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Forecasting unstable processes

Jin-Lung Lin1 and Ching-Zong Wei2

Academia Sinica

Abstract: Previous analysis on forecasting theory either assume knowing the
true parameters or assume the stationarity of the series. Not much are known
on the forecasting theory for nonstationary process with estimated parameters.
This paper investigates the recursive least square forecast for stationary and
nonstationary processes with unit roots. We first prove that the accumulated
forecast mean square error can be decomposed into two components, one of
which arises from estimation uncertainty and the other from the disturbance
term. The former, of the order of log(T ), is of second order importance to
the latter term, of the order T. However, since the latter is common for all
predictors, it is the former that determines the property of each predictor.
Our theorem implies that the improvement of forecasting precision is of the
order of log(T ) when existence of unit root is properly detected and taken
into account. Also, our theorem leads to a new proof of strong consistency of
predictive least squares in model selection and a new test of unit root where
no regression is needed.

The simulation results confirm our theoretical findings. In addition, we find
that while mis-specification of AR order and under-specification of the number
of unit root have marginal impact on forecasting precision, over-specification
of the number of unit root strongly deteriorates the quality of long term fore-
cast. As for the empirical study using Taiwanese data, the results are mixed.
Adaptive forecast and imposing unit root improve forecast precision for some
cases but deteriorate forecasting precision for other cases.

1. Introduction

Forecasting future observations is one of the major purpose of building a time
series model. Even for the purpose of time series controlling, forecasting provide
the essential basis. For this purpose, autoregressive (AR) models are widely used
for their simplicity. For an AR(p) process,

(1) yt = β1yt−1 + β2yt−2 + · · · + βpyt−p + εt

where φ(z) = 1 − β1z − · · · − βpz
p the characteristic polynomial determines the

properties of the series. yt is called stationary or stable if all roots of φ are outside
the unit circle, unstable or nonstationary if some roots of φ are on the unit circle
and explosive if some roots of φ are inside the unit circle. Previous analysis on
forecasting theory either assume knowing true β′

s or only consider the stationary
cases. For examples, Ing [8, 9] and Bhansali [1, 2] analyze the multistep prediction
of stationary AR processes while Ing [7] derives the mean squares prediction errors
of the least squares predictors in random walk model. Not much are known on
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the forecasting theory for unstable process with estimated parameters. This paper
investigates the recursive least square forecast for stable and unstable processes.

Let ŷt be the forecast of yt based upon information up to t−1. If one is interested
in one-period forecast, (yt− ŷt)2 is the cost to be minimized. However, there are two
situations where the accumulated cost function,

∑t
k=1(yk−ŷk)2 is more appropriate.

First, in the sequential forecast case, (see Goodwin and Sin [6]) the forecaster are
updated sequentially over many periods and the accumulated cost function is the
target to be minimized. Second, for a single realization of time series, the averaged
accumulated cost function is often used as the yardstick to evaluate the out-of-
sample forecasting performance of alternative forecasters.

Ing [7] advocated adopting the accumulated cost function
∑T

t=1 E(yt − ŷt)2 over
the one-period expected loss function E(yT+1−ŷT+1)2. For an AR(1) process, these
two quantities are respectively:

1
T − 2

T∑
t=3

E(yt − ŷt)2 = σ2 +
2σ2 log(T )

T
+ o

(
log(T )

T

)

E(yT+1 − ŷT+1)2 = σ2 +
2σ2

T
+ o

(
1
T

)

when true β1 = 1. In other words, the efficiency loss for not taking the unit root
into consideration is greater for the accumulated cost function than the one-period
cost function. See also Ing and Wei [11]. It is worth mentioning that Rissanen
[14] predictive least square (PLS) for model selection built upon accumulated cost
function minimization. See also Wei [18].

Under the assumption that E(ε2t |Ft−1) = σ2 a.s. for all t, where Ft−1 is the sigma
field generated by {xs, s ≤ t − 1}, then it can be shown that under appropriate
assumptions that 1

T

∑T
t=1(yt − ŷt)2 −→ σ2 a.s. But by Chow [4], it is seen that

T∑
t=1

(yt − ŷt)2 =
T∑

t=1

ε2t + CT (1 + o(1)) a.s. on the set {CT → ∞}

T∑
t=1

(yt − ŷt)2 =
T∑

t=1

ε2t + CT (1 + O(1)) a.s. on the set {CT < ∞}

where

CT =
T∑

t=1

(yt − ŷt − εt)2

While
∑T

t=1 ε2t is larger in order than CT , it is common for all forecasters and
cannot be removed. Hence CT becomes a more important quantity when evaluating
the performance of alternative forecasters.

Let β̂t be the least square estimate of β

β̂t = [
t∑

k=1

Y k−1Y
′
k−1]

−1 t∑
k=1

Y ′
k−1yk

where Yt = {y1, . . . , yt}′, then ŷt = β̂′
t−1Yt−1 is the least square prediction of yt at

time t − 1.
Let

φ(z) = (z − 1)a(z + 1)bΠl
k=1(z

2 − 2 cos θkz + 1)dkπ(z)
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where all roots of π(z) are all outside the unit circle. Wei [17] proves that,

CT → (p + a2 + b2 + 2
l∑

k=1

d2
k)σ2 log(T ) in probability.(2)

In other words, when φ(z) has multiple unit roots the accumulated loss increase not
linearly with the number of unit roots but at the rate of the square of the number
of unit roots.

In this paper, we prove that when φ(z) has no complex roots, the convergence
in (2) can be improved to be almost surely. This result could lead to a new proof
of strong consistency of PLS in AR model selection. It is also conjectured that the
result of almost surely convergence hold for the case of complex unit roots. We
conduct several simulation experiments to assess the convergence result for various
sample sizes. In addition, we also consider the impact of near unit root and model
mis-specification on multi-step forecasting. Finally, we apply our methods to six real
macroeconomic series in Taiwan. Forecasting performance of various forecasters and
adaptive forecaster are investigated.

The rest of the paper is organized as follows. The proof of the main theorem
is put in Section 2. Section 3 illustrates implications and applications of our main
theorem. Section 4 discusses multi-step and adaptive forecast. Monte Carlo results
are reported in Section 5 and Section 6 summarizes the empirical results. Section 7
concludes.

2. Main theorem

Assume that εt are i.i.d. random variables with E(εt) = 0 and 0 < E(ε2t ) = σ2 < ∞.
Let Xt = (xt−1, . . . , xt−p)′, ST =

∑T
t=1 εt and TT = (−1)T

∑T
t=1(−1)tεt = εt +

(−1)TT−1.

Lemma 1. Assume that Xt+1 = AXt + εt , where εt = (εt, 0, . . . , 0)′ and the
eigenvalues of A are all inside the unit circle. Then

lim
T→∞

∑T
t=1 XtSt√

T
∑T

t=1 S2
t

= 0 a.s.

and

lim
T→∞

∑T
t=1 XtTt√

T
∑T

t=1 T 2
t

= 0 a.s.

Proof. It is known from Lai and Wei [12] [pages 363 and 364] that

lim
T→∞

1
T

T∑
t=1

XtX
′
t = Σ a.s.(3)

where Σ is a positive definite matrix,

lim sup
T→∞

∑T
t=1 S2

t

T 2 log log(T )
=

8σ2

π2
a.s.(4)
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and

lim inf
T→∞

∑T
t=1 S2

t

T 2/ log log(T )
=

σ2

4
a.s.(5)

Let ‖u‖ denote the Euclidean norm of a k-dimensional vector u = (u1, . . . , uk)′,

i.e., ‖u‖2 =
∑k

i=1 u2
i . By (3), ‖XT ‖2

T → 0 a.s. and in turn we have that

0 ≤ X ′
T (

T∑
t=1

XtX
′
t)

−1XT ≤ ‖XT ‖2

λmin(
∑T

t=1 XtX
′
t)

=
‖XT ‖2

/T

λmin( 1
T

∑T
t=1 XtX

′
t)

→ 0 a.s.

and

X ′
T (

T∑
t=1

XtX
′
t)

−1XT → 0 a.s.(6)

where λmin(A) denotes the minimal eigenvalue of matrix A.
Furthermore, by the law of iterative logarithm,

lim sup
T→∞

S2
T

2T log log T
= σ2 a.s.

Hence (5) implies that

S2
T∑T

t=1 S2
t

= O

(
T log log T

T 2/ log log T

)

= O

(
(log log T )2

T

)
(7)

= o(1) a.s.

Now, let

ZT =
∑T

t=1 XtSt

(T
∑T

t=1 S2
t )

1/2
.

Then

ZT − ZT−1 = ZT −
∑T−1

t=1 XtSt

(T
∑T

t=1 S2
t )1/2

− ZT−1

(
1 − (

(T − 1)
∑T−1

t=1 S2
t

T
∑T

t=1 S2
t

)1/2

)

=
XT ST

(T
∑T

t=1 S2
t )1/2

− ZT−1

(
1 − (

T − 1
T

− T − 1
T

S2
T∑T

t=1 S2
t

)1/2

)

=
XT ST

(T
∑T

t=1 S2
t )1/2

− ZT−1 o(1), by (7)(8)

= o(1) − o(1), since sup
T

‖ZT ‖ ≤ { 1
T

T∑
t=1

‖Xt‖2}
1/2

a.s.

= o(1)
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But,

T∑
t=1

XtSt =
T∑

t=1

(AXt−1 + εt)St

= A

T∑
t=1

Xt−1St−1 + A

T∑
t=1

Xt−1εt +
T∑

t=1

εtSt−1 +
T∑

t=1

ε2t

= A

T∑
t=1

Xt−1St−1 + o((
T∑

t=1

‖Xt−1‖2)1/2(log
T∑

t=1

‖Xt−1‖2)
1+σ
2 )

+ o((
T∑

t=1

S2
t−1)

1/2(log
T∑

t=1

S2
t−1)

1+σ
2 ) + O(T ) a.s.

= A(
T∑

t=1

Xt−1St−1) + o(T 1/2(log T )
1+σ
2 )

+ o((
T∑

t=1

S2
t−1)

1/2(log T )
1+σ
2 ) + O(T )

This implies that

ZT = AZT−1(1 + o(1)) + o(1) a.s.(9)

Combining (8) and (9), we have that

ZT−1 − AZT−1 = o(1) a.s.(10)

Therefore, any limit point z of {zT } would satisfy

Z − AZ = 0(11)

Since 1 is not an eigenvalue of A, Z = 0. Using the same method one can prove
that ∑T

t=1 XtTt

(T
∑T

t=1 T 2
t )1/2

= 0 a.s.

This proves Lemma 1.

Lemma 2. If E|εα
t | < ∞ for some α > 2, then

lim
T→∞

∑T
t=1 StTt√∑T

t=1 S2
t

∑T
t=1 T 2

t

= 0 a.s.

Proof. Note that T̃T = (−1)T TT =
∑T

t=1(−1)T εt. Using theorem 3.2 of Phillip in
page 234 of Eberlein and Taqqu [5], (4) and (5) hold if we replace St by Tt.

Therefore,

T 2
T∑T

t=1 T 2
t

=
T̃ 2

T∑T
t=1 T̃ 2

t

→ 0 a.s.
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Let

uT =
∑T

t=1 StTt√∑T
t=1 S2

t

∑T
t=1 T 2

t

.

Then

uT − uT−1 =
ST TT√∑T

t=1 S2
t

∑T
t=1 T 2

t

+ uT−1(

√√√√∑T−1
t=1 S2

t

∑T
t=1 T 2

t∑T
t=1 S2

t

∑T
t=1 T 2

t

− 1)

(12)
= o(1) a.s.

But

T∑
t=1

StTt =
T∑

t=1

(St−1 + εt)(−Tt−1 + εt)

= −
T∑

t=1

St−1Tt−1 +
T∑

t=1

St−1εt −
T∑

t=1

Tt−1εt +
T∑

t=1

ε2t

= −
T−1∑
t=1

StTt + o((
T∑

t=1

S2
t−1)

1/2)(log(
T∑

t=1

S2
t−1))

+ o((
T∑

t=1

T 2
t )1/2(log(

T∑
t=1

T 2
t ))) + O(T ) a.s.

Therefore,

uT = −
∑T−1

t=1 StTt√∑T
t=1 S2

t

√∑T
t=1 T 2

t

+ o(
log(

∑T
t=1 S2

t−1)√∑T
t=1 T 2

t

) + o(
log(

∑T
t=1 T 2

t )√∑T
t=1 S2

t

)

+o(
T√∑T

t=1 T 2
t

∑T
t=1 S2

t

)

(13)
= −UT−1(1 + o(1)) + o(1) a.s.

= −uT−1 + o(1) a.s.

Combining (12) and (13), since

uT = o(1) a.s. uT −→ 0 a.s.

Now, we are ready to state our main result.
Let

yt = β1yt−1 + · · · + βpyt−p + εt(14)

be an AR(p) model with

φ(z) = 1 − β1z − · · · − βpz
p(15)

= (1 − z)(1 + z)Ψ(z)(16)

where Ψ(z) = 1−Ψ1z − · · ·−Ψqz
q is a polynomial of order q = p− 2 which has all

roots outside the unit circle.
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Theorem 1. Assume that the AR(p) model (14) satisfies (16). If {εt} is a se-
quence of i.i.d. random variables with E|εt|α < ∞, where α > 2, and y0, . . . , y1−p

is independent of {εt} then

lim
T→∞

1
log T

log det(
T∑

t=1

yty
′
t) = (p + 2) a.s.(17)

where y′
t = (yt, . . . , yt−p+1).

Proof. By Chan and Wei [3] there exists a non-singular p × p matrix Q such that
Qyt = (ut, vt, x

′
t), where

xt = (xt−1, . . . , xt−q)′,
ut = ut−1 + εt,

vt = −vt−1 + εt and
xt = Ψ1xt−1 + · · · + Ψqxt−q.

Therefore, if we let zt = Qyt,

det(
T∑

t=1

yty
′
t) = det[Q−1

T∑
t=1

ztz
′
tQ

−1] =
det(

∑T
t=1 ztz

′
t)

(det(Q))2
.

To show (17), it is sufficient to show

lim
T→∞

1
log T

log det(
T∑

t=1

ztz
′
t) = (p + 2) a.s.(18)

Let

GT =


 (

∑T
t=1 u2

t )
−1/2 0 0

0 (
∑T

t=1 v2
t )−1/2 0

0 0 T−1/2Iq


 ,

where Iq is the q × q identity matrix.
Then

GT

T∑
t=1

ztz
′
tGT =


 1 aT b′T

aT 1 c′T
bT cT ΓT


 ,

where

aT =
(
∑T

t=1 utvt)

[(
∑T

t=1 u2
t )(

∑T
t=1 v2

t )]1/2
,

bT =
∑T

t=1 utxt

(T
∑T

t=1 u2
t )1/2

,

cT =
∑T

t=1 vtxt

(T
∑T

t=1 v2
t )1/2

,

and

ΓT =
1
T

T∑
t=1

xtx
′
t.
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Let

A =
(

Ψ1 . . . Ψq

0 Iq−1

)
.

Then A has all eigenvalues inside the unit circle and xt = Axt−1 + εt. Therefore,
there exist a non-singular matrix Γ such that

lim
T→∞

ΓT = Γ a.s.

Furthermore, by Lemma 1 and 2,

lim
T→∞

aT = 0,

lim
T→∞

cT = 0 a.s.

Consequently,

lim
T→∞

GT

T∑
t=1

ztz
′
tGT =


 1 0 0′

0 1 0′

0 0 Γ




Since Γ is nonsingular, (18) is proved if

log det(G−2
T ) = log(

T∑
t=1

u2
t ) + log(

T∑
t=1

v2
t ) + q log T

∼ (p + 2) log T a.s.(19)

By (4) and (5) of Lemma 1,

lim
T→∞

1
log T

T∑
t=1

u2
t = 2 a.s.

Similar result holds for {vt}. Therefore,

log det(G−2
T ) ∼ (4 + q) log T = (p + 2) log T a.s.

This completes our proof.

Remark 1. Theorem 3 of Wei [17] shows that under similar assumptions as in our
analysis,

CT ∼ σ2 log det(
T∑

t=1

yty
′
t) a.s.(20)

Thus,

CT ∼ (p + 2)σ2 log(T ) a.s.

Remark 2. Theorem 1 and Remark 1 have an immediate implication for model
selection and can greatly simplify the proof of Theorem 3.5 of Wei [18]. Let p∗

be known and p0 = max{j : βj �= 0, 1 ≤ j ≤ p∗} as in (1). Denote PLST (p) =∑T
t=t0

(yt − ŷt)2 where ŷt is the forecast of yt based upon information up to t-1
using the AR(p) model as in (1) and PLST (p̂T ) = inf{PLST (j) : 0 ≤ j ≤ p∗}. Wei
[18] showed that for both cases of underspecifying and overspecifying AR order (j),
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P(PLST (j) > PLST (p0) eventually) = 1. Thus, P[p̂T = p0 eventually] = 1.
For the case of overspecification, Wei decomposed φp(z) into a sum of a unit root
component and a stable component, and worked out the differnece of CT between
the true and the overspecified models. Our results can greatly simplify the proof.
Let C

(j)
T =

∑T
t=1(yt − ŷ

(j)
t − εt)2 where ŷ

(j)
t is the forecast of yt at t − 1 using

the AR(j) model. For the case of overspecification, βj = 0,∀j > p0. Applying
Theorem 1 and Remark 1, C

(j)
T → (j+2)σ2 log(T ) > (p0+2)σ2 log(T ) = C

(p0)
T a.s.

As for the case of underspecification, l < p0, the desired result, P[PLST (l) >
PLST (p0) eventually] = 1, is a direct consequence of Theorem 3.2 of Wei [18]
since βp0 �= 0. Thus, P[p̂T = p0 eventually] = 1.

3. Implications and applications of the main theorem

We have just proved that for an AR(p) process, CT = pσ2 log(T ) if it is stationary
and CT = (p + 1)σ2 log(T ) if there is an root of 1. Our theorem implies that if
the existence of unit root is properly detected and unit root constraint is imposed
in forming the forecast, then CT = (p − 1)σ2 log(T ). That is, for model with unit
root, estimation is done for the differenced series rather than level of the series.
By so doing, we reduce CT by 2σ2 log(T ) which could be substantial for large T

and σ2. However, it should be noted that
∑T

t=1 (yt − ŷt)
2 is not severely affected

by existence of unit root since CT , which is of the order of log(T ), is dominated
by

∑T
t=1 ε2t , which is of the order T . This result is natural since it is the long term

forecast and not the short term forecast that unit root has strong impact. These
findings are further confirmed in our simulation study in Section 5.

In addition, our theorem implies that for AR(p) processes with root equal to or
less than 1 in magnitude, as T −→ ∞,

log det
1

log(T )
(

T∑
t=1

yty
′
t) −→ c a.s.(21)

where c = (p + 1) if there is a root of 1 and c = p if all roots are less than one.
Equivalently,

d̂T = [
1
T

log det
T∑

t=1

yty
′
t − p]

1/2

−→ d, a.s.(22)

where d is 1 if there is a root of 1 and 0 if there is no unit root. Note that if p is
unknown but r ≥ p is given, (22) is still true with r replacing p in (22) and in the
definition of yt in (17). In other words, our theorem proves that d̂T can be used as a
test statistic for unit root. This issue will be further investigated in future research.

4. Multi-step and adaptive forecast

Our previous analysis focuses on 1-step forecast and there are cases when multiple-
step forecast is the main concern. It is conjectured that our results can be extended
to multi-step forecast but the issue will be pursued elsewhere. Instead, we shall
concentrate our discussion on the relationship between model misspecification and
adaptive forecast.
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By (1), we have

yt+h = β1yt+h−1 + · · · + βpyt+h−p + εt+h(23)

and

ŷt+h = β̂1ŷt+h−1 + · · · + β̂pŷt+h−p(24)

where ŷt+h−k = yt for h ≤ k. So, (24) can be recursively solved in the order of
ŷt+1, ŷt+2, . . . , ŷt+h. This is the conventional Box-Jenkins multi-step forecaster.

Another way of generating the multi-step forecast is to solve the model that
minimizes the multi-step forecast error and then use it to form multi-step forecast
(see Ing [8], Bhansali [2], Weiss [19], and Tiao and Tsay [15]). More specifically, the
h-step forecast error et(h) at time t is

et(h) = εt+h + Ψ1εt+h−1 + · · · + Ψh−1εt+1

where Ψi is defined by [1−βB−· · ·−βpB
p]−1 = Ψ0 +Ψ1B+ · · · . The cost function

to be minimized is

C(h) =
T−h∑
t=1

e2
t (h)(25)

Note that for different h different models are used and this explains the name
’adaptive’ forecast. Solving (25) involves nonlinear optimization as Ψi is a nonlinear
function of (β1, . . . , βp). In practice, approximate linear model is used. That is, the
following regression is performed

yt = a1yt−h + a2yt−h−1 + · · · + apyt−h−p+1 + bt

and

ŷt+h = a1yt + a2yt−1 + · · · + apyt−p+1

The idea behind the adaptive forecast is that if the model is misspecified, that
is, p is mistakenly chosen, then this mistake will be amplified radically for the
long term forecast. Adaptive forecast could avoid this compounding impact. It is
reasonable to expect good performance of Box-Jenkins forecaster for the correctly
specified model and good performance of adaptive forecaster for misspecified model.

Ing, Lin and Yu [10] propose a predictor selection criterion to choose the best
combination of prediction models (AR lags) and prediction methods (adaptive or
plug-in). When there is only one unit root, the proposed method is proved to be
asymptotically efficient in the sense that the predictor converges with probability
one to the optimal predictor which has minimal loss function.

5. Monte Carlo experiments

To assess the theoretical results obtained in previous section and acquire experience
about empirical analysis in the sequel, we conduct two Monte Carol experiments.
The first is to investigate the finite sample properties of CT in theorem 1 and the
second on forecast comparison between alternative forecasters. For both cases, we
generate data from the following four models:
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• Model 1: (1−0.5B)2(1−B)yt = εt or yt = 2yt−1−1.25yt−2+0.25yt−3+εt.
Roots are 0.5, 0.5 and 1.0 respectively.

• Model 2: (1 − 0.5B)2(1 − .99B)yt = εt or yt = 1.99yt−1 − 1.24yt−2 +
0.2475yt−3 + εt

Roots are 0.5, 0.5 and 0.99 respectively.
• Model 3: (1 − 0.5B)2(1 − .95B)yt = εt or yt = 1.95yt−1 − 1.2yt−2 +

0.2375yt−3 + εt

Roots are 0.5, 0.5 and 0.95 respectively.
• Model 4: (1 − 0.5B)3yt = εt or yt = 1.5yt−1 − 0.75yt−2 + 0.125yt−3 + εt

All roots are 0.5.

σ2 is set to be 1 for all models.

5.1. Monte Carlo experiment on CT

The number of replications are 1000 for each experiment. For each, realization, 10
sets of samples are drawn from each model with sample size, T, varying from 100,
200 to 1000. For each sample, starting from t = t0(=10), the model parameters are
estimated and is then used to forecast t+1. Then we reestimate the model using
sample from 1 to t + 1 and forecast t + 2. The process is repeated until when T − 1
sample is used to estimate the model and then used to forecast yT . The forecast
mean square error is then summed from t0 + 1 to T to obtain ĈT . Finally, we
compute the averaged ĈT obtained from 1000 replications. In other words,

ĈT =

∑1000
i=1

∑T−1
t=t0

(ŷi,t+1 − yi,t+1)2

(1000)(T − t0)
(26)

In addition, for each model, we repeat the procedure above with the constraint
that one of the root is equal to one. The results are summarized in Table 1. As one
can easily see, over 40 millions regressions have to performed to obtain this table
and usage of updating formula can significantly reduce the computation burden.
In Table 1, the first column is sample size. Results for first model with 0 unit root
(d = 0) and 1 unit root (d = 1) are put in second and third columns. Results for
the other three models are put in columns 4 to 9. Our theory predicts that: (1)

Table 1

CT for simulated data

Roots are

0.5,0.5,1.0 0.5,0.5,0.99 0.5,0.5,0.95 0.5,0.5,0.5

T d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1
100 23.47 12.33 23.47 12.33 23.80 15.36 21.07 23.22
200 27.55 14.71 27.55 14.71 27.71 20.19 24.28 37.60
300 29.90 16.06 29.90 16.06 29.83 23.90 26.09 50.86
400 31.49 17.00 31.49 17.00 31.21 27.17 27.32 63.57
500 32.75 17.73 32.75 17.73 32.26 30.27 28.29 75.96
600 33.76 18.30 33.76 18.30 33.09 33.12 29.04 88.12
700 34.62 18.79 34.62 18.79 33.80 36.01 29.69 100.41
800 35.38 19.22 35.38 19.22 34.40 38.89 30.26 112.72
900 35.99 19.60 35.99 19.60 34.94 41.65 30.76 124.80

1000 36.55 19.94 36.55 19.94 35.42 44.37 31.21 136.93

β 5.2849 2.8583 5.2849 2.8583 5.1947 5.2064 4.5635 13.8536
R2 0.9988 0.9902 0.9988 0.9902 0.9920 0.6315 0.9930 0.4471
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Table 2

MSE for simulated Data

Roots are

0.5,0.5,1.0 0.5,0.5,0.99 0.5,0.5,0.95 0.5,0.5,0.5

T d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1
100 117.81 106.92 117.81 106.92 118.33 110.06 115.59 118.17
200 227.10 214.61 227.10 214.61 227.36 220.24 224.11 237.66
300 334.88 321.53 334.88 321.53 334.97 329.57 331.53 356.59
400 441.30 427.33 441.30 427.33 441.27 437.73 437.66 474.10
500 547.43 533.00 547.43 533.00 547.19 545.69 543.55 591.33
600 653.42 638.61 653.42 638.61 653.01 653.67 649.36 708.93
700 759.51 744.24 759.51 744.24 758.92 761.63 755.18 826.46
800 865.20 849.45 865.20 849.45 864.35 869.13 860.55 943.18
900 970.92 954.95 970.92 954.95 970.01 976.96 966.16 1060.21

1000 1076.76 1060.56 1076.76 1060.56 1075.72 1084.89 1071.91 1177.63

ĈT increases linearly with log(T − t0) and (2) ĈT without unit root constraint is 2
times ĈT with unit root constraint.

We run a simple regression of ĈT against log(T − t0) without intercept for each
model and report the regression coefficients and R2 in the last row of Table 1.
For column 2 and 3 of the table, the regression coefficients are 5.2849 and 2.8583
respectively while R2 are greater than 0.99 for both cases. In summary, model 1
conforms the theoretical results.

As for model 2, one of the root is 0.99. Since it is the 1-step that is the main
concern here, the result is almost the same with model 1. This is consistent with
the findings of Lin and Tsay [13] that unit root or not does not matter much for
short term forecast.

For model 3, the largest root is 0.95 which is not close to 1 enough. Imposing
unit root constraint produces much larger ĈT and the stable relationship between
ĈT and log(T ) deteriorates greatly as is seen from poor R2. This can be justified
by the fact that differencing a stationary process produce a unit root in the MA
component which can not be approximated by high order AR. The situation become
much worse for model 4 where all roots are equal to 0.5.

For the purpose of comparison, we also report the corresponding conventional
MSE (

∑T
t=1(yt − ŷt)2) for the same 4 models above in Table 2. We observed from

the table that contrary to the case for ĈT , the MSE for d = 0 is about the same
as for d = 1. This confirms our previous analysis that CT , though an important
quantity for determining the quality of forecast, is of second order importance as
compared to

∑T
t=t0+1 ε2t . For 1-step forecast the distinction between unit root and

near unit root does not matter much.

5.2. Monte Carlo experiment on short-term and long-term forecast
comparison

This simulation is designed to evaluate the short-term and long-term forecasting
performance of alternative forecasters. The number of replications are again 1000.
For each replication, 400 observations are generated from the four models above.
The first 300 observations are reserved for estimation and then used to produce 1 to
60 steps forecast. Next, the model are re-estimated using the first 301 observations
and then used to forecast 1 to 60 steps ahead. The procedure is repeated until
when the first 399 observations is used for estimation and the last 1-step ahead
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forecast is formed. So, we have 100 1-step forecasts, 99 2-step forecasts and 40
60-step forecasts. Then, we compute root mean square error (RMSE) for forecast
of each step. Finally, the resulting RMSE is averaged over 1000 replications. More
specifically, letting εi,t(k) be the k period ahead forecast error at time t of the i-th
replication. Then

RMSE(	) = E(	) =

√∑1000
i=1

∑400−�
t=300 ε2i,t(	)

(1000)(100 − 	 + 1)
(27)

The simulation results are put in Tables 3 to 6. In each table, column 1 is steps of
forecast, column 2 is the RMSE for model with p = 3 and d = 0, serving as the
benchmark for forecast comparison. Columns 3 to 7 are E(	) ratios of model with
various p and d to column 2.

From these tables we observe the following. First, for stationary processes, the
E(	) for the correctly model converges to a constant with the rate of convergence
depending upon the value of the root. For root of 0.5, the E(	) approach a constant
as early as 	 = 6 while for root of 0.95 	 does not stabilize until 30. As for root
of .99, it is so close to 1 and E(	) is still increasing after 	 = 60. For process with
unit root E(	) increases with 	 for all the whole range of 	. Second, the true model
outperforms other misspecified models in forecasting. Third, over-specification of
unit results in poor forecast. For the case of model 4 (Table 6) E(	) for d = 1 is 5%
higher than d = 0 and jumps to more than 50% for 	 greater than 40. For model
3, one of the root is 0.95 and the forecaster for d = 1 is still 45% worse than d = 0
though a little better than model 4. As for model 2, one of the root is 0.99 and
for up to 20 steps, d = 1 fares as well as d = 0 and is only 10% worse than the
true model at 60-step forecast. Fourth, under-specification of unit root only results
in small increase of E(	). From column 2 of Table 3, the inefficiency is less than
4% from 1-step to 60-step forecasts. Fifth, under- or over-specification of AR order

Table 3

Forecasting comparison for simulated data: true p = 3, roots are 0.5, 0.5, 1.0

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4
d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 99.71 103.25 102.98 100.15 99.86
2 7.34 99.49 102.73 102.23 100.15 99.64
3 11.69 99.27 102.52 101.78 100.15 99.41
4 15.92 99.04 102.58 101.56 100.14 99.18
5 19.89 98.80 102.77 101.44 100.14 98.94
6 23.57 98.57 103.01 101.32 100.14 98.69
7 26.95 98.34 103.26 101.18 100.14 98.46
8 30.08 98.12 103.51 101.01 100.15 98.24
9 33.00 97.91 103.76 100.81 100.15 98.03

10 35.72 97.72 104.01 100.59 100.15 97.83

15 47.47 97.06 105.09 99.56 100.14 97.12
20 57.04 96.73 105.83 98.81 100.15 96.77
25 65.29 96.65 106.17 98.39 100.14 96.68
30 72.70 96.61 106.24 98.05 100.12 96.63
35 79.58 96.67 106.08 97.95 100.09 96.69
40 85.99 96.76 105.70 97.81 100.05 96.78
45 92.08 96.92 105.24 97.76 100.01 96.94
50 98.03 97.12 104.66 97.86 99.98 97.14
55 103.82 97.21 104.05 97.97 99.94 97.23
60 109.21 97.26 103.43 97.96 99.87 97.30
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Table 4

Forecasting comparison for simulate model: true p = 3, roots are 0.5, 0.5, 0.99

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4
d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 99.91 103.18 103.27 100.15 100.06
2 7.32 99.85 102.70 102.74 100.15 99.99
3 11.61 99.79 102.53 102.51 100.15 99.93
4 15.76 99.74 102.61 102.54 100.14 99.87
5 19.62 99.70 102.81 102.67 100.14 99.82
6 23.14 99.66 103.06 102.82 100.15 99.77
7 26.36 99.63 103.31 102.95 100.15 99.75
8 29.30 99.62 103.57 103.04 100.17 99.73
9 32.00 99.63 103.82 103.10 100.18 99.72

10 34.50 99.65 104.06 103.14 100.18 99.74

15 44.87 100.10 105.10 103.38 100.22 100.13
20 52.75 100.98 105.62 103.95 100.26 100.98
25 59.01 102.16 105.59 104.90 100.27 102.14
30 64.21 103.31 105.24 105.83 100.25 103.28
35 68.72 104.51 104.66 106.92 100.21 104.47
40 72.71 105.65 103.95 107.84 100.15 105.60
45 76.32 106.85 103.14 108.83 100.11 106.80
50 79.68 108.11 102.32 110.03 100.07 108.06
55 82.76 109.27 101.56 111.27 100.03 109.22
60 85.54 110.20 100.83 112.15 99.98 110.15

Table 5

Forecasting comparison for simulated model: true p = 3, roots are 0.5, 0.5, 0.95

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4
d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 100.87 102.92 104.61 100.16 101.00
2 7.19 101.59 102.50 105.05 100.17 101.70
3 11.20 102.35 102.39 105.87 100.17 102.43
4 14.93 103.15 102.50 107.02 100.18 103.22
5 18.24 104.01 102.69 108.34 100.19 104.06
6 21.11 104.92 102.91 109.71 100.20 104.94
7 23.59 105.87 103.11 111.09 100.22 105.86
8 25.72 106.85 103.29 112.41 100.24 106.81
9 27.57 107.85 103.46 113.70 100.26 107.79

10 29.17 108.88 103.60 114.95 100.28 108.79

15 34.68 114.26 103.91 120.95 100.35 114.08
20 37.59 119.71 103.34 126.69 100.37 119.46
25 39.16 124.73 102.28 132.01 100.32 124.42
30 40.04 128.94 101.30 136.47 100.26 128.60
35 40.61 132.40 100.65 140.17 100.19 132.01
40 41.02 135.16 100.27 142.89 100.14 134.75
45 41.31 138.01 99.99 145.70 100.11 137.58
50 41.50 140.97 99.79 148.84 100.08 140.50
55 41.61 143.76 99.68 152.10 100.06 143.26
60 41.68 145.57 99.66 154.16 100.04 145.04
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Table 6

Forecasting comparison for simulated data: true p = 3, roots are all 0.5

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4
d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 105.23 100.68 108.65 100.13 104.82
2 5.90 110.01 100.58 114.55 100.13 109.11
3 7.70 115.20 100.65 121.43 100.13 113.78
4 8.74 120.67 100.72 128.63 100.13 118.68
5 9.28 126.00 100.77 135.33 100.14 123.50
6 9.53 130.73 100.78 140.98 100.14 127.93
7 9.64 134.52 100.74 145.38 100.14 131.62
8 9.68 137.31 100.64 148.61 100.13 134.39
9 9.69 139.30 100.49 150.91 100.12 136.32

10 9.69 140.71 100.32 152.55 100.10 137.64

15 9.68 144.26 99.98 156.66 100.04 140.87
20 9.68 145.69 99.98 158.33 100.02 142.22
25 9.66 147.22 99.98 160.24 100.00 143.62
30 9.66 148.04 99.98 161.31 100.00 144.37
35 9.67 148.70 99.98 162.52 100.00 144.86
40 9.68 148.98 99.99 162.92 100.00 145.11
45 9.68 150.37 99.99 164.35 100.00 146.48
50 9.69 153.41 99.98 167.67 99.99 149.35
55 9.68 155.18 99.99 169.99 99.99 150.98
60 9.66 155.33 99.99 170.78 99.99 150.92

only affects the forecast precision marginally. The E(	) for all models are within
6% to the true model for all forecasts up to 60-step ahead.

To sum up, the simulation show that slight misspecification of AR order and
under specification of unit root are not serious in forecasting but over-specification
of unit root could result in poor forecast when the root of characteristic polynomial
is far from 1. Yet, improvement of forecasting precision in absolute term could be
substantial for large sample when the existence of unit root is appropriately taken
into consideration.

6. Empirical results

6.1. Data

For empirical analysis, we analyze 6 most frequently used data sets in Taiwan in-
cluding Gross Domestic Product (GDP), Consumer Price Indices (CPI), Wholesale
Price Indices (WPI), Interest Rates( IR), Exchange Rate of New Taiwan Dollar to
US Dollar(RX) and money supply(M1B). All series are quarterly data taken from
the AREMOS databank. The sample period is 1961:1 to 1995:4 except for M1B
which ranges between 1961:3 to 1995:4. So, sample size is 138 for M1B and 140 for
the rest series. All series are seasonally unadjusted.

6.2. Order selection

Selecting lag order p and forecasting method simultaneously is analyzed in Ing,
Lin and Yu [10]. Here, we follow the conventional wisdom by using AIC and chi-
square statistics to determine p. When the AIC has a clear minimal, we select the
order corresponding to the minimal AIC. When AIC is decreasing without a clear
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minimum, we use chi-square statistics to select the last significant lag. It turns out
that CPI, WPI and RX have order 2, interest rate has order 6, M1B has order 3
and GDP has order 8. The high order indicates the possible existence of seasonal
unit root which is not investigated here.

6.3. Forecasting procedure

For each series, the first 100 observations are reserved for estimation and 1- to
20-step forecasts are computed. Then the model are re-estimated using first 101
observations and another 1- to 20-step forecasts are computed. The procedure is
repeated until when the first T − 1 observations are used to estimate the model
and the last 1-step forecast is computed. Hence, we have 40 1-step forecasts, 39
2-step forecasts and 20 20-step forecasts except for M1B where there are 38 1-step
forecasts and 18 20-step forecasts. For each step, the average root mean square error
is computed.

6.4. Results

The results are reported in Tables 7 to 12. From the tables we observe the following.
First, E(	) increases linearly with 	 for all series except for Interest Rates. This
seems to suggest that except IR, all variables have a unit root. Second, regarding
the Box-Jenkins forecast, imposing unit root constraint result in poor forecast for
all steps ahead for WPI, CPI, GDP and IR. Especially for IR, the RMSE for d = 1
is 200% higher than that for d = 0. This seems to be consistent with the finding that
its E(	) converges to a constant very quickly. However, for RX forecast with d = 1
fares much better than forecast with d = 0. The precision gain from imposing unit
root is about 5% for 1-step forecast and then up to over 30% for 20-step forecast.
This seems to indirectly support the efficient market hypothesis for the foreign

Table 7

Forecasting comparison for GDP

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1
1 12258.04 101.94 100.00 99.22
2 18024.46 104.69 101.47 179.52
3 21232.71 106.87 115.10 151.59
4 24719.28 108.70 106.82 83.76
5 31938.87 110.92 102.59 99.66
6 37316.81 112.05 116.19 125.65
7 40063.38 112.71 132.45 98.06
8 40505.82 109.83 147.52 45.57
9 46605.77 111.94 158.02 65.51

10 52966.58 116.89 159.53 103.16
11 57551.40 121.35 157.04 91.13
12 59480.32 120.18 169.46 66.06
13 66651.35 120.95 181.21 85.92
14 74760.98 123.52 184.47 109.41
15 79555.22 124.66 174.53 94.18
16 81162.26 120.64 173.44 74.78
17 91194.77 117.99 185.95 61.83
18 99975.45 122.09 181.84 99.95
19 105256.88 125.83 162.48 83.94
20 108809.60 122.63 162.14 55.65
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Table 8

Forecasting comparison for CPI

steps E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1
1 1.12 99.39 100.00 101.46
2 1.71 98.81 83.53 77.07
3 1.82 99.20 100.10 69.33
4 1.83 99.75 123.42 79.90
5 2.09 98.49 128.11 84.27
6 2.51 99.73 124.42 81.85
7 2.54 101.83 148.32 89.80
8 2.65 102.66 165.72 95.17
9 2.97 102.13 163.20 95.48

10 3.19 101.81 171.06 95.60
11 3.06 106.53 209.48 98.15
12 3.12 108.45 237.77 96.83
13 3.55 106.61 236.77 86.76
14 3.71 107.33 257.23 89.74
15 3.76 111.25 289.99 98.66
16 3.83 113.36 326.41 99.02
17 4.32 110.28 336.41 91.27
18 4.50 111.09 372.91 89.71
19 4.44 113.86 431.77 86.81
20 4.79 111.22 455.83 80.87

Table 9

Forecasting comparison for WPI

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1
1 1.16 102.47 100.00 101.19
2 2.13 103.43 58.78 93.97
3 3.05 104.54 50.13 97.35
4 3.88 105.55 47.53 96.59
5 4.56 107.43 49.39 108.12
6 5.07 109.64 53.84 113.24
7 5.41 112.38 61.27 113.87
8 5.58 116.54 69.88 120.83
9 5.89 120.00 76.71 132.83

10 6.36 121.66 81.36 140.82
11 6.93 122.71 86.87 137.69
12 7.53 123.95 90.96 135.62
13 8.02 125.92 96.49 141.24
14 8.48 127.93 103.98 150.77
15 8.82 130.43 113.97 157.73
16 8.87 135.06 127.60 157.82
17 8.97 139.02 141.47 173.71
18 9.15 142.11 157.87 191.82
19 9.52 143.65 174.20 193.95
20 10.19 142.43 186.53 178.22
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Table 10

Forecasting comparison for RX

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1
1 .66 95.38 100.00 99.40
2 1.32 92.38 53.40 90.39
3 2.01 89.53 40.91 81.93
4 2.77 88.16 37.25 75.67
5 3.41 87.09 38.60 73.91
6 3.99 86.26 42.45 72.13
7 4.42 85.01 47.25 72.20
8 4.71 83.30 54.59 70.22
9 5.03 82.30 61.77 68.81

10 5.29 81.93 68.35 72.37
11 5.58 81.90 74.77 75.55
12 5.94 81.98 79.20 77.42
13 6.31 81.57 81.79 76.30
14 6.67 80.44 83.67 74.67
15 6.93 78.33 85.17 74.42
16 7.11 75.67 86.40 70.66
17 7.34 72.78 86.34 62.28
18 7.56 70.48 86.23 58.96
19 7.87 69.58 85.50 59.46
20 8.24 69.51 83.95 51.02

Table 11

Forecasting comparison for M1B

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1
1 96297.39 92.81 100.00 102.13
2 152389.01 94.00 65.10 86.82
3 208305.92 94.22 52.25 78.01
4 266876.68 94.73 52.56 71.28
5 377584.71 92.59 55.08 61.12
6 481271.98 94.39 61.18 56.24
7 532886.35 99.13 59.46 55.99
8 595646.12 101.27 71.45 49.52
9 668073.88 108.19 84.69 50.29

10 774390.51 113.50 92.29 49.31
11 821482.40 123.40 89.06 50.77
12 886619.83 129.37 90.62 46.46
13 1052170.67 129.01 89.81 42.85
14 1158059.45 143.04 86.93 44.22
15 1335812.44 145.93 70.46 44.98
16 1378939.42 165.55 60.58 42.82
17 1649465.49 162.79 56.17 46.78
18 1748042.18 183.13 61.66 45.31
19 1893323.08 200.50 51.17 41.98
20 2079603.50 214.50 50.45 28.34
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Table 12

Forecasting comparison for IR

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1
1 0.72 104.58 100.00 106.60
2 1.16 108.68 67.94 79.35
3 1.24 114.84 64.70 108.65
4 1.38 120.28 58.85 127.00
5 1.63 124.48 48.70 125.50
6 1.82 130.14 46.05 120.60
7 1.83 138.25 50.44 124.52
8 1.82 146.64 55.74 139.96
9 1.83 154.97 58.67 170.56

10 1.83 164.17 59.64 191.38
11 1.76 175.17 60.49 208.55
12 1.70 185.17 63.08 211.01
13 1.67 194.23 65.27 208.26
14 1.61 204.93 75.07 213.25
15 1.52 216.39 91.16 219.55
16 1.36 237.94 94.70 238.53
17 1.27 254.73 108.89 239.50
18 1.10 289.28 101.44 237.00
19 0.84 370.74 131.31 269.90
20 0.59 521.61 199.32 349.14

exchange market in Taiwan. As for M1B, imposing unit root constraint improves
forecast precision from 1- to 7-step forecasts but deteriorates forecast precision from
8-step to 20-step forecasts. The inefficiency is more than 100% for 19 and 20-step
forecasts. Third, the performance of adaptive forecaster is mixed. For RX and M1B,
adaptive forecast with d = 0 and d = 1 consistently outperforms conventional Box-
Jenkins’ forecast by a large margin. The precision gain could go as high as 50%.
For CPI adaptive forecast performs poorly for d = 0 but very well for d = 1. For
IR and WPI adaptive forecast with d = 0 performs well in short and medium term
forecast but fares poorly in long term forecast. But adaptive forecast with d = 1
performs okay in the short term but very poorly in the long term. The case GDP
is quite interesting. While adaptive forecast with d = 0 fares poorly for short and
long term forecast, the performance of adaptive forecast with d = 1 jumps up and
down across steps. This seems to suggest that seasonality plays an important for the
differenced GDP which is supported by the corresponding autocorrelation function.
This issue will be investigated in future study.

To sum up, the empirical findings are mixed. Imposing unit root constraint
might improve forecast precision for some cases but deteriorate forecast precision in
others. Also, adaptive forecast differs from Box-Jenkins’ forecast by the big margin.
Most frequently, it could improve short to medium term forecast but result in poor
long term forecast. However, for some cases, it could produce either better or worse
forecast for forecast of all steps. Further study is needed to determine the influencing
factors.

7. Conclusions

We have analyzed the least square forecaster from various aspects. From the theo-
retical viewpoint, we prove that CT , the most important quantity when evaluating
the performance of 1-step forecasters is equal to (p + d)σ2 log(T ) where d is 1 or 0
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depending if there is a unit root. This result could be used to analyze the gain in
forecasting precision when unit root is detected and is taken into account. Further,
this theorem can lead to a simple proof of the strong consistency of PLS in AR
model selection and a new test of unit root.

Our simulation analysis confirms the theoretical results. In addition, we also
learn that while mis-specification of AR order has marginal impact on forecasting
precision over-specification of unit root strongly deteriorate the quality of long
term forecast. As for the empirical study using Taiwanese data, the result is mixed.
Adaptive forecast and imposing unit root improves forecast precision for some cases
but deteriorates forecasting precision for other cases.
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