj ; a) − ξ

∫ |bj |

0

p′λn
(t; a)

ξ + t
dt

)

Around b(k) = (b(k),1, . . . , b(k),pn
)′, it can be approximated by

Sk,ξ(b; λn, a) =
n∑

i=1

(Yi − X′
ib)2

+ n

pn∑
j=1

[
pλn,ξ(b(k),j ; a) +

p′λn
(|b(k),j |+; a)

2(ξ + |b(k),j |)
(bj

2 − b(k),j
2)
]

,

where ξ is a very small perturbation to prevent any component of the estimate from
getting stuck at 0. Therefore the one-step estimator starting from b(k) is

b(k+1) = (X′X + nDξ(b(k); λn, a))−1X′Y,

where Dξ(b(k); λn, a) is the diagonal matrix whose diagonal elements are 1
2p′λn

×
(|b(k),j |+; a)/(ξ + |b(k),j |), j = 1, . . . , pn. Given the tolerance τ , convergence is
claimed when ∣∣∣∣∂Qn,ξ(b)

∂bj

∣∣∣∣ < τ

2
, ∀j = 1, . . . , pn.

And finally the bj ’s that satisfy∣∣∣∣∂Qn,ξ(b)
∂bj

− ∂Qn(b)
∂bj

∣∣∣∣ = nξp′λn
(|bj |+; a)

ξ + |bj |
>

τ

2

are set to 0. A good starting point would be b(0) = β̂LS, the least squares estimator.
The perturbation ξ should be kept small so that difference between Qn,ξ(·) and

Qn(·) is negligible. Hunter and Li [6] suggests using

ξ =
τ

2nλn
min{|b(0),j | : b(0),j 
= 0}.

4.2. Standard errors

The standard errors for the nonzero coefficient estimates can be obtained via the
approximation

∂Sξ(β̂1n; λ, a)

∂β̂1n

≈ ∂Sξ(β1; λn, a)
∂β1

+
∂2Sξ(β1; λn, a)

∂β1∂β′
1

(
β̂1n − β1

)
.
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So

β̂1n − β1 ≈ −
(

∂2Sξ(β1; λn, a)
∂β1∂β′

1

)−1
∂Sξ(β1; λn, a)

∂β1

≈ −
(

∂2Sξ(β̂1n; λn, a)

∂β̂1n∂β̂
′
1n

)−1
∂Sξ(β̂1n; λn, a)

∂β̂1n

.

Since

∂Sξ(β̂1n; λn, a)

∂β̂j

= −2X′
·jY + 2X′

·jX1β̂1n + n
β̂jp

′
λn

(|β̂j |; a)

ξ + |β̂j |

=
n∑

i=1

[
−2XijYi + 2XijX′

i1β̂1n +
β̂jp

′
λn

(|β̂j |; a)

ξ + |β̂j |

]
,

� 2
n∑

i=1

Uij(ξ; λn, a),

letting Uij = Uij(ξ; λn, a), we have, for j, l = 1, . . . , kn,

Cov

(
n−1/2 ∂Sξ(β̂1n; λn, a)

∂β̂j

, n−1/2 ∂Sξ(β̂1n; λn, a)

∂β̂l

)

≈ 4
n

n∑
i=1

UijUil −
4
n2

n∑
i=1

Uij

n∑
i=1

Uil.

Let C = (Cjl, j, l = 1, . . . , kn), where

Cjl =
1
n

n∑
i=1

UijUil −
1
n2

n∑
i=1

Uij

n∑
i=1

Uil.

The variance-covariance matrix of the estimates can be approximated by

̂Cov(β̂1n) ≡ n(X′
1X1 + nDξ(β̂1n; λn, a))−1 C (X′

1X1 + nDξ(β̂1n; λn, a))−1.

4.3. Selection of λn

The above computational algorithm is for the case when λn and a are specified. In
data analysis, they can be selected by minimizing the generalized cross validation
score, which is defined to be

GCV(λn, a) =
‖Y − X1β̂1n‖2/n

(1 − p(λn, a)/n)2
,

where

p(λn, a) = tr
[
X1

(
X′

1X1 + nD0(β̂1n; λn, a)
)−1

X′
1

]
is the number of effective parameters and D0(β̂1n; λn, a) is a submatrix of the
diagonal matrix Dξ(β̂n; λn, a) with ξ = 0. By submatrix, we mean the diago-
nal of D0(β̂1n; λn, a) only contains the elements corresponding to the nontrivial
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components in β̂. Note that here X1 also only includes the columns of which the
corresponding elements of β̂n are non-vanishing.

The requirement that a > 2 is implied by the SCAD penalty function. Simulation
suggests that the generalized cross validation score does not change much with a
given λ. So to improve computing efficiency, we fix a = 3.7, as suggested by Fan
and Li [1].

5. Simulation studies

In this section we illustrate the LS-SCAD estimator’s finite sample properties with
a simulated example.

We simulate covariates Xi, i = 1, . . . , n from the multivariate normal distribu-
tions with mean 0 and

Cov(Xij , Xil) = ρ|j−l|, 1 ≤ j, l ≤ p,

The response Yi is computed as

Yi =
p∑

j=1

Xijβj + εi, i = 1, . . . , n.

where βj = j, 1 ≤ j ≤ 4, βj = 0, 5 ≤ j ≤ p, and εi’s are sampled from N(0, 1).
For each (n, p, ρ) ∈ {(100, 10), (500, 40)} × {0, 0.2, 0.5, 0.8}, we generated N = 400
data sets and use the algorithm in Section 4 to compute the LS-SCAD estimator.
We set the tolerance τ described in Section 4.1 at 10−5. For comparison we also
apply the ordinary least square (LS) method, the ordinary least square method
with model selection based on AIC (abbreviated as AIC), and the ordinary least
squares assuming that βj = 0 for j ≥ 5 are known beforehand (ORA). Note that
this last estimator (ORA) is not feasible in a real data analysis setting. We use it
here as a benchmark in the comparisons.

The results are summarized in Tables 1 and 2. Columns 4 through 7 in Table 1
are the biases of the estimates of βj , j = 1, . . . , 4 respectively. In the parentheses
following each of them are the standard deviations of these estimates. Column 8
(K) lists the numbers of estimates of βj , 5 ≤ j ≤ p that are 0, averaged over 400
replications, and their modes are given in Column 9 (K̃). For LS, an estimate is set
to be 0 if it lies within [−10−5, 10−5].

In Table 1, we see that the LS-SCAD estimates of the nontrivial coefficients have
biases and standard errors comparable to the ORA estimates. This is in line with
Theorems 5 and 6. The average numbers of nonzero estimates for βj(j > 4), K,
with respect to LS-SCAD are close to p, the true number of nonzero coefficients
among βj(j > 4). As the true number of trivial covariates increases, the LS-SCAD
estimator may be able to discover more trivial ones than AIC. However, there is
more variability in the number of trivial covariates discovered via LS-SCAD than
that via AIC.

Table 2 gives the averages of the estimated standard errors of β̂j , 1 ≤ j ≤ 4
using the SCAD method over the 400 replications. They are obtained based on
the approach described in Section 4.2. They are slightly smaller than the sampling
standard deviations of β̂j , 1 ≤ j ≤ 4, which are given in parentheses in the rows for
LS-SCAD.

Suppose for a data set the estimate of β via one of these four approaches is
β̂, then the average model error (AME) regarding this approach is computed as
n−1

∑n
i=1[X

′
i(β̂n − β)]2. Box plots for these AME’s are given in Figure 1.
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Table 1

Simulation example 1, comparison of estimators

(n, p) ρ Estimator β1 β2 β3 β4 K K̃
(100, 10) 0 LS .0007 (.1112) −.0034 (.0979) −.0064 (.1127) −.0024 (.1091) 0 0

ORA .0008 (.1074) −.0054 (.0936) −.0057 (.1072) −.0007 (.1040) 6 6
AIC .0007 (.1083) −.0026 (.1033) −.0060 (.1156) −.0019 (.1181) 4.91 5

SCAD −.0006 (.1094) −.0037 (.0950) −.0058 (.1094) −.0014 (.1060) 4.62 5
0.2 LS −.0003 (.1051) −.0028 (.1068) .0093 (.1157) .0037 (.1103) 0 0

ORA −.0005 (.1010) −.0031 (.1035) .0107 (.1131) .0020 (.1035) 6 6
AIC −.0002 (.1031) −.0024 (.1063) .0107 (.1150) .0021 (.1079) 4.95 5

SCAD −.0025 (.1035) −.0026 (.1046) .0104 (.1141) .0024 (.1066) 4.64 5
0.5 LS .0000 (.1177) −.0007 (.1353) .0010 (.1438) .0006 (.1360) 0 0

ORA −.0002 (.1129) −.0072 (.1317) .0115 (.1393) .0022 (.1171) 6 6
AIC −.0003 (.1162) −.0064 (.1338) .0114 (.1413) .0017 (.1294) 4.91 5

SCAD .0035 (.1115) −.0219 (.1404) .0135 (.1481) .0006 (.1293) 4.78 5
0.8 LS −.0005 (.1916) −.0229 (.2293) .0059 (.2319) .0060 (.2200) 0 0

ORA −.0039 (.1835) −.0196 (.2197) .0070 (.2250) .0092 (.1787) 6 6
AIC −.0021 (.1857) −.0209 (.2235) .0063 (.2289) .0013 (.2072) 4.85 6

SCAD −.0038 (.1868) −.0197 (.2249) .0062 (.2280) .0032 (.2024) 4.87 6
(500, 40) 0 LS .0021 (.0466) −.0000 (.0475) −.0010 (.0466) .0014 (.0439) 0 0

ORA .0027 (.0446) −.0005 (.0453) −.0003 (.0448) .0011 (.0426) 36 36
AIC .0023 (.0460) −.0003 (.0465) −.0004 (.0453) .0016 (.0433) 29.91 30

SCAD .0027 (.0447) −.0004 (.0454) −.0004 (.0450) .0013 (.0429) 32.22 35
0.2 LS .0018 (.0478) .0003 (.0478) −.0014 (.0487) .0005 (.0437) 0 0

ORA .0003 (.0522) −.0000 (.0465) −.0010 (.0517) .0009 (.0458) 36 36
AIC .0024 (.0473) .0002 (.0471) −.0014 (.0475) .0018 (.0436) 29.87 30

SCAD .0028 (.0461) .0002 (.0460) −.0011 (.0475) .0006 (.0433) 32.20 35
0.5 LS .0024 (.0542) .0001 (.0617) .0050 (.0608) −.0048 (.0563) 0 0

ORA .0027 (.0526) .0017 (.0581) .0033 (.0597) −.0030 (.0488) 36 36
AIC .0031 (.0537) .0007 (.0603) .0037 (.0605) −.0038 (.0526) 29.87 32

SCAD .0025 (.0528) .0017 (.0587) .0034 (.0601) −.0037 (.0494) 31.855 35
0.8 LS .0014 (.0788) −.0012 (.1014) .0090 (.1000) −.0077 (.0943) 0 0

ORA .0010 (.0761) .0017 (.0954) .0060 (.0983) −.0044 (.0704) 36 36
AIC .0020 (.0776) .0003 (.0996) .0066 (.0995) −.0071 (.0862) 29.56 30
SCAD .0014 (.0773) .0018 (.0982) .0059 (.0990) −.0050 (.0790) 29.38 35

Table 2

Simulated example, standard error estimate

(n, p) (100, 10) (500, 40)
ρ 0 0.2 0.5 0.8 0 0.2 0.5 0.8

se(β̂1) .0983 .1005 .1139 .1624 .0442 .0444 .0512 .0735

se(β̂2) .0980 .1028 .1276 .2080 .0443 .0447 .0571 .0940

se(β̂3) .0996 .1027 .1278 .2086 .0442 .0445 .0573 .0940

se(β̂4) .0988 .1006 .1150 .1727 .0441 .0444 .0512 .0764

The LS estimator definitely has the worst performance in terms of AME. This
becomes more obvious as the number of trivial predictors increases. LS-SCAD out-
performs AIC in this respect and is comparable to ORA. But it is also seen that the
AME’s of LS-SCAD tend to be more diffuse as ρ increases. This is also the result
of more spread-out estimates of the number of trivial covariates.

6. Concluding remarks

In this paper, we have studied the asymptotic properties of the LS-SCAD estimator
when the number of covariates and regression coefficients increases to infinity as
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Fig 1. Box plots of the average model errors for four estimators: AIC, LS, ORA, and LS-SCAD.
In the top four panels, (n, p, ρ) = (100, 10, 0), (100, 10, 0.2), (100, 10, 0.5), (100, 10, 0.8); and in the
bottom four panels, (n, p, ρ) = (500, 40, 0), (500, 40, 0.2), (500, 40, 0.5), (500, 40, 0.8), where n is the
sample size, p is the number of covariates, and ρ is the correlation coefficient used in generating
the covariate values.

n → ∞. We have shown that this estimator can correctly identify zero coefficients
with probability converging to one and that the estimators of nonzero coefficients
are asymptotically normal and oracle efficient. Our results were obtained under the
assumption that the number of parameters is smaller than the sample size. They
are not applicable when the number of parameters is greater than the sample size,
which arises in microarray gene expression studies. In general, the condition that
p < n is needed for identification of the regression parameter and consistent variable
selection. To achieve consistent variable selection in the “large p, small n” case,
certain conditions are required for the design matrix. For example, Huang et al. [4]
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showed that, under a partial orthogonality assumption in which the covariates of the
zero coefficients are uncorrelated or only weakly correlated with the covariates of
nonzero coefficients, then the univariate bridge estimators are consistent for variable
selection under appropriate conditions. This result also holds for the univariate
LS-SCAD estimator. Indeed, under the partial orthogonality condition, it can be
shown that the simple univariate regression estimator can be used to consistently
distinguish between nonzero and zero coefficients. Finally, we note that our results
are only valid for a fixed sequence of penalty parameters λn. It is an interesting
and difficult problem to show that the asymptotic oracle property also holds for λn

determined by cross validation.

Appendix

We now give the proofs of the results stated in Section 3.

Proof of Theorem 1. By the definition of β̂n, it is necessary that Qn(β̂n) ≤ Qn(β).
It follows that

0 ≥
∥∥X(β̂n − β)

∥∥2 − 2ε′X(β̂n − β) + n

kn∑
j=1

[
pλn(β̂j ; a) − pλn(βj ; a)

]
≥
∥∥X(β̂n − β)

∥∥2 − 2ε′X(β̂n − β) − 2−1n(a + 1)knλ2
n

=
∥∥[X′X]1/2(β̂n − β) − [X′X]−1/2X′ε

∥∥2

− ε′X[X′X]−1X′ε − 2−1n(a + 1)knλ2
n.

By the Cr-inequality (Loéve [8], page 155),∥∥[X′X]1/2(β̂n − β)‖2 ≤ 2
∥∥[X′X]1/2(β̂n − β) − [X′X]−1/2X′ε

∥∥2 + 2ε′X[X′X]−1X′ε

≤ 4ε′X[X′X]−1X′ε + n(a + 1)knλ2
n.

In the fixed design,

ε′X[X(n)′X]−1X′ε = E
[
ε′X[X(n)′X]−1X′ε

]
OP (1)

= σ2tr(X[X′X]−1X′)OP (1)
= pnOP (1).

Since ∥∥[X′X]1/2(β̂n − β)‖2 ≥ nρn,1‖β̂n − β‖2,

we have

‖β̂n − β‖ = OP

( √
pn√

nρn,1
+

√
knλn√
ρn,1

)
= oP (1).

Proof of Theorem 2. Let A(n) = (A(n)
jk )j,k=1,...,pn with A

(n)
jk = n−1

∑n
i=1 XijXik −

E[XijXik]. Let ρ1(A(n)) and ρpn(A(n)) be the smallest and largest of the eigenval-
ues of A(n), respectively. Then by Theorem 4.1 in Wang and Jia [13],

ρ1(A(n)) ≤ ρn,1 − ρ1 ≤ ρpn(A).

By the Cauchy inequality and the properties of eigenvalues of symmetric matrices,

max(|ρ1(A(n))|, |ρpn(A(n))|) ≤ ‖A(n)‖.
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When (B1.a) holds, ‖A(n)‖ = oP (ρ1) = oP (1), as is seen for any ξ > 0,

P (‖A(n)‖2 ≥ ξρ1
2) ≤ E‖A(n)‖2

ξρ1
2

≤ p2
n

ξρ1
2

sup
1≤j,k≤pn

Var(A(n)
jk ) ≤ p2

n

nξρ1
2
M4.

Since ρ1 > 0 holds for all n, n−1X′X is invertible with probability tending to 1.
Following the argument for the fixed design case, with probability tending to 1,∥∥[X′X]1/2(β̂n − β)‖2 ≤ 4ε′X[X′X]−1X′ε − n(a + 1)knλ2

n.

In the random design setting,

E

[
ε′X[X′X]−1X′ε

∣∣∣‖A(n)‖2 <
1
2
ρ1

2

]
= σ2E

[
tr(X[X′X]−1X′)

∣∣∣‖A(n)‖2 <
1
2
ρ1

2

]
= σ2pn.

The rest of the argument remains the same as for the fixed design case and leads
to

‖β̂n − β‖ = OP

( √
pn√
nρ1

+
√

knλn√
ρ1

)
= oP (1).

Lemma 1 (Convergency rate in the fixed design setting). Under (A0)–(A2),
‖β̂n − β‖ = OP (

√
pn/n/ρn,1).

Proof. In the proof of consistency, we have

‖β̂n − β‖ = OP (un), where un = λn

√
kn/ρn,1 +

√
pn/(nρn,1).

For any L1, provided that ‖b − β‖ ≤ 2L1un,

min
1≤j≤kn

|bj | ≥ min
1≤j≤kn

|βj | − 2L1un.

If (A2) holds, then for n sufficiently large, un/ min1≤j≤kn |βj | < 2−L1−1. It follows
that

min
1≤j≤kn

|bj | ≥ min
1≤j≤kn

|βj |/2,

which further implies than min1≤j≤kn |bj | > aλn for n sufficiently large (assume
lim infn→∞ kn > 0).

Let {hn} be a sequence converging to 0. As in the proof of of Theorem 3.2.5
of Van der Vaart and Wellner [12], decompose Rpn\{0pn} into shells {Sn,l, l ∈ Z̄}
where Sn,l = {b : 2l−1hn ≤ ‖b−β‖ < 2lhn}. For b ∈ Sn,l such that 2lhn ≤ 2L1un,

Qn(b) − Qn(β) = (b − β)′X′X(b − β) − 2ε′X(b − β)

+ n

pn∑
j=1

pλn(bj ; a) − n

pn∑
j=1

pλn(βj ; a)

= (b − β)′X′X(b − β) − 2ε′X(b − β)
� In1 + In2,

and
In1 ≥ nρn,1‖b − β‖2 ≥ 22(l−1)h2

nnρn,1.
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Thus

P
(
‖β̂n − β‖ ≥ 2Lhn

)
≤ o(1) +

∑
l>L

2lhn≤2L1un

P
(
β̂n ∈ Sn,l

)

≤ o(1) +
∑
l>L

2lhn≤2L1un

P

(
inf

b∈Sn,l

Qn(b) ≤ Qn(β)
)

≤ o(1) +
∑
l>L,

2l−1hn≤2L1un

P

(
sup

b∈Sn,l

ε′X(b − β) ≥ 22l−3h2
nnρn,1

)

≤ o(1) +
∑
l>L,

2l−1hn≤2L1un

E| supb∈Sn,l
ε′X(b − β)|

22l−3h2
nnρn,1

≤ o(1) +
∑
l>L

2lhnE1/2[‖ε′X‖2]
22l−3h2

nnρn,1

≤ o(1) +
∑
l>L

2l
√

nσ2pn

22l−3hnnρn,1
,

from which we see ‖β̂n − β‖ = OP (
√

pn/n/ρn,1).

Lemma 2 (Convergence rate in the random design setting). Under (B0)–
(B2), ‖β̂n − β‖ = OP (

√
pn/n/ρ1).

Proof. Deduction is similar to that of Lemma 1. However, since X is a random
matrix in this case, extra details are needed in the following part. Let A(n) =
(A(n)

jk )j,k=1,...,pn with A
(n)
jk = 1

n

∑n
i=1 XijXik − E[XjXk]. We have

P
(
‖β̂n − β‖ ≥ 2Lhn

)
≤

∑
l>L

2lhn≤2L1un

P
(
β̂n ∈ Sn,l, ‖A(n)‖ ≤ ρ1/2

)
+ o(1)

≤
∑
l>L

2lhn≤2L1un

P

(
inf

b∈Sn,l

Qn(b) ≤ Qn(β), ‖A(n)‖ ≤ ρ1/2
)

+ o(1)

≤
∑
l>L

2lhnE1/2
[
‖ε′X‖2

∣∣∣‖A‖ ≤ ρ1/2
]

22l−4h2
nnρ1

+ o(1).

The first inequality follows from (B1.a). This leads to ‖β̂n −β‖ = OP (
√

pn/n/ρ1).

Proof of Theorem 3. By Lemma 1, ‖β̂n − β‖ ≤ λn with probability tending to 1
under (A3). Consider the partial derivatives of Qn(β + v). For j = kn + 1, . . . , pn,
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if |vj | ≤ λn,

∂ Qn(β + v)
∂ vj

= 2
n∑

i=1

Xij(εi − X′
iv) + nλnsgn(vj)

= 2
n∑

i=1

Xijεi − 2
n∑

i=1

XijX′
i1v1 − 2

n∑
i=1

XijX′
i2v2 + nλnsgn(vj)

� IIn1,j + IIn2,j + IIn3,j + IIn4,j .

Examine the first three terms one by one.

E[ max
kn+1≤j≤pn

|IIn1,j |] ≤ E1/2

 pn∑
j=kn+1

II2
n1,j

 = 2
√

nmnσ,

max
kn+1≤j≤pn

|IIn2,j | = 2 max
kn+1≤j≤pn

∣∣∣∣∣
n∑

i=1

XijX′
i1v1

∣∣∣∣∣
≤ 2‖v1‖ max

kn+1≤j≤pn

√
(X·j)′X1X′

1X·j

≤ 2‖v1‖ max
kn+1≤j≤pn

‖X·j‖ρ1/2
max(X1X′

1)

= 2‖v1‖ max
kn+1≤j≤pn

‖X·j‖ ρ1/2
max(X

′
1X1)

= 2n
√

πn,kn‖v1‖,

max
kn+1≤j≤pn

|IIn3,j | = 2 max
kn+1≤j≤pn

|
n∑

i=1

XijX′
i2v2|

≤ 2‖v1‖‖X·j‖ρ1/2
max(X

′
2X2)

= 2n
√

ωn,mn‖v2‖.

Following the above argument we have

P

 ⋃
kn+1≤j≤pn

{|IIn1,j | > |IIn4,j | − |IIn2,j | − |IIn3,j |}


≤ 2

√
nmnσ2

nλn − 2n
(√

πn,kn‖v1‖ + √
ωn,mn‖v2‖

) .
When (A3) holds,

√
nλn/

√
mn → ∞. Under (A1)–(A2), ‖v‖ = OP (

√
pn/n/ρn,1).

Therefore

P

 ⋃
kn+1≤j≤pn

{|IIn1,j | > |IIn4,j | − |IIn2,j | − |IIn3,j |}

→ 0 as n → ∞.

This indicates that with probability tending to 1, for all j = kn +1, . . . , pn, the sign
of ∂ Qn(β+v)

∂ vj
is the same as vj , provided that |vj | < λn, which further implies that

lim
n→∞

P (β̂2n = 0mn) = 1.
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Proof of Theorem 4. Follow the argument in the proof of Theorem 3. Note that in
the random design setting, under (B1.a),

max
kn+1≤j≤pn

|IIn2,j | = 2 max
kn+1≤j≤pn

∣∣∣∣∣
n∑

i=1

XijX′
i1v1

∣∣∣∣∣
≤ 2‖v1‖ max

kn+1≤j≤pn

√
(X·j)′X1X′

1X·j

≤ 2‖v1‖ max
kn+1≤j≤pn

‖X·j‖ρ1/2
max(X1X′

1)

≤ 2‖v1‖
√

nM
√

ρmax(X′
1X1)

≤ 2M
√

n‖v1‖
√

n [ρmax(E[X1X′
1]) + ‖A11‖]

≤ 2n‖v1‖
√

πkn + E1/2‖A11‖2OP (1)

= 2n‖v1‖

√
πkn + OP (ρ1)

M
1/2
4 kn

ρ1
√

n

≤ 4n‖v1‖
√

πknOP (1)

for sufficiently large n. Similarly

max
kn+1≤j≤pn

|IIn3,j | ≤ 4n‖v2‖
√

ωmnOP (1).

The rest of the argument is identical to that in the fixed design case and thus
omitted here.

Proof of Theorem 5. During the course of proving Lemma 1, we have under (A0)–
(A1), ‖β̂n − β‖ = OP (λn

√
kn/ρn,1 +

√
pn/(nρn,1)). Under (A2), this implies that

‖β̂1n − β1‖ = oP ( min
1≤j≤kn

|βj |).

Also from (A2), λn = o(min1≤j≤kn |βj |). Therefore, with probability tending to 1,
all the β̂j (1 ≤ j ≤ kn) are bounded away from [−aλn, aλn] and so the partial
derivatives exist. At the same time, β̂2n = 0mn with probability tending to 1.
Thus with probability tending to 1, the stationarity condition holds for the first kn

components. That is, β̂1n necessarily satisfies the equation

n∑
i=1

(Yi − X′
i1β̂1n)Xi1 = 0, i.e.

n∑
i=1

εiXi1 =
n∑

i=1

Xi1X′
i1(β̂1n − β1).

So the random vector being considered

Zn �
√

nΣ−1/2
n An(β̂1n − β1)

=
√

n

n∑
i=1

Σ−1/2
n An (X′

1X1)
−1 Xi1εi

� n−1/2
n∑

i=1

R(n)
i εi,
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where R(n)
i = Σ−1/2

n An(n−1X′
1X1)−1Xi1. The equality holds with probability tend-

ing to 1. max1≤i≤n ‖R(n)
i ‖/√n → 0 is implied by (A4), as can be seen from

‖R(n)
i ‖√
n

=
‖Σ−1/2

n An

(
n−1X′

1X1

)−1
Xi1‖√

n

≤ n−1/2
∥∥∥(n−1X′

1X1

)−1/2
Xi1

∥∥∥
· ρ1/2

max

((
n−1X′

1X1

)−1/2
A′

nΣ−1
n An

(
n−1X′

1X1

)−1/2
)

= n−1/2
∥∥∥(n−1X′

1X1

)−1/2
Xi1

∥∥∥ ρ1/2
max

(
σ−2Σ−1/2

n ΣnΣ−1/2
n

)
=

√√√√σ−2X′
i1

(
n∑

i=1

Xi1X′
i1

)−1

Xi1.

Therefore for any ξ > 0,

1
n

n∑
i=1

E
[
‖R(n)

i εi‖21{‖R(n)
i εi‖ >

√
nξ}
]

=
1
n

n∑
i=1

R(n)′
i R(n)

i E
[
ε2
i 1{‖R

(n)
i εi‖ >

√
nξ}
]

≤ 1
n

n∑
i=1

R(n)′
i R(n)

i E

[
ε2
i 1{|εi| >

√
nξ/ max

1≤i≤n
‖R(n)

i ‖}
]

=
1
n

n∑
i=1

R(n)′
i R(n)

i o(1)

=
1
n

n∑
i=1

X′
i1

(
n−1X′

1X1

)−1
A′

nΣ−1
n An

(
n−1X′

1X1

)−1
Xi1o(1)

=
n∑

i=1

tr
{(

n−1X′
1X1

)−1
A′

nΣ−1
n An

(
n−1X′

1X1

)−1 Xi1X′
i1

n

}
o(1)

= tr
{(

n−1X′
1X1

)−1
A′

nΣ−1
n An

}
o(1)

= tr

Σ−1
n An

(
1
n

n∑
i=1

Xi1X′
i1

)−1

A′
n

 o(1)

= o(1)d.

So
Zn

D→ N(0d, Id).

follows from the Lindeberg-Feller central limit theorem and Var(Zn) = Id.

Proof of Theorem 6. The vector being considered

1√
n

Σ−1/2
n AnE−1/2[Xi1X′

i1]
n∑

i=1

Xi1X′
i1(β̂1n − β1)

=
1√
n

Σ−1/2
n AnE−1/2[Xi1X′

i1]
n∑

i=1

εiXi1
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with probability tending to 1. Let Zni = 1√
n
Σ−1/2

n AnE−1/2[Xi1X′
i1]Xi1εi, i =

1, . . . , n. {Zni, n = 1, 2, . . . , i = 1, . . . , n} form a triangular array and within each
row, they are i.i.d random vectors. First,

Var

(
n∑

i=1

Zni

)
= Var

(
Σ−1/2

n AnE−1/2[Xi1X′
i1]X11ε

)
= Id.

Second, under (B1.a),

n∑
i=1

E
[
‖Zni‖21{‖Zni‖>ξ}

]
= nE

[
‖Zn1‖21{‖Zn1‖>ξ}

]
≤ nE1/2[‖Zn1‖4]P 1/2(‖Zn1‖ > ξ) = o(1),

since

E1/2[‖Zn1‖4] = E1/2[(Z′
n1Zn1)2]

=
1
n

E1/2

[
ε4
(
X′

11E
− 1

2 [X11X′
11]A

′
nΣ−1

n AnE− 1
2 [X11X′

11]X11

)2
]

≤ 1
n

σ
1/2
4 ρmax(A′

nΣ−1
n An) ρmax(E−1[X11X′

11])E
1/2
[
(X′

11X11)
2
]

≤ 1
n

σ
1/2
4 ρmax(Σ−1

n AnA′
n) ρ1

−1E1/2

[(
X(n)′

11 X11

)2
]

=
1
n

σ
1/2
4 σ−2ρ1

−1E1/2


 kn∑

j=1

X1j
2

2


= O

(
kn

nρ1

)
,

and

P 1/2(‖Zn1‖ > ξ) ≤ E1/2(Z′
n1Zn1)
ξ

=

√
d√
nξ

,

by the Lindeberg–Feller central limit theorem we have

n−1/2Σ−1/2
n AnE−1/2[Xi1X′

i1]X
′
1X1(β̂1n − β1)

D→ N(0d, Id).
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