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Functional analysis via extensions

of the band depth

Sara López-Pintado1 and Rebecka Jornsten2,∗

Universidad Pablo de Olavide and Rutgers University

Abstract: The notion of data depth has long been in use to obtain robust
location and scale estimates in a multivariate setting. The depth of an observa-
tion is a measure of its centrality, with respect to a data set or a distribution.
The data depths of a set of multivariate observations translates to a center-
outward ordering of the data. Thus, data depth provides a generalization of
the median to a multivariate setting (the deepest observation), and can also
be used to screen for extreme observations or outliers (the observations with
low data depth). Data depth has been used in the development of a wide
range of robust and non-parametric methods for multivariate data, such as
non-parametric tests of location and scale [Li and Liu (2004)], multivariate
rank-tests [Liu and Singh (1993)], non-parametric classification and clustering
[Jornsten (2004)], and robust regression [Rousseeuw and Hubert (1999)].

Many different notions of data depth have been developed for multivariate
data. In contrast, data depth measures for functional data have only recently
been proposed [Fraiman and Muniz (1999), López-Pintado and Romo (2006a)].
While the definitions of both of these data depth measures are motivated by
the functional aspect of the data, the measures themselves are in fact invari-
ant with respect to permutations of the domain (i.e. the compact interval on
which the functions are defined). Thus, these measures are equally applicable
to multivariate data where there is no explicit ordering of the data dimensions.
In this paper we explore some extensions of functional data depths, so as to
take the ordering of the data dimensions into account.

1. Introduction

In functional data analysis, each observation is a real function xi, i = 1, . . . , n, de-
fined on a common interval in R. Functional data is observed in many disciplines,
such as medicine (e.g. EEG traces), biology (e.g. gene expression time course data),
economics and engineering (e.g., financial trends, chemical processes). Many mul-
tivariate methods (e.g. analysis of variance, and classification) have been extended
to functional data (see Ramsay and Silverman [22]). A basic building block of such
statistical analyses is a location estimate, i.e. the mean curve for a group of data
objects, or data objects within a class. When analyzing functional data, outliers can
affect the location estimates in many different ways, e.g. altering the shape and/or
magnitude of the mean curve. Since measurements are frequently noisy, statistical
analysis may thus be much improved by the use of robust location estimates, such as
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the median or trimmed mean curve. Data depth provides the tools for constructing
these robust estimates.

We first review the concept of data depth in the multivariate setting, where
data depth was introduced to generalize order statistics, e.g. the median, to higher
dimensions. Given a distribution function F in Rd, a statistical depth assigns to each
point x a real, non-negative bounded value D(x|F ), which measures the centrality
of x with respect to the distribution F . Given a sample of n observations X =
{x1, . . . , xn}, we denote the sample version by D(x|Fn) or D(x|X). D(x|X) is a
measure of the centrality of a point x with respect to the sample X (or the empirical
distribution function Fn). The point x can be a sample observation, or constitute
independent “test data”. For x = xi ∈ X, D(xi|Fn) provides a center-outward
ordering of the sample observations x1, . . . , xn.

Many depth definitions have been proposed for multivariate data (e.g. Maha-
lanobis [19], Tukey [26], Oja [20], Liu [12], Singh [25], Fraiman and Meloche [3],
Vardi and Zhang [27] and Zuo [31]). To illustrate the data depth principle and the
variety of depth measures, we will briefly review two very different notions of depth:
the simplicial depth of Liu [12], and the L1 depth of Vardi and Zhang [27] (a detailed
discussion of the different types of data depths can be found in Liu, Parelius and
Singh [14] and Zuo and Serfling [32]). To compute the simplicial depth of a point
x ∈ Rd with respect to the sample X = {x1, . . . , xn}, we start by partitioning the
sample into a set of

(
n

d+1

)
unique (d+1)-simplices. Consider the two-dimensional

case illustrated in Figure 1a. We depict a subset of the
(
n
3

)
3-simplices (triangles) in

R2 defined by a set of objects (x1, x2, x3) ∈ X. A point x is considered deep within
the sample X if many simplices contain it, and vice versa. Formally, the simplicial
depth of a point x is defined as

SD(x|X) =
(

n

d + 1

)−1 ∑
1≤i1<i2<···<id+1≤n

I{x ⊂ simplex(xi1 , . . . , xid+1)},

where I{A} is an indicator of the event A, equal to 1 if A is true and 0 otherwise.
We can see from Figure 1a that the point marked with a triangle is covered by many
simplices, resulting in a high depth measure, whereas the point marked with a plus
attains the minimum depth measure (i.e.

(
n
3

)−1 if the point is a sample observation,
and 0 otherwise).

(a) (b)

Fig 1. (a) The simplicial data depth, (b) The L1 data depth.
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To calculate the L1 data depth of a point x with respect to the sample X, we
start by forming the unit vectors e(x, xi) that point from x to xi ∈ X (Figure 1b).
The L1 depth of x is defined as

LD(x|X) = 1 − ē(x), where ē(x) =
1
n

∑
xi∈X

e(x, xi).

I.e., ē(x) is the sample average of the unit vectors e(x, xi). If x is on the periphery of
the sample, all e(x, xi) unit vectors point in an almost identical direction such that
ē(x) � 1, and LD(x|X) � 1 − 1 = 0 (point marked with a plus in Figure 1b). If x
is in the center of the sample, the unit vectors e(x, xi) will point in many different
directions and almost cancel out in the computation of ē(x), resulting in a high
depth measure LD(x|X) � 1 − 0 = 1 (point marked with a triangle in Figure 1b).

Focusing on the case when x is a sample observation, x ∈X, we see from the above
examples that data depth can be used to rank-order the data set X, from the deepest
to the least deep. We classify x with high D(x|X) as the most representative of the
sample X, and x with low D(x|X) as the most extreme observations, that may be
considered outliers. The deepest observation is a generalization of the median to
a multivariate setting, and the center-outward ordering can be used to construct
trimmed mean estimates. Robust multivariate estimates based on data depth have
been used in a wide range of non-parametric analyses, such as non-parametric
testing of location and/or scale (Li and Liu [11]), multivariate rank-test (Liu and
Singh [15]), non-parametric classification and clustering (Jornsten [10]), and robust
regression (Rousseeuw and Hubert [23]).

In this paper we discuss data depth measures for functional data. We review the
band depths of López-Pintado and Romo [16] (Section 2), and propose some ex-
tensions of these depths to better address the functional characteristic of the data
(section 3). We also propose a re-sampling based estimation scheme that speeds
up the data depth calculation for sample objects, which is otherwise a computa-
tionally intensive task for large data sets (Section 4). In Section 5 we compare the
performance of the new notions of depth to that of the band depth, under various
simulation scenarios. While we cannot identify a depth measure that dominates all
other measures across all simulation scenarios, we do find that data depths that
account for the functional characteristics of the data can improve on data depths
that do not have this property.

2. The band depth and the generalized band depth

In recent years, some definitions of depth for functional data have been proposed.
Fraiman and Muniz [3] considered a concept of depth based on the integral of
univariate depths. López-Pintado and Romo [16] introduced the notion of band
depth, which is based on the graphs of the curves and the bands they delimit in
the plane. Let X = {x1, . . . , xn} be a sample of continuous curves defined in the
compact interval T . The graph of a function x is given by

G(x) = {(t, x(t)) : t ∈ T} ,

where x is either an observation from the sample, or independent test data.
The band in R2 is the region delimited by j curves xi1 , . . . , xij , and defined as

B(xi1 , xi2 , . . . , xij ) =
{

(t, y) : t ∈ T, min
r=1,...,j

xir (t) ≤ y ≤ max
r=1,...,j

xir(t)
}

=
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Fig 2. (a) Band determined by two curves, (b) Band determined by two curves, where the curves
cross, and (c) Band determined by three curves.

=
{

(t, y) : t ∈ T, y = αt min
r=1,...,j

xir(t) + (1 − αt) max
r=1,...,j

xir (t), αt ∈ [0, 1]
}

.

Here, the j curves xi1 , . . . , xij are chosen from the sample x1, . . . , xn. A sample of
size n can thus generate

(
n
j

)
possible bands. Figures 2a and 2b show examples of

bands determined by two curves. In Figure 2a the curves form a band that has a
non-zero width across the entire compact interval T . In Figure 2b the curves cross,
and the band is degenerate (has width 0) at the points of crossing. In Figure 2c we
depict a band determined by three curves.

Definition 1. Given a sample of curves x1, . . . , xn, the band depth (BD) of any
curve x is

(2.1) Sn,J(x|X) =
J∑

j=2

S(j)
n (x|X), J ≥ 2,

where

(2.2) S(j)
n (x|X) =

(
n

j

)−1 ∑
1≤i1<i2<···<ij≤n

I{G(x) ⊂ B(xi1 , xi2 , . . . , xij )}, j ≥ 2.

That is, the band depth of object x is defined as the proportion of bands delimited
by j curves (B(xi1 , xi2 , . . . , xij )) containing the graph of x. In a multivariate setting,
the band depth resembles the simplicial depth of Liu [12]. In fact, in R2 the band
B(xi1 , xi2 , . . . , xij ) corresponds to the smallest rectangle with sides parallel to the
axes that contain j objects xi1 , . . . , xij , compared with a triangle (3-simplex) used
in the definition of the simplicial depth.

In a functional data setting, the intuition behind the band depth is as follows: If
a curve x has a shape that differs from sample curves xi ∈ X, then few bands can
contain it, and vice versa. Thus, a curve that is not representative of the sample
will be associated with a low band depth value, and a representative curve will be
associated with a high band depth value. The median curve defined by the band
depth is xdeepest = argmax Sn,J(xi|X).

For J = 2 the band depth is simple and fast to compute. However, there are
some practical limitations: The curves xi1 , xi2 that determine the band B(xi1 , xi2)
may cross (Figure 2b). At the point of crossing tc, the band B(xi1 , xi2) is de-
generate. Unless a curve x coincides with xi1 and xi2 at the cross-point tc, curve
x is not contained in the band. If many curves in the sample cross, most bands
B(xi1 , xi2) will not contribute to the band depth measure (equation 2.2). This gen-
erates many ties between data objects, and may thus result in a non-unique median
curve and center-outward rank-order of the data objects. This limits the practical
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use of the band depth to construct robust estimates for functional analysis, e.g.
non-parametric testing or classification.

If we use J = 3, i.e. let 3 curves define the delimiting band B(xi1 , xi2 , xi3), we
reduce the impact of curves that cross, and reduce the number of ties. However,
the band depth with J > 2 is computationally intensive to work with since the
number of unique bands grows at rate

(
n
J

)
. In addition, the band delimited by 3

data objects (Figure 2c) does not provide the same intuition as the band delimited
by 2 objects (Figure 2a). The shape of the band delimited by J = 3 objects may
differ substantially from the individual objects. Thus, if curve x is contained in
band B(xi1 , xi2 , xi3), this does not necessarily imply that x is similar to any of the
objects xi1 , xi2 , xi3 .

When the curves are very irregular, the band depth can be too restrictive. Few
bands will fully contain a data object. This will again result in too many ties between
data objects, and a poorly defined center-outward ranking. A more flexible notion
of depth (the generalized band depth) was therefore proposed in López-Pintado and
Romo [16]. It is obtained by replacing the indicator function in definition (2.2) by
the proportion of time the curve x is inside a corresponding band. Given the sample
x1, . . . , xn, let for any curve x

A(x; xi1 , xi2 , . . . , xij ) =
{

t ∈ T : min
r=i1,...,ij

xr(t) ≤ x(t) ≤ max
r=i1,...,ij

xr(t)
}

, j ≥ 2,

be the set of points in the interval T where the function x is inside the band
delimited by xi1 , xi2 , . . . , xij . If λ is the Lebesgue measure in R, λ(Aj(x))

λ(T ) is the
proportion of time that x is inside the band. We define

(2.3) GS(j)
n (x|X) =

(
n

j

)−1 ∑
1≤i1<i2<···<ij≤n

λ(A(x; xi1 , xi2 , . . . , xij ))
λ(T )

, j ≥ 2,

as a generalized version of S
(j)
n (x|x1, . . . , xn).

Definition 2. Given a sample of curves x1, . . . , xn, the generalized band depth
(GBD) of a curve x is

(2.4) GSn,J (x|X) =
J∑

j=2

GS(j
n (x|X), J ≥ 2.

A curve x may be representative of the sample X, with the exception of an
isolated set of points t ∈ T . The generalized band depth assigns a high depth
measure to such observations, whereas the band depth ascribes a minimum depth
value. In addition, for J = 2 and irregular data, the delimiting objects of a band may
cross. While for the band depth, such bands do not contribute to the computation
of the depth measures, the generalized band depth will simply down-weigh the
contribution of those bands by the proportion of cross-points tc in T . The GBD
thus computes the data depth by considering each data dimension t separately,
similar to the data depth proposed by Fraiman and Muniz [3].

3. Extensions of the band depth

The definitions of the band depth and the generalized band depth allow for delimit-
ing objects of a band to cross. We saw that this poses a problem when applying the
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band depth to noisy and irregular curve data, creating too many ties between the
sample curves. Moreover, by allowing the delimiting objects to cross, we lose some
of the intuition behind the band depth: The delimiting objects should gather curves
of similar shape within the band, such that curves that are contained in the most
bands are the most representative of the sample. If delimiting objects are allowed
to cross, the shape of the band may in fact differ substantially from the shapes of
the sample objects.

In addition, while the generalized band depth allows for excursions outside a
band, it makes no distinction between randomly scattered excursions and excursions
over a contiguous region. Clearly however, single excursions at random points on
the compact interval T are not as informative as an excursion that persists across
a set of consecutive points. The latter is more likely to demonstrate that the shape
of a curve x differs from those of the band delimiting objects xi1 ,xi2 .

From the above discussion, and the definitions in Section 2, we see that the band
depth (BD) and generalized band depth (GBD) are both invariant with respect
to permutations of the data dimensions, i.e. permutations of t ∈ T . This raises the
question whether the performance of these depths can be improved via extensions
of the depth measures that take the explicit ordering of the data dimensions for
functional data into account. We will explore such extensions of the band depth and
generalized band depths in Sections 3.1 and 3.2. In what follows, we focus on the
band depth where J = 2 delimiting objects form each band, though generalizations
to J > 2 can be made at the expense of an increased computational burden.

3.1. The corrected (generalized) band depth

We begin by revisiting the definition of a delimiting band. Ideally, we want each
band to gather curves of similar shape inside it. To achieve this, we make the
following adjustments to the definition of a band: If two curves cross, the band will
be defined only where one of the curves is the upper curve and the other one is
the lower curve. Hence, for each pair of curves that cross, there are two possible
bands (depending on which curve is consider the upper curve). We will choose the
longest of the two bands. The notions of corrected band depth and its generalized
version are defined similarly to the band depth and the generalized band depth,
but re-defining the band as described above.

We first define the corrected band depth (cBD). Let a(i1, i2) = {t : xi2−xi1 ≥ 0}
and Li1,i2 = λ(a(i1,i2))

λ(T ) (λ is the Lebesgue measure). By exchanging the roles of the
upper (xi1) and lower (xi2) curves we obtain Li2,i1 in a similar fashion. We define
the corrected band Bc as

Bc = I{Li1,i2≥1/2}Bc(xi1 , xi2) + I{Li2,i1>1/2}Bc(xi2 , xi1),

where
Bc(xi1 , xi2) = {(t, y) : t ∈ a(i1, i2), xi1(t) ≤ y ≤ xi2(t), } ,

and similarly for Bc(x2, x1). We also form the corrected graph G(x∗) as

G(x∗) = {(t, x(t)) : t ∈ a(i1, i2)}, if Li1,i2 ≥ 1/2,

G(x∗) = {(t, x(t)) : t ∈ a(i2, i1)}, if Li2,i1 > 1/2.
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We can now define the corrected band depth of a curve x with respect to the sample
X as

(3.1) cBD(x|X) =
(

n

2

)−1 ∑
1≤i1<i2≤n

max(Li1,i2 , Li2,i1)I{G(x∗)∈Bc}

The term max(Li1,i2 , Li2,i1) acts as a weight. cBD will thus down-weigh the contri-
bution of bands delimited by curves that cross, but not as drastically as BD where
such bands would not contribute at all. In the simulation study (section 4) we see
that cBD can substantially improve on the BD when the data is contaminated by
curves with different shapes from the rest of the data.

To allow for random excursions of a curve x outside the corrected band Bc, as is
likely to happen with noisy data and irregular curves, we also propose the corrected
generalized band depth as a more flexible alternative. We define the cGBD of a
curve x with respect to the sample X as

(3.2) cGBD(x|X) =
(

n

2

)−1 ∑
1≤i1<i2≤n

λ(Ac(x; xi1 , xi2))
λ(T )

.

where

Ac(x; xi1 , xi2) = {t ∈ a(i1, i2) : xi1(t) ≤ x(t) ≤ xi2(t)}, if Li1,i2 ≥ 1/2
= {t ∈ a(i2, i1) : xi2(t) ≤ x(t) ≤ xi1(t)}, if Li2,i1 > 1/2.

Hence, the difference between the corrected (generalized) band depth and the (gen-
eralized) band depth is that the band is modified in order to consider only the
proportion of the domain where the delimiting curves define a contiguous region of
non-zero width.

3.2. GBDI and GBDO—accounting for consecutive band excursions

If a curve is only partially contained in a delimiting band, it may still share many
characteristics with the delimiting objects. However, this similarity may not be
optimally measured by the number of excursions outside the band, as with GBD,
but perhaps how these excursions present themselves. We therefore propose two
alternative definitions of the generalized band depth called GBDI and GBDO.

We propose GBDI as a more conservative alternative to GBD. We replace
λ(A(x; xi1 , xi2)) (the number of t ∈ T where x ∈ B(xi1 , xi2)) in equation (2.3) by
a measure CI(x; xi1 , xi2), where

CI(x; xi1 , xi2) = max
tS

{
λ(tS) : min

r=i1,i2
xr(t) ≤ x(t) ≤ max

r=i1,i2
xr(t),∀t ∈ tS

}
,

where tS is a compact interval. That is, CI(x; xi1 , xi2) is the longest consecutive
stretch for which x is inside in the band delimited by xi1 , xi2 (Consecutive Inside).
Given sample functions x1, x2, . . . , xn, the GBDI of a curve x is

(3.3) GBDI(x|X) =
(

n

2

)−1 ∑
1≤i1<i2≤n

CI(x; xi1 , xi2)
λ(T )

.
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With GBDI , only the longest non-contaminated portion of a curve x contributes
to its depth value. If a curve x weaves in and out of a band, the GBD may still
allot a high depth value to x, whereas the GBDI requires that the curve x resides
within the band over a large compact set.

We further propose GBDO, where we penalize band excursions that are consec-
utive. We view a long stretch of a band excursion as evidence that the curve x is not
similar to the band delimiting objects xi1 , xi2 . Thus, in terms of the total number
of band excursions, GBDO is less conservative than GBD. GBDO penalizes devi-
ations that are persistent, and can thus serve as an indicator that the functional
characteristic of curve x differs from the band delimiting objects.

Similar to the GBDI we start by re-defining the GBD band measure
λ(A(x; xi1 , xi2)) by an alternative measure CO(x; xi1 , xi2), where

CO(x; xi1 , xi2) = max
tS

{
λ(tS) : min

r=i1,i2
xr(t) > x(t) or x(t) > max

r=i1,i2
xr(t),∀t ∈ tS

}
,

and tS again denotes a compact set on the interval T . That is, CO(x; xi1 , xi2) is
the longest contiguous region of the curve outside the delimiting band (Consecutive
Outside). The GBDO of curve x with respect to sample x1, . . . , xn is defined as

(3.4) GBDO(x|X) =
(

n

2

)−1 ∑
1≤i1<i2≤n

1 − CO(x; xi1 , xi2)
λ(T )

.

With the depth measure GBDO, a curve x is penalized if the contamination is per-
sistent (CO(x; xi1 , xi2) is large for many bands B(xi1 , xi2)), whereas random and
isolated excursions are largely ignored. Thus, unlike GBD, GBDO makes a distinc-
tion between noise contaminations (random “spikes”) and shape contaminations.

4. Fast computation via data re-sampling

The computational cost of calculating the data depth of objects in a sample X =
{x1, . . . , xn} grows with the sample size at rate

(
n
J

)
. If the number of curves in the

sample of interest is large, the computational burden of data depth based methods
puts a serious limit on their applicability. Moreover, non-parametric testing, clus-
tering and classification frequently involve iterative procedures. For example; Li and
Liu [11] use bootstrap to compute the sampling distribution of the non-parametric
test statistic under the null; the clustering method of Jornsten [10] iterates between
updating the cluster center (deepest object) and the cluster allocation, until conver-
gence. For these computationally challenging non-parametric and robust analyses
to be competitive with standard approaches, in a practical sense, we need to make
each data depth estimation step fast and efficient.

Therefore, we propose a simple method for computing the depth of each curve
in a sample based on re-sampling. This re-sampling based data depth calculation
is also applicable to multivariate data, and can easily be adapted to other notions
of depth.

We begin by dividing the sample x1, . . . , xn into K randomly selected and roughly
equal size parts. We refer to each data part as X1, . . . , XK , where {xi ∈ Xk} is a
set of ∼ n/K objects. For each curve x, we obtain independent depth measures
with respect to each data part:

D(x|X1), . . . , D(x|XK),
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(a) (b)

Fig 3. Re-sampling based rank versus full data rank using (a) BD and (b) cBD.

where D refers to any of the depth measures discussed in this paper (e.g. GBDI).
We finally define the re-sampling based depth of a curve x as

(4.1) Dr(x|X) =
1
K

K∑
k=1

D(x|Xk)

Using simulated data, we investigate the feasibility of replacing the data depth
with the re-sampling based version. We generate 150 curves xi(t) from a model

xi(t) = 4t + ei(t), 1 ≤ i ≤ n,

where ei(t) is a sample from a gaussian stochastic process with zero mean and
covariance function γ1(s, t) = exp{−|t − s|2}. We compute the depth-based ranks
for the sample curves, and the corresponding re-sampling based ranks.

In Figures 3, 4 and 5 we compare the rank-orders induced by the re-sampling
based method to the rank-orders obtained with the full data. For each of b =
1, . . . , B = 50 simulated data sets of size n = 150, we obtain the ranks of each of the
i = 1, . . . , n data objects from the full data: Db(X) = {Db(x1|X), . . . , Db(xn|X)}.

(a) (b)

Fig 4. Re-sampling based rank versus full data rank using (a) GBD, (b) cGBD.
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(a) (b)

Fig 5. Re-sampling based rank versus full data rank using (a) GBDI , and (b) GBDO.

The rank-order is ib(1), . . . , ib(n). We partition the data into K = 10 parts, and
compute the re-sampling based ranks: Db

r(X) = {Db
r(x1|X), . . . , Db

r(xn|X)}. We
sort the re-sampling based ranks using the full data rank order to obtain: Db,∗

r (X) =
{Db

r(xib(1)|X), . . . , Db
r(xib(n)|X)}. If Db,∗

r (X) � {1, . . . , n}, the re-sampling based
ranks closely agree with the full data ranks. In the figures we plot the mean of the
re-sampling based ranks for the 50 simulations against {1, . . . , n}. We also depict
the standard deviations as vertical bars in the figures. If the re-sampling based
depth estimates are competitive with the full data based estimates, we expect the
Db,∗

r (X) to fall on the line y = x in each plot.
The simulations confirm that, with the exception of the band depth, BD, all

re-sampling based depth rank-orders agree closely with the full data depth rank-
orders. The BD re-sampling based estimates are not accurate for the deepest set of
observations since many ties are generated with a smaller sample ∼ n/K. Using the
corrected band depth, cBD, alleviates this problem. For the more extreme observa-
tions, the BD and cBD rank-orders fall on the y = x line. The GBD, cGBD, GBDI

and GBDO all show a strong agreement between the full data and re-sampling
based depth rank-orders. In addition, the standard deviations are quite small. We
obtain similar results in several simulations, including both functional data and
multivariate data (omitted to conserve space).

We thus conclude that the ranks obtained from re-sampling based depths are
near equivalent to the ranks obtained using the full data to compute the depths.
This justifies using the computationally faster re-sampling based versions of the
depths in practical applications.

5. Simulations and illustrations

In this section we compare our new notions of depth, to the band depth and gener-
alized band depth proposed by López-Pintado and Romo [16], on several simulated
data sets. In each simulation, we generate curves from a base model. We then ran-
domly contaminate the data set with six different types of contaminations. The
contamination types include those previously analyzed by Fraiman and Muniz [4]
and by López-Pintado and Romo [16].

The base model is Xi(t) = g(t) + ei(t), 1 ≤ i ≤ n, where ei(t) is a stochastic
gaussian process with zero mean and covariance function γ1(s, t) = exp{−|t−s|1.5}
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and g(t) = 4t, with t ∈ [0, 1]. There are many different ways of defining an outlier
or a contamination within a sample of curves. For instance, a curve could be very
distant from the mean (magnitude outlier) or have a pattern different from the other
curves, e.g. decreasing when the remaining ones are increasing, or very irregular in
a set of smooth curves (shape outlier). We describe the six different contamination
scenarios below (illustrated in Figure 6).

Model 0. All curves come from the base model.

Model 1. An asymmetric contamination is included in Model 1;

Yi(t) = Xi(t) + ciM, 1 ≤ i ≤ n,

where ci is 1 with probability q and 0 with probability 1−q; M is the contamination
size constant.

Model 2. In Model 2 the contamination is symmetric;

Yi(t) = Xi(t) + ciσiM, 1 ≤ i ≤ n,

where ci and M are defined as in Model 1 and σi is a sequence of random variables
independent of ci taking values 1 and −1 with probability 1/2.

Model 3. A partial contamination constitutes Model 3;

Yi(t) = Xi(t) + ciσiM, if t ≥ Ti, 1 ≤ i ≤ n,

and
Yi(t) = Xi(t), if t < Ti,

where Ti is a random number generated from a uniform distribution on [0, 1].

Model 4. Model 4 is contaminated by peaks;

Yi(t) = Xi(t) + ciσiM, if Ti ≤ t ≤ Ti + l, 1 ≤ i ≤ n,

and
Yi(t) = Xi(t), if t /∈ [Ti, Ti + l],

where l = 2/30 and Ti is a random number from a uniform distribution in [0, 1− l].
The contamination only occurs for a short subinterval of length l.

Model 5. We also propose a new model for comparison, where the contamination is
like the one in Model 4, but it will occur at k different points uniformly distributed
in the domain. Specifically, the model is

Yi(t) = Xi(t) + ciσiM, if t ∈ {T1, . . . , Tk},

and Yi(t) = Xi(t) otherwise, where {T1, . . . , Tk} are k random numbers uniformly
chosen from the interval [0, 1].

Model 6. In Model 6 we consider shape contaminations (López-Pintado and Romo
[16]). To include shape outliers, we use the covariance function structure proposed
in Wood and Chan [29] γ(s, t) = k exp{−c|t − s|μ}, with s, t ∈ [0, 1], and k, c,
μ > 0. Different values of k, c and μ change the shape of the generated functions.
For example, increasing μ and k, makes the curves smoother; whereas, increasing
c makes the curves more irregular. Model 6 is a mixture of Xi(t) = g(t) + e1i(t),
1 ≤ i ≤ n, with g(t) = 4t and ei1(t) a gaussian stochastic process with zero
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mean and covariance function γ1(s, t) = exp{−|t − s|2} and Yi(t) = g(t) + e2i(t),
1 ≤ i ≤ n, with ei2(t) a gaussian process with zero mean and covariance function
γ2(s, t) = exp{−|t−s|0.2}. The contaminated Model 6 is Zi(t) = (1−ε)Xi(t)+εYi(t),
1 ≤ i ≤ n, where ε is a Bernoulli variable Be(q) and q is a small contamination
probability; thus, we contaminate a sample of smooth curves from Xi(t) with more
irregular curves from Yi(t).

We analyze the performance of different notions of depth in terms of robustness.
The notions of depth considered are: the band depth with J = 2 and J = 3
(BD2, BD3), the generalized band depth (GBD), the corrected version of the band
depth and generalized band depth (cBD, cGBD), and the generalized band depths
that account for consecutive band excursions, GBDI and GBDO. We compare the
mean and the α-trimmed mean, given by

μ̂n(t) =

n∑
i=1

Yi(t)

n
and m̂α

n(t) =

n−[nα]∑
i=1

Y(i)(t)

n − [nα]
,

where Y(1), Y(2), . . . , Y(n) is the sample ordered from the deepest to the most extreme
(least deep) curve and [nα] is the integer part of nα. The rank-orders are computed
using the re-sampling based depths. For each model, we consider R = 200 repli-
cations, each generating n = 150 curves, with contamination probability q = 0.1
and contamination constant M = 25. The integrated errors (evaluated at V = 30
equally spaced points in [0, 1]) for each replication j are

EIμ(j) =
1
V

V∑
k=1

[μ̂n(k/V ) − g (k/V )]2 and EIα
D(j) =

1
V

V∑
k=1

[m̂α
n(k/V ) − g (k/V )]2 ,

where D refers to one of the data depths (BD2, BD3, cBD, GBD, cGBD, GBDI

or GBDO).
All methods are applied to each simulated data set. Across simulated data sets we

see a lot variability since the contaminations are random. We therefore summarize
the results as follows; (1) For each modeling scenario and each simulated data set
j, we compute the minimum integrated error across all methods

EIα
∗ (j) = min

D=BD2,BD3,cBD,GBD,cGBD,GBDI ,GBDO

EIα
D(j);

(2) We adjust the integrated errors by subtracting the minimum value, such that
the best method has adjusted integrated error 0, EAIα

D(j) = EIα
D(j)−EIα

∗ (j). We
summarize the simulation results in terms of the mean and standard deviation of
the adjusted integrated errors, EAI

We will first examine each simulation model separately, and then discuss the
overall results at the close of the section.

Model 0 generates uncontaminated data. From Table 1 we see that the mean is
the best estimate, as expected. The generalized band depths (GBD, cGBD, GBDI

and GBDO) perform better than the band depths (BD2, BD3 and cBD) in this
setting, but all of the robust estimates perform reasonably well on uncontaminated
data. Some loss of estimation efficiency is unavoidable since a fixed trimming factor
α = 0.2 was used.

Simulations settings 1 through 3 correspond to simple contaminations, i.e. a
positive or negative mean offset, or a partial mean offset contamination. In this
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Table 1

Simulation results for the seven modeling scenarios. Mean and standard deviations of the
adjusted integrated errors (subtracting the integrated error of the winning method for each

simulation), with R = 200 replications, q = 0.1 and α = 0.2.

M0 M1 M2 M3 M4 M5 M6
Mean 0.002 6.600 0.463 0.204 0.036 0.063 0.012

(0.003) (3.319) (0.606) (0.278) (0.027) (0.025) (0.012)
BD2 0.007 4.864 0.286 0.204 0.021 0.036 0.008

(0.009) (3.832) (0.395) (0.278) (0.019) (0.028) (0.010)
BD3 0.007 3.916 0.163 0.053 0.012 0.014 0.005

(0.009) (3.189) (0.227) (0.119) (0.014) (0.018) (0.005)
cBD 0.009 5.353 0.277 0.091 0.006 0.003 0.005

(0.012) (4.137) (0.365) (0.274) (0.011) (0.008) (0.010)
GBD 0.005 0.085 0.005 0.050 0.047 0.074 0.013

(0.005) (0.286) (0.008) (0.074) (0.034) (0.034) (0.010)
cGBD 0.004 0.117 0.005 0.048 0.046 0.074 0.013

(0.005) (0.381) (0.008) (0.075) (0.034) (0.033) (0.010)
GBDI 0.005 0.260 0.007 0.055 0.043 0.043 0.003

(0.005) (0.619) (0.010) (0.072) (0.031) (0.026) (0.006)
GBDO 0.005 0.001 0.003 0.060 0.049 0.083 0.022

(0.007) (0.003) (0.007) (0.090) (0.036) (0.037) (0.022)

setting we expect only marginal gains from the use of shape sensitive or restrictive
depths such as cBD and GBDI . On the other hand, the data is noisy so we expect
that cGBD and GBDO should perform well.

For the case of asymmetric contamination (Model 1), we find that GBDO outper-
forms the other methods. The trimming factor is α = 0.2, while the contamination
probability is q = 0.1. Thus, for many of the simulated data sets, some of the
uncontaminated curves will be trimmed. The band depths (BD2, BD3 and cBD)
all struggle in this setting. The uncontaminated curves frequently cross, leading to
too many ties in the rank-order. While the GBD, cGBD and GBDI perform much
better than the band depths, they are not competitive with GBDO. The source of
the problem lies in the asymmetry of the contaminations, and that the magnitude
outliers contribute to the computation of the depth values of all other observations
(see Figure 6). Since GBD, cGBD and GBDI are more restrictive than GBDO,
these three depth measures trim more curves from the lower portion of the un-
contaminated set than from the upper portion, creating a bias in the trimmed
mean estimate. This suggests that perhaps an iterative procedure, were outliers are
dropped one at a time and the data depths re-estimated after each step, would
perform better.

As expected, when the contamination is symmetric (Model 2), GBD, cGBD and
GBDI perform almost as well as GBDO. The trimming of the uncontaminated data
set is now mostly symmetric, and the trimmed mean estimates essentially unbiased.
The band depths are not competitive.

Model 3 generates data objects that have been partially contaminated. This
symmetric contamination is easily identified by GBD, cGBD, GBDI and GBDO.

Simulation settings 4 through 6 can loosely be seen as shape contaminations
(Figure 6). Here, we expect the cBD and GBDI to perform well, whereas the
performances of the less restrictive GBD, cGBD and GBDO may deteriorate.

Indeed, for Model 4 (peak contamination), cBD is the best method, followed
by BD3 and BD2. cBD improves on the band depths since the band correction
accounts for curves that cross. The generalized band depths (GBD, cGBD, GBDI

and GBDO) do not perform well in this setting, even occasionally resulting in an
integrated error exceeding that of the mean.
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Fig 6. Curves generated from Model 1: asymmetric contamination (top left), Model 2: sym-
metric contamination (top right), Model 3: partial contamination (middle left), Model 4: peaks
contamination (middle right), Model 5: uniform contamination (bottom left), Model 6: shape con-
tamination (bottom right). The mean curve is depicted in red, and the trimmed mean in green in
all cases.
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In Model 5 we allow for multiple contaminations of each curve. The performance
of the GBD, cGBD and GBDO deteriorates since these short excursions are not
recognized as a contamination. GBDI performs a little better, since the uniform
contamination leads to the contaminated curves residing in the bands for only
short consecutive stretches. Still, GBDI is not competitive with the band depths
(though better than the mean). The best method is again the cBD, followed by the
computationally expensive BD3.

In Model 6 (shape contamination), a set of smooth curves are contaminated by
a set of irregular curves. We expect the shape sensitive methods (band depths,
GBDI) to excel in this setting. Indeed, the GBDI is the best method, followed
closely by cBD and BD3. Again, the less restrictive depths (GBD, cGBD and
GBDO) do not perform well in this setting.

In the first three simulations (Models 1 through 3), the generalized band depths,
with GBDO in the lead, outperform the band depths. The contaminations in Models
1 through 3 are essentially magnitude outliers, and persistent across the compact
interval T . In simulations from Models 4 through 6, the contaminations are more
subtle (random peaks, or a different covariance structure). In such settings, the less
restrictive data depths, that discard short excursions as non-informative, perform
poorly. The band depths, with the corrected band depth in the lead, as well as the
GBDI , perform well in this setting.

It is clear then, that one depth cannot be defined as the “best” across all possible
scenarios. Therefore, in practise one needs to consider the type of contaminations
to screen against. We recommend that several depths are applied to each data set,
and the outliers identified by each depth measure examined graphically. From the
above simulation results we see that GBDO and cBD are two candidate measures
that are fast and easy to compute, and would highlight different structures in the
data.

To illustrate the screening properties of the depth measures, we apply six no-
tions of depth to a data set consisting of the daily temperature in 35 differ-
ent Canadian weather stations for one year (Ramsay and Silverman [22]). The
original data was smoothed using a Fourier basis with sixty five elements. In
Figure 7 we show the mean and the median (deepest) curve identified by the
BD, cBD, GBD, cGBD, GBDI and GBDO. In addition, in each figure we high-
light the 20% least deep curves in green (wide lines). From the above discussion,
and the definitions in Sections 2 and 3, we know that GBD, cGBD and GBDO are
the least restrictive depths. These depths will largely identify magnitude outliers as
the least deep. In Figure 7 we see that this is indeed the case for the temperature
data set. In contrast, BD, cBD and GBDI are the most restrictive, and will iden-
tify shape outliers. Temperature profiles that are flatter than the rest of the data,
or irregular with large, local fluctuations, are identified by these depths.

6. Discussion

We introduce several extension of the band depth for functional data. These new
notions of depth account for the explicit ordering of the data dimensions inherent
to functional data. We find that a simple alteration of the definition of a delimiting
band, a band correction, can improve on the previously proposed band depth. In
addition, a differential treatment of band excursions that are consecutive versus
isolated, can boost the performance of the generalized band depth.

While two of our proposed extensions, the corrected band depth cBD and the
GBDO, improve on the band depth and the generalized band depth respectively, we
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Fig 7. Comparison of the 6 notions of depth. In each figure, we depict the mean curve (red),
and median curve (black). The 20% least deep curves are plotted in green (wide lines), whereas
the 80% most central curves are depicted in cyan (thin lines). Top panel: BD and cBD. Middle
panel: GBD and cGBD. Bottom panel: GBDI and GBDO.
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cannot identify a “best” data depth for functional data that uniformly dominates
the other measures across all forms of contamination. The GBDO is the most
competitive in simple contamination scenarios (magnitude outliers), whereas the
cBD is more competitive when the samples are contaminated by curves of a different
structure or shape.

Our recommendation is that a set of data depths are used to screen the data for
contaminations. A graphical examination of the data set can elucidate the potential
outliers or extreme observations. One must make a case-by-case decision as to which
functional shapes constitute outliers in a particular data set.

We propose a fast and simple re-sampling based data depth calculation proce-
dure. The rank-orders induced by the re-sampling based method closely agree with
the rank-orders induced by the full data. With the computationally efficient re-
sampling based method, the new notions of depth can be used as building blocks
in non-parametric functional analysis such as clustering and classification.
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[17] López-Pintado, S. and Romo, J. (2006b). Depth-based classification for
functional data. In Data Depth: Robust Multivariate Analysis, Computational
Geometry and Applications. Dimacs Series in Discrete Mathematics and The-
oretical Computer Science 72 (R. Y. Liu, R. Serfling and D. L. Souvaine, eds.).
Amer. Math. Soc., Providence, RI. In press.
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