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Some facts about functionals of location

and scatter

R. M. Dudley1,∗

Massachusetts Institute of Technology

Abstract: Assumptions on a likelihood function, including a local Glivenko-
Cantelli condition, imply the existence of M-estimators converging to an M-
functional. Scatter matrix-valued estimators, defined on all empirical measures
on R

d for d ≥ 2, and equivariant under all, including singular, affine transfor-
mations, are shown to be constants times the sample covariance matrix. So, if
weakly continuous, they must be identically 0. Results are stated on existence
and differentiability of location and scatter functionals, defined on a weakly
dense, weakly open set of laws, via elliptically symmetric t distributions on
R

d, following up on work of Kent, Tyler, and Dümbgen.

1. Introduction

In this paper a law will be a Borel probability measure on R
d. Let Nd be the set

of all d × d nonnegative definite symmetric matrices and Pd ⊂ Nd the subset of
strictly positive definite symmetric matrices. For (µ,Σ) ∈ Θ = R

d ×Nd, µ will be
viewed as a location parameter and Σ as a scatter parameter, extending the notions
of mean vector and covariance matrix to arbitrarily heavy-tailed distributions. For
d ≥ 2, Θ may be taken to be Pd or R

d × Pd.
For a law P on R

d, let X1, X2, . . . be i.i.d. (P ) and let Pn be the empirical
measure n−1

∑n
j=1 δXj where δx(A) := 1A(x) for any point x and set A. A class

F ⊂ L1(Rd, P ) is called a Glivenko-Cantelli class for P if

(1) sup{|
∫

fd(Pn − P )| : f ∈ F} → 0

almost surely as n → ∞ (if the supremum is measurable, as it will be in all cases
considered in this paper). Talagrand [20, 21] characterized such classes. A class F
of Borel measurable functions on R

d is called a universal Glivenko-Cantelli class if
it is a Glivenko-Cantelli class for all laws P on R

d, and a uniform Glivenko-Cantelli
class if the convergence in (1) is uniform over all laws P . Rather general sufficient
conditions for the universal Glivenko-Cantelli property and a characterization up
to measurability of the uniform property have been given [7].

Let ρ : (x, θ) �→ ρ(x, θ) ∈ R defined for x ∈ R
d and θ ∈ Θ, Borel measurable

in x and lower semicontinuous in θ, i.e. ρ(x, θ) ≤ lim infφ→θ ρ(x, φ) for all x and θ.
For a law Q, let Qρ(φ) :=

∫
ρ(x, φ)dQ(x) if the integral is defined (not ∞−∞),

as it always will be if Q = Pn. An M-estimate of θ for a given n and Pn will be a θ̂n

such that Pnρ(θ) is minimized at θ = θ̂n, if it exists and is unique. A measurable
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function, not necessarily defined a.s., whose values are M-estimates is called an M-
estimator. An M-limit θ0 = θ0(P ) = θ0(P, ρ) (with respect to ρ) will mean a point
of Θ such for every open neighborhood U of θ0, as n → ∞,

(2) Pr
{

inf{Pnρ(θ) : θ /∈ U} ≤ inf{Pnρ(φ) : φ ∈ U}
}
→ 0,

where the given probabilities are assumed to be defined. Then if M-estimators exist
(with probability → 1 as n → ∞), they must converge in probability to θ0(P ). An
M-limit θ0 = θ0(P ) with respect to ρ will be called definite iff for every neighborhood
U of θ0 there is an ε > 0 such that the outer probability

(3) (Pn)∗ {inf{Pnρ(θ) : θ /∈ U} ≤ ε + inf{Pnρ(φ) : φ ∈ U}} → 0

as n → ∞.
For a law P on R

d and a given ρ(·, ·), a θ1 = θ1(P ) is called the M-functional of
P for ρ if and only if there exists a measurable function a(x), called an adjustment
function, such that for h(x, θ) = ρ(x, θ)−a(x), Ph(θ) is defined and satisfies −∞ <
Ph(θ) ≤ +∞ for all θ ∈ Θ, and is minimized uniquely at θ = θ1(P ), e.g. Huber
[13]. As Huber showed, θ1(P ) doesn’t depend on the choice of a(·). Clearly, an
M-estimate θ̂n is the M-functional θ1(Pn) if either exists.

A lower semicontinuous function f from Θ into (−∞, +∞] will be called uni-
minimal iff it has a unique relative minimum at a point θ0 and for all t ∈ R,
{θ ∈ Θ : f(θ) ≤ t} is connected. For a differentiable function f , recall that a
critical point of f is a point where the gradient of f is 0.

Examples. On Θ = R let f(x) = −(1−x2)2. Then f has a unique relative minimum
at x = 0, but no absolute minimum. It has two other critical points which are
relative maxima. For t < 0 the set where f ≤ t is not connected.

If f is a strictly convex function on R
d attaining its minimum, then f is unimin-

imal, as is θ �→ f(x− θ) for any x. So is θ �→
∫

f(x− θ)− f(x)dP (x) if it’s defined
and finite and attains its minimum for a law P , as will be true e.g. if f(x) = |x|2
and

∫
|x|dP (x) < ∞, or for all P if f is also Lipschitz, e.g. f(x) =

√
1 + |x|2.

I have not found the notion here called “uniminimal” in the literature. Similar
but more complex assumptions occur in some work on sufficient conditions for
minimaxity in game theory, e.g. [11]. Thus, I claim no originality for the following
easily proved fact.

Proposition 1. Let (Θ, d) be a locally compact metric space. If f is uniminimal on
(Θ, d), then (a) f attains its absolute minimum at its unique relative minimum θ0,
and (b) For every neighborhood U of θ0 there is an ε > 0 such that f(θ) ≥ f(θ0)+ε
for all θ /∈ U .

Proof. Clearly (b) implies (a). To prove (b), suppose that for some or equivalently
all small enough δ > 0 and all n = 1, 2, . . . , there are θn ∈ Θ with d(θn, θ0) ≥ δ
and f(θn) ≤ f(θ0) + 1/n. By connectedness, we can take d(θn, θ0) = δ for all
n. Then for δ > 0 small enough, {θ : d(θ, θ0) ≤ δ} is compact and there is a
converging subsequence θn(k) → θδ with d(θδ, θ0) = δ and f(θδ) ≤ f(θ0) by lower
semicontinuity. Letting δ ↓ 0 we get a contradiction to the fact that θ0 is a unique
relative minimum.

Theorem 2. Let (Θ, d) be a connected locally compact metric space and (X,B, P )
a probability space. Let h : X ×Θ �→ R where for each θ ∈ Θ, h(·, θ) is measurable.
Assume that:
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(i) θ �→ Ph(θ) ∈ (−∞, +∞] is well-defined and uniminimal on Θ, with minimum
at θ0;
(ii) Outside an event An whose probability converges to 0 as n → ∞, Pnh(·) is
uniminimal on Θ;
(iii) For some neighborhood U of θ0, {h(·, θ) : θ ∈ U} is a Glivenko-Cantelli class
for P .

Then θ0 is the definite M-limit for P and the M-functional θ1(P ).

Remark. Glivenko-Cantelli conditions on log likelihoods (and their partial deriva-
tives through order 2) for parameters in bounded neighborhoods have been assumed
in other work, e.g. [17] and [8].

Proof. That θ0 is an M-functional for P follows from (i) and Proposition 1. By
(iii), take δ > 0 small enough so that {h(·, θ) : d(θ, θ0) < δ} is a Glivenko-Cantelli
class for P . By (i) and Proposition 1, take ε > 0 such that Ph(θ) > Ph(θ0) + 3ε
whenever d(θ, θ0) > δ/2. Outside some events An whose probability converges to
0 as n → ∞, we have Pnh(θ0) < Ph(θ0) + ε and Pnh(θ) > Ph(θ0) + 2ε for all
θ with δ/2 < d(θ, θ0) < δ. Then by (ii), also with probability converging to 1,
Pnh(θ) > Pnh(θ0)+ε for all θ with d(θ, θ0) > δ/2, proving (3) and the theorem.

A class C of subsets of a set X is called a VC (Vapnik-Chervonenkis) class if for
some k < ∞, for every subset A of X with k elements, there is some B ⊂ A with
B 	= C ∩ A for all C ∈ C, e.g. [4, Chapter 4]. A class F of real-valued functions on
X is called a VC major class iff {{x ∈ X : f(x) > t} : f ∈ F , t ∈ R} is a VC class
of sets (e.g. [4, Section 4.7]). In the following, local compactness is stronger than
needed but holds for the parameter spaces being considered.

Theorem 3. Let h(x, θ) be continuous in θ ∈ Θ for each x and measurable in x for
each θ where Θ is a locally compact separable metric space. Let h(·, ·) be uniformly
bounded and let F := {h(·, θ) : θ ∈ Θ} be a VC major class of functions. Then
F is a uniform, thus universal, Glivenko-Cantelli class.

Proof. Theorem 6 of [7] applies: sufficient bounds for the Koltchinskii-Pollard en-
tropy of uniformly bounded VC major classes of functions are given in [3, Theorem
2.1(a), Corollary 5.8], and sufficient measurability of the class F follows from the
continuity in θ and the assumptions on Θ.

For the t location-scatter functionals in Sections 4 and 5, the notions of VC major
class, and local Glivenko-Cantelli class as in Theorem 2(iii), will be applicable. But
as shown by Kent, Tyler and Vardi [16], to be recalled after Theorem 12(iii), some
parts of the development work only for t functionals, rather than for functions ρ
satisfying general properties such as convexity.

2. Equivariance for location and scatter

Notions of “location” and “scale” or multidimensional “scatter” functional will be
defined along with equivariance, as follows.

Definitions. Let Q �→ µ(Q) ∈ R
d, resp. Σ(Q) ∈ Nd, be a functional defined on a

set D of laws Q on R
d. Then µ (resp. Σ) is called an affinely equivariant location

(resp. scatter) functional iff for any nonsingular d × d matrix A and v ∈ R
d, with

f(x) := Ax + v, and any law Q ∈ D, the image measure P := Q ◦ f−1 ∈ D also,
with µ(P ) = Aµ(Q) + v or, respectively, Σ(P ) = AΣ(Q)A′. For d = 1, σ(·) with
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0 ≤ σ < ∞ will be called an affinely equivariant scale functional iff σ2 satisfies the
definition of affinely equivariant scatter functional.

Well-known examples of affinely equivariant location and scale functionals (for
d = 1), defined for all laws, are the median and MAD (median absolute deviation),
where for a real random variable X with median m, the MAD of X or its distribution
is defined as the median of |X − m|.

Call a location functional µ(·) or a scatter functional Σ(·) singularly affine
equivariant if in the definition of affine equivariance A can be any matrix, pos-
sibly singular. If a functional is defined on all laws, affinely equivariant, and weakly
continuous, then it must be singularly affine equivariant. The classical sample mean
and covariance are defined for all Pn and singularly affine equivariant. It turns out
that in dimension d ≥ 2, there are essentially no other singularly affine equivariant
location or scatter functionals defined for all Pn, and so weak continuity at all laws
is not possible. First the known fact for location will be recalled, then an at least
partially known fact for scatter will be stated and proved.

Let X be a d × n data matrix whose jth column is Xj ∈ R
d. Let Xi be the ith

row of X. Let 1n be the n × 1 vector with all components 1. Let X =
∫

xdPn be
the sample mean vector in R

d, so that X −X1′
n is the centered data matrix. Note

that Pn, and thus X and Σ(X), are preserved by any permutation of the columns
of X.

Theorem 4. (a) If µ(·) is a singularly affine equivariant location functional defined
for all Pn on R

d for d ≥ 2 and a fixed n, then µ(Pn) ≡ X.
(b) If in addition µ(·) is defined for all n and all Pn on R

d, then as n varies, µ(·)
is not weakly continuous. Thus, there is no affinely equivariant, weakly continuous
location functional defined on all laws on R

d for d ≥ 2.

Proof. Part (a) follows from work of Obenchain [18, Lemma 1] and permutation
invariance, as noted e.g. by Rousseeuw [19]. Then (b) follows directly, for x1 = n,
x2 = · · · = xn = 0, n → ∞.

Next is a related fact about scatter functionals. Davies [1, p. 1879] made a
statement closely related to part (b), strong but not quite in the same generality,
and very briefly suggested a proof. I don’t know a reference for part (a), or an
explicit one for (b), so a proof will be given.

Theorem 5. (a) Let Σ(·) be a singularly affine equivariant scatter functional de-
fined on all empirical measures Pn on R

d for d ≥ 2 and some fixed n ≥ 2. Write
Σ(X) := Σ(Pn). Then there is a constant cn ≥ 0, depending on Σ(·), such that
for any X, Σ(X − X1′

n) = cn(X − X1′
n)(X − X1′

n)′. In other words, applied to
centered data matrices, Σ is proportional to the sample covariance matrix.
(b) If Σ(·) is an affinely equivariant scatter functional defined for all n and Pn on
R

d for d ≥ 2, weakly continuous as a function of Pn, then Σ ≡ 0.

Proof. (a) We have Σ(BX) = BΣ(X)B′ for any d×d matrix B. For any U, V ∈ R
n

let X1 = U ′, X2 = V ′, and (U, V ) := Σ12(X). Then (·, ·) is well-defined, letting
B11 = B22 = 1 and Bij = 0 otherwise. It will be shown that (·, ·) is a semi-inner
product. We have (U, V ) ≡ (V, U) via B with B12 = B21 = 1 and Bij = 0 otherwise,
since Σ is symmetric. For B11 = B21 = 1 and Bij = 0 otherwise we get for any
U ∈ R

n that

(4) (U, U) = Σ12(BX) = (BΣ(X)B′)12 = Σ11(X) ≥ 0.
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For constants a and b, (aU, bV ) ≡ ab(U, V ) follows for B11 = a, B22 = b, and
Bij = 0 otherwise. It remains to prove biadditivity (U, V + W ) ≡ (U, V ) + (U, W ).
For d ≥ 3 this is easy, letting X3 = W , B11 = B22 = B23 = 1, and Bij = 0
otherwise. For d = 2, we first get (U + V, V ) = (U, V ) + (V, V ) from B = (10

1
1).

Symmetrically, (U, U + V ) = (U, U) + (U, V ). Then from B = (11
1
1) we get

(5) (U + V, U + V ) = (U, U) + 2(U, V ) + (V, V ).

Letting ‖W‖2 := (W, W ) for any W ∈ R
n we get the parallelogram law ‖U +

V ‖2 +‖U −V ‖2 ≡ 2‖U‖2 +2‖V ‖2. (But ‖ ·‖ has not yet been shown to be a norm.)
Applying this repeatedly we get for any W, Y , and Z ∈ R

n that

‖W +Y +Z‖2 −‖W −Y −Z‖2 = ‖W +Y ‖2 −‖W −Y ‖2 + ‖W +Z‖2 −‖W −Z‖2,

letting first U = W +Y , V = Z, then U = W−Z, V = Y , then U = W , V = Z, and
lastly U = W , V = Y . Applying (5) gives (W, Y +Z) ≡ (W, Y )+(W, Z), the desired
biadditivity. So (·, ·) is indeed a semi-inner product, i.e. there is a C(n) ∈ Nn such
that (U, V ) ≡ U ′C(n)V . By permutation invariance, there are numbers an ≥ 0 and
bn such that C(n)ii = an for all i = 1, . . . , n and C(n)ij = bn for all i 	= j.

Let cn := an − bn and let ei ∈ R
n be the ith standard unit vector. For each

y ∈ R
n let y =

∑n
i=1 yiei and y := 1

n

∑n
i=1 yi. Then for any z ∈ R

n,

(y − y1n, z − z1n) =
n∑

i,j=1

C(n)ij(yi − y)(zj − z) = cn(y − y1n)′(z − z1n).

For 1 ≤ j ≤ k ≤ d, let Bir := δrπ(i) for a function π from {1, 2, . . . , d} into
itself with π(1) = j and π(2) = k. Then (BX)1 = Xj and (BX)2 = Xk. Thus
(Xj , Xk) = Σ12(BX) = Σjk(X), recalling (4) if j = k.

Let X ∈ R
d have ith component X

i
. Then

Σjk(X − X1′
n) = (Xj − X

j
1n, Xk − X

k
1n) = cn(Xj − X

j
1n)′(Xk − X

k
1n),

where cn ≥ 0 is seen when j = k and the coefficient of cn is strictly positive, as it
can be since n ≥ 2. Thus part (a) is proved.

For part (b), consider empirical measures Pn = Pmn, so that each Xj in Pn is
repeated m times in Pmn. Since the X’s and Σs for Pn and Pmn must be the same,
we get that cmn = cn/m which likewise equals cm/n. Thus there is a constant c1

such that cn = c1/n for all n.
Let X11 := −X12 :=

√
n, let Xij = 0 for all other i, j and let n → ∞. Then

X ≡ 0, Pn → δ0 weakly, and Σ(δ0) is the 0 matrix by singular affine equivariance
with B = 0, but Σ(Pn) don’t converge to 0 unless c1 = 0 and so cn = 0 for all n,
proving (b).

So, for d ≥ 2, affinely equivariant location and non-zero scatter functionals,
weakly continuous on their domains, can’t be defined on all laws. They can be
defined on weakly dense and open domains, as will be seen in Theorem 12, on
which they can have good differentiability properties, as seen in Section 5.

3. Multivariate scatter

This section treats pure scatter in R
d, with Θ = Pd. Results of Kent and Tyler

[15] for finite samples, to be recalled, are extended to general laws on R
d in [6,

Section 3].
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For A ∈ Pd and a function ρ from [0,∞) into itself, consider the function

(6) L(y, A) :=
1
2

log det A + ρ(y′A−1y), y ∈ R
d.

For adjustment, let

(7) h(y, A) := L(y, A) − L(y, I)

where I is the identity matrix. Then

(8) Qh(A) =
1
2

log det A +
∫

ρ(y′A−1y) − ρ(y′y) dQ(y)

if the integral is defined. We have the following, shown for Q = Qn an empirical
measure in [15, (1.3)] and for general Q in [6, Section 3]. Here (9) is a redescending
condition. A symmetric d × d matrix A will be parameterized by the entries Aij

for 1 ≤ i ≤ j ≤ d. Thus in taking a partial derivative of a function f(A) with
respect to an entry Aij , Aji ≡ Aij will vary while Akl will remain fixed except for
(k, l) = (i, j) or (j, i).

Proposition 6. Let ρ be continuous from [0,∞) into itself and have a bounded
continuous derivative, where ρ′(0) := ρ′(0+) := limx ↓ 0[ρ(x) − ρ(0)]/x. Let
0 ≤ u(x) := 2ρ′(x) for x ≥ 0. Assume that

(9) sup
0≤x<∞

xu(x) < ∞.

Then for each law Q on R
d, Qh in (8) is well defined and is a C1 function of the

entries of A. Here Qh has a critical point at A = B if and only if

(10) B =
∫

u(y′B−1y)yy′dQ(y).

The following, proved in [6, Section 3], extends to any law Q the uniqueness part
of [15, Theorem 2.2].

Proposition 7. Under the hypotheses of Proposition 6, if in addition u(·) is non-
increasing and s �→ su(s) is strictly increasing on [0,∞), then for any law Q on
R

d, Qh has at most one critical point A ∈ Pd.

A sufficient condition for existence of a pure scatter M-functional A(Q) will in-
clude the following assumption from [15, (2.4)]. Given a function u(·) as in Propo-
sition 7, let a0 := a0(u(·)) := sups>0 su(s). Since s �→ su(s) is increasing, it
follows that

(11) su(s) ↑ a0 as s ↑ + ∞.

Kent and Tyler [15] gave the following condition for empirical measures.

Definition. Given a0 := a(0) > 0, let Ud,a(0) denote the set of all laws Q on R
d

such that for every proper linear subspace H of R
d, of dimension q ≤ d−1, we have

Q(H) < 1 − (d − q)/a0.

Note that Ud,a(0) is weakly open and dense and contains all laws with densities.
If Q ∈ Ud,a(0), then Q({0}) < 1 − (d/a0), which is impossible if a0 ≤ d. So in
the next theorem we assume a0 > d. In part (b), the existence of a unique B(Qn)
minimizing Qnh for an empirical Qn ∈ Ud,a(0) was proved in [15, Theorems 2.1 and
2.2]. For a general Q ∈ Ud,a(0) it’s proved in [6, Section 3]; one lemma useful in the
proof is proved here.
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Theorem 8. Under the assumptions of Propositions 6 and 7, for a(0) = a0 as in
(11),
(a) If Q /∈ Ud,a(0), then Qh has no critical points.
(b) If a0 > d and Q ∈ Ud,a(0), then Qh attains its minimum at a unique B =
B(Q) ∈ Pd and has no other critical points.

A proof of the theorem uses a fact about probabilities of proper subspaces or
hyperplanes. A related statement is Lemma 5.1 of Dümbgen and Tyler [10].

Lemma 9. Let V be a real vector space with a σ-algebra B for which all finite-
dimensional hyperplanes H = x + T := {x + u : u ∈ T} for finite-dimensional
vector subspaces T are measurable. Let Q be a probability measure on B and let
Hj be the collection of all j-dimensional hyperplanes in V . Then for each j =
0, 1, 2, . . . , for any infinite sequence {Ci} of distinct hyperplanes in Hj such that
Q(Ci) converges, its limit must be Q(F ) for some hyperplane F of dimension less
than j such that F ⊂ Ci for infinitely many i. In particular, Q(Ci) cannot be strictly
increasing. The same is true for vector subspaces in place of hyperplanes.

Proof. Hyperplanes of dimension 0 are singletons {x}. The empty set ∅ will be
considered as a hyperplane of dimension −1. Let W−1 := ∅. Claim 1: For each
j = 0, 1, . . . , there exists a finite or countable sequence {Vji} ⊂ Hj such that for
Wj := Wj−1 ∪

⋃
i Vji, Q(V \ Wj) = 0 for all V ∈ Hj . Let V0i = {xi} for some

unique i if and only if Q({xi}) > 0. The set of such xi is clearly countable. Let
W0 := ∪iV0i = {x ∈ V : Q({x}) > 0}. Clearly, for any x ∈ V , Q({x} \ W0) = 0.
Recursively, for j ≥ 1, assuming Wj−1 has the given properties, suppose for r = 1, 2,
Hr ∈ Hj and Q(Hr \ Wj−1) > 0. If H1 	= H2, then H1 ∩ H2 is a hyperplane of
dimension at most j−1, so Q(H1∩H2\Wj−1) = 0 and the sets Hr\Wj−1 are disjoint
up to sets with Q = 0. Thus there are at most countably many different Hr ∈ Hj

with Q(Hr \Wj−1) > 0. Let Vjr := Hr for such Hr and set Wj := Wj−1∪
⋃

r Vjr.
It’s then clear that for any H ∈ Hj , Q(H \ Wj) = 0, so the recursion can continue
and Claim 1 is proved.

Claim 2 is that if C is any hyperplane of dimension j or larger, and s = 0, 1, . . . , j,
then for each r, either C ⊃ Vsr or Q(C ∩ (Vsr \ Ws−1)) = 0. If C doesn’t include
Vsr, then C ∩ Vsr is a hyperplane of dimension ≤ s − 1, and so included in Ws−1

up to a set with Q = 0, so Claim 2 follows.
Now, given distinct Ci ∈ Hj with Q(Ci) converging, let B be a hyperplane

of largest possible dimension b included in Ci for infinitely many i. Then b < j.
Taking a subsequence, we can assume that B ⊂ Ci for all i. Claim 3 is that then
Q(Ci \ B) → 0 as i → ∞. For any s = 0, 1, . . . , j − 1, and each r, by Claim 2,
if Ci ⊃ Vsr for infinitely many i, then Vsr ⊂ B, since otherwise Ci includes the
smallest hyperplane including Vsr and B, which has dimension larger than b, a
contradiction. So limi →∞ Q((Ci \ B) ∩ (Vsr \ Ws−1)) = 0 for each s < j and r. It
follows by induction on s that Q(Ci ∩Ws \B) → 0 as i → ∞ for s = 0, 1, . . . , j − 1.

By the proof of Claim 1, the sets Ci \ Wj−1 are disjoint up to sets with Q = 0,
so Claim 3 follows, and so the statement of the lemma for hyperplanes. The proof
for vector subspaces is parallel and easier. The fact that Q(Ci) cannot be strictly
increasing then clearly follows, as a subsequence would also be strictly increasing.
So the lemma is proved.

Dümbgen and Tyler [10], Lemma 5.1 show that sup{Q(V ) : V ∈ Hj} is attained
for each Q and j and is weakly upper semicontinuous in Q.
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4. Location and scatter t functionals

As Kent and Tyler [15, Section 3] and Kent, Tyler and Vardi [16] showed, (t)
location-scatter estimation in R

d can be reduced to pure scatter estimation in R
d+1,

beginning with the following.

Proposition 10. (i) For any d = 1, 2, . . . , there is a 1-1 correspondence, C∞ in
either direction, between matrices A ∈ Pd+1 and triples (Σ, µ, γ) where Σ ∈ Pd,
µ ∈ R

d, and γ > 0, given by

(12) A = A(Σ, µ, γ) = γ

[
Σ + µµ′ µ

µ′ 1

]
.

The same holds for A ∈ Pd+1 with γ = Ad+1,d+1 = 1 and pairs (µ,Σ) ∈ R
d × Pd.

(ii) If (12) holds, then for any y ∈ R
d (a column vector),

(13) (y′, 1)A−1(y′, 1)′ = γ−1
(
1 + (y − µ)′Σ−1(y − µ)

)
.

For M-estimation of location and scatter in R
d, we will have a function ρ :

[0,∞) �→ [0,∞) as in the previous section. The parameter space is now the set of
pairs (µ,Σ) for µ ∈ R

d and Σ ∈ Pd, and we have a multivariate ρ function

ρ(y, (µ,Σ)) :=
1
2

log det Σ + ρ((y − µ)′Σ−1(y − µ)).

For any µ ∈ R
d and Σ ∈ Pd let A0 := A0(µ,Σ) := A(Σ, µ, 1) ∈ Pd+1 by (12)

with γ = 1, noting that detA0 = det Σ. Now ρ can be adjusted, in light of (9) and
(13), by defining

(14) h(y, (µ,Σ)) := ρ(y, (µ,Σ)) − ρ(y′y).

Laws P on R
d correspond to laws Q := P ◦ T−1

1 on R
d+1 concentrated in

{y : yd+1 = 1}, where T1(y) := (y′, 1)′ ∈ R
d+1, y ∈ R

d. We will need a hypothesis
on P corresponding to Q ∈ Ud+1,a(0). Kent and Tyler [15] gave these conditions for
empirical measures.

Definition. For any a0 > 0 let Vd,a(0) be the set of all laws P on R
d such that

P (J) < 1 − (d − q)/a0 for every affine hyperplane J of dimension q < d.

The next fact is rather easy to prove. Here a > d + 1 avoids the contradictory
Q({0}) < 0.

Proposition 11. If P is a law on R
d, a > d + 1, and Q := P ◦ T−1

1 on R
d+1,

then P ∈ Vd,a if and only if Q ∈ Ud+1,a.

A family of ρ functions for which γ = 1 automatically, as noted by Kent and
Tyler [15, (1.5), (1.6), Section 4], is given by elliptically symmetric multivariate t
densities with ν degrees of freedom as follows: for 0 < ν < ∞ and 0 ≤ s < ∞ let

(15) ρν(s) := ρν,d(s) :=
ν + d

2
log

(
ν + s

ν

)
.

For this ρ, u is uν(s) := uν,d(s) := (ν + d)/(ν + s), which is decreasing, and
s �→ suν,d(s) is strictly increasing and bounded, i.e. (9) holds, with supremum and
limit at +∞ equal to a0,ν := a0(uν(·)) = ν + d.

The following fact is in part given by Kent and Tyler [15] and further by Kent,
Tyler and Vardi [16], for empirical measures; equation (16) was not found explicitly
in either. Here a proof will be given for any P ∈ Vd,ν+d, assuming Theorem 8 and
Propositions 6 and 10.
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Theorem 12. For any d = 1, 2, . . . , ν > 1, law P on R
d, and Q = P ◦ T−1

1 on
R

d+1, letting ν′ := ν − 1, assuming P ∈ Vd,ν+d in parts (a) through (e),
(a) For A ∈ Pd+1, A �→ Qh(A) defined by (8) for ρ = ρν′,d+1 has a unique critical
point A(ν′) := Aν′(Q) which is an absolute minimum;
(b) A(ν′)d+1,d+1 =

∫
uν′,d+1(y′A(ν′)−1y)dQ(y) = 1;

(c) For any µ ∈ R
d and Σ ∈ Pd let A = A(Σ, µ, 1) ∈ Pd+1 in (12). Then for any

y ∈ R
d and z := (y′, 1)′, we have

(16) uν′,d+1(z′A−1z) ≡ uν,d((y − µ)′Σ−1(y − µ)).

In particular, this holds for A = A(ν′) and its corresponding µ = µν ∈ R
d and

Σ = Σν ∈ Pd.
(d)

(17)
∫

uν,d((y − µν)′Σ−1
ν (y − µν))dP (y) = 1.

(e) For h defined by (14) with ρ = ρν,d, (µν , Σν) is the M-functional θ1 for P .
(f) If, on the other hand, P /∈ Vd,ν+d, then (µ,Σ) �→ Ph(µ,Σ) for h as in (e) has
no critical points.

Proof. (a): Theorem 8(b) applies since uν′,d+1 satisfies its hypotheses, with
a0(uν′,d+1) = ν′ + d + 1 = ν + d > d + 1.
(b): By (10), multiplying by A(ν′)−1 and taking the trace gives

d + 1 =
∫

uν′,d+1

(
z′A(ν′)−1z

)
z′A(ν′)−1zdQ(z).

We also have, since zd+1 ≡ 1, that A(ν′)d+1,d+1 =
∫

uν′,d+1(z′A(ν′)−1z)dQ(z). For
any s ≥ 0, we have suν′,d+1(s) + ν′uν′,d+1(s) = ν + d. Combining gives

d + 1 = ν + d − ν′
∫

uν′,d+1

(
z′A(ν′)−1z

)
dQ(z),

and (b) follows.
(c): We can just apply (13) with γ = 1, and for A = A(ν′), part (b).
(d): This follows from (b) and (c).
(e): By Proposition 10, for γ = 1 fixed, the relation (12) is a homeomorphism
between {A ∈ Pd+1 : Ad+1,d+1 = 1} and {(µ,Σ) : µ ∈ R

d, Σ ∈ Pd}. So this also
follows from Theorem 8.
(f): We have ν + d > d + 1, so Q /∈ Ud+1,ν+d by Proposition 11. By Theorem
8(a), Qh defined by (8) for ρ = ρν′,d+1 has no critical point A. Suppose Ph has
a critical point (µ,Σ) for ρ = ρν,d. Let A := A(Σ, µ, 1) ∈ Pd+1. By an affine
transformation we can assume µ = 0 and Σ = Id, the d × d identity matrix, so
A = Id+1. Equations for Σ = Id to be a critical point can be written in the form
∂/∂(Σ−1)ij = 0, 1 ≤ i ≤ j ≤ d. By (16) it follows easily that equation (10) holds
for B = A and u = uν′,d+1 with the possible exception of the (d + 1, d + 1) entry.
Summing the equations for the diagonal (i, i) entries for i = 1, . . . , d, it follows that
the (d + 1, d + 1) equation and so (10) holds. By Proposition 6, we get that A is a
critical point of the given Qh, a contradiction.

Kent, Tyler and Vardi [16, Theorem 3.1] show that if u(s) ≥ 0, u(0) < +∞, u(·)
is continuous and nonincreasing for s ≥ 0, and su(s) is nondecreasing for s ≥ 0, up
to a0 > d, and if (17) holds with u in place of uν,d at each critical point (µ,Σ) of
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Qh, then u must be of the form u(s) = uν,d(s) = (ν + d)/(ν + s) for some ν > 0.
Thus, the method of relating pure scatter functionals in R

d+1 to location-scatter
functionals in R

d given by Theorem 12 for t functionals defined by functions uν,d

does not extend directly to any other functions u.
When d = 1, P ∈ V1,ν+1 requires that P ({x}) < ν/(1+ν) for each point x. Then

Σ reduces to a number σ2 with σ > 0. If ν > 1, and P /∈ V1,ν+1, then for some
unique x, P ({x}) ≥ ν/(ν +1). One can extend (µν , σν) by setting µν(P ) := x and
σν(P ) := 0, with (µν , σν) then being weakly continuous at all P [6, Section 6].

The tν functionals (µν , Σν) defined in this section can’t have a weakly continuous
extension to all laws for d ≥ 2, because such an extension of µν would give a
weakly continuous affinely equivariant location functional defined for all laws, which
is impossible by Theorem 4(b). Here is an example showing that for d = 2 and
empirical laws with n = 6, invariant under interchanging x and −x, and/or y and
−y, so that an affinely equivariant µ must be 0, there is no continuous extension of
the scatter matrix Σν to laws concentrated in lines. For k = 1, 2, . . . let

P (k) :=
1
6

[
δ(−1,−1/k) + δ(−1,1/k) + δ(1,−1/k) + δ(1,1/k)

]
+

1
3
δ(0,0),

Q(k) :=
1
6

[
2δ(−1,0) + δ(0,−1/k) + δ(0,1/k) + 2δ(1,0)

]
.

Then for each ν > 1, all members of both sequences have mass ≤ 1/3 < ν/(ν + 2)
at each point and mass ≤ 2/3 < (ν + 1)/(ν + 2) on each line, so are in U2,ν+2

and the functionals µν , Σν are defined for them. By the symmetries x ↔ −x and
y ↔ −y, µν ≡ 0 and Σν is diagonal on all these laws. Both sequences converge
to the limit P = 1

3

[
δ(−1,0) + δ(0,0) + δ(1,0)

]
, which is concentrated in a line and so

is not in U2,ν+2 for any ν. Σν(P (k)) converges to (a(ν)
0

0
0) but Σν(Q(k)) converges

to (b(ν)
0

0
0) where a(ν) := 2(1 − ν−1)/3 	= b(ν) := (2 + ν−1)/3. We also have

Σν(Q(1)) = (b(ν)
0

0
c(ν)) with c(ν) = 1

3 (1−ν−1), so that, in contrast to Theorem 5(a),

Σν is not proportional to the covariance matrix (2/3
0

0
1/3) for any ν < ∞, but Σν

converges to the covariance as ν → +∞, as is not surprising since the tν distribution
converges to a normal one.

5. Differentiability of t functionals

Let (S, e) be any separable metric space, in our case R
d with its usual Euclidean

metric. Recall the space BL(S, e) of all bounded Lipschitz real functions on S, with
its norm ‖f‖BL. The dual Banach space BL∗(S, e) has the dual norm ‖φ‖∗BL, which
metrizes the weak topology on probability measures [5, Theorem 11.3.3].

Let V be an open set in a Euclidean space R
d. For k = 1, 2, . . . , let Ck

b (V ) be
the space of all real-valued functions f on V such that all partial derivatives Dpf ,
for Dp := ∂[p]/∂xp1

1 · · · ∂xpd

d and 0 ≤ [p] := p1 + · · ·+ pd ≤ k, are continuous and
bounded on V . On Ck

b (V ) we have the norm

(18) ‖f‖k,V :=
∑

0≤[p]≤k

‖Dpf‖sup,V , where ‖g‖sup,V := sup
x∈V

|g(x)|.

Then (Ck
b (V ), ‖.‖k,V ) is a Banach space. For k = 1 and V convex in R

d it’s straight-
forward that C1

b (V ) is a subspace of BL(V, e), with the same norm for d = 1 and
an equivalent one if d > 1.
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Substituting ρν,d from (15) into (6) gives for y ∈ R
d and A ∈ Pd,

Lν,d(y, A) :=
1
2

log det A +
ν + d

2
log

[
1 + ν−1y′A−1y

]
,

so that in (7) we get

hν(y, A) := hν,d(y, A) := Lν,d(y, A) − Lν,d(y, I).

Differentiating with respect to entries Cij where C = A−1, and recalling uν,d(s) ≡
(ν + d)/(ν + s), we get as shown in [6, Section 5]

(19)
∂hν,d(y, A)

∂Cij
=

∂Lν,d(y, A)
∂Cij

= − Aij

1 + δij
+

(ν + d)yiyj

(1 + δij)(ν + y′Cy)
.

For 0 < δ < 1 and d = 1, 2, . . . , let

Wδ := Wδ,d := {A ∈ Pd : max(‖A‖, ‖A−1‖) < 1/δ}.

The following is proved in [6, Section 5].

Lemma 13. For any δ ∈ (0, 1) let U := Uδ := R
d × Wδ,d. Let A ∈ Pd

be parameterized by the entries Ckl of C = A−1. For any ν ≥ 1, the functions
∂Lν,d/∂Ckl in (19) are in Cj

b (Uδ) for all j = 1, 2, . . ..

To treat t functionals of location and scatter in any dimension p we will need
functionals of pure scatter in dimension p + 1, so in the following lemma we only
need dimension d ≥ 2. The next lemma, proved in [6, Section 5], helps to show
differentiability of t functionals via implicit function theorems, as it implies that
the derivative of the gradient (the Hessian) of Qh is non-singular at a critical point.
Let T (d) := {(i, j) : 1 ≤ i ≤ j ≤ d}.
Lemma 14. For each ν > 0, d = 2, 3, . . . , and Q ∈ Ud,ν+d, let A(ν) = Aν(Q) ∈ Pd

be the unique critical point of Qh(·) defined by (8) for ρ = ρν,d defined by (15). For
C = A−1, the Hessian matrix ∂2Qh(A)/∂Cij∂Ckl with rows indexed by (i, j) ∈ T (d)
and columns by (k, l) ∈ T (d) is positive definite at A = A(ν).

For any ν > 0 and A ∈ Pd, let Li,j,ν(x, A) := ∂Lν,d(x, A)/∂Cij from (19). Let
X := BL∗(Rd, e) for the usual metric e(s, t) := |s − t|. Again, parameterize
A ∈ Pd with inverse C by {Cij}1≤i≤j≤d ∈ R

d(d+1)/2. Consider the open set Θ :=
Pd ⊂ R

d(d+1)/2 and the function F := Fν from X × Θ into R
d(d+1)/2 defined by

(20) F (φ, A) := {φ(Li,j,ν(·, A))}1≤i≤j≤d.

Then F is well-defined because Li,j,ν(·, A) are all bounded and Lipschitz functions
of x for each A ∈ Θ; in fact, they are C1 with bounded derivatives equal except
possibly for signs to second partials of Lν,d with respect to Cij . The next fact,
proved in [6, Section 5], uses some basic notions and facts from infinite-dimensional
calculus, given in [2] and reviewed in the Appendix of [6].

Theorem 15. Let X := BL∗(Rd, e). In parts (a) through (c), let ν > 0.
(a) The function F = Fν is C∞ (for Fréchet differentiability) from X × Θ into
R

d(d+1)/2.
(b) Let Q ∈ Ud,ν+d, and take the corresponding φQ ∈ X. At Aν(Q), the d(d+1)/2×
d(d + 1)/2 matrix ∂F (φQ, A)/∂C := {∂F (φQ, A)/∂Ckl}1≤k≤l≤d is invertible.
(c) The functional Q �→ Aν(Q) is C∞ for the BL∗ norm on Ud,ν+d.
(d) For each ν > 1, the functional P �→ (µν , Σν)(P ) given by Theorems 8 and 12
is C∞ on Vd,ν+d for the BL∗ norm.
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To prove asymptotic normality of
√

n(T (Pn)−T (P )) for T = (µν , Σν), the dual-
bounded-Lipschitz norm ‖ · ‖∗BL is too strong for some heavy-tailed distributions.
Giné and Zinn [12] proved that for d = 1, {f : ‖f‖BL ≤ 1} is a P -Donsker class if
and only if

∑∞
j=1 Pr(j − 1 < |X| ≤ j)1/2 < ∞ for X with distribution P . To define

norms better suited to present purposes, for δ > 0 and r = 1, 2, . . ., let Fδ,r be the
set of all functions of y appearing in (19) and their partial derivatives with respect
to Cij through order r, for any A ∈ Wδ. Then each Fδ,r is a uniformly bounded VC
major class as in Theorem 3. Let Yδ,r be the linear span of Fδ,r. Let Xδ,r be the
set of all real-valued linear functionals φ on Yδ,r for which ‖φ‖δ,r := sup{|φ(f)| :
f ∈ Fδ,r} < ∞. For A ∈ Wδ,d and φ ∈ Xδ,r, define F (φ, A) again by (20), which
makes sense since each Li,j,ν(·, A) ∈ Fδ,r for any r = 0, 1, 2, . . . by definition.

The next two theorems are also proved in [6, Section 5]. Theorem 17 is a delta-
method fact.

Theorem 16. Let 0 < δ < 1. For any positive integers d and r, Theorem 15 holds
for X = Xδ,r+3 in place of BL∗(Rd, e), Wδ,d in place of Θ, and Cr in place of C∞

wherever it appears (parts (a), (c), and (d)).

Theorem 17. (a) For any d = 2, 3, . . . and ν > 0, let Q ∈ Ud,ν+d. Then the
empirical measures Qn ∈ Ud,ν+d with probability → 1 as n → ∞ and

√
n(Aν(Qn)−

Aν(Q)) converges in distribution to a normal distribution with mean 0 on R
d(d+1)/2

if A ∈ Pd is parameterized by {Aij}1≤i≤j≤d, or a different normal distribution for
the parameterization by {A−1

ij }1≤i≤j≤d as above. The limit distributions can also be
taken on R

d2
, concentrated on symmetric matrices.

(b) Let d = 1, 2, . . . and 1 < ν < ∞. For any P ∈ Vd,ν+d, the empirical measures
Pn ∈ Vd,ν+d with probability → 1 as n → ∞ and the functionals µν and Σν are
such that as n → ∞,

√
n [(µν , Σν)(Pn) − (µν , Σν)(P )] converges in distribution to

some normal distribution with mean 0 on R
d × R

d2
, whose marginal on R

d2
is

concentrated on d × d symmetric matrices.

Now, here is a statement on uniformity as P and Q vary, proved in [6, Section
5].

Proposition 18. For any δ > 0 and M < ∞, the rate of convergence to normality
in Theorem 17(a) is uniform over the set Q := Q(δ, M) of all Q ∈ Ud,ν+d such
that Aν(Q) ∈ Wδ and

(21) Q({z : |z| > M}) ≤ (1 − δ)/(ν + d),

or in part (b), over all P ∈ Vd,ν+d such that Σν(P ) ∈ Wδ and (21) holds for P in
place of Q.
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