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Risk bounds for the non-parametric

estimation of Lévy processes

José E. Figueroa-López1 and Christian Houdré2

Purdue University and Georgia Institute of Technology

Abstract: Estimation methods for the Lévy density of a Lévy process are
developed under mild qualitative assumptions. A classical model selection ap-
proach made up of two steps is studied. The first step consists in the selection
of a good estimator, from an approximating (finite-dimensional) linear model
S for the true Lévy density. The second is a data-driven selection of a linear
model S, among a given collection {Sm}m∈M, that approximately realizes the
best trade-off between the error of estimation within S and the error incurred
when approximating the true Lévy density by the linear model S. Using recent
concentration inequalities for functionals of Poisson integrals, a bound for the
risk of estimation is obtained. As a byproduct, oracle inequalities and long-
run asymptotics for spline estimators are derived. Even though the resulting
underlying statistics are based on continuous time observations of the process,
approximations based on high-frequency discrete-data can be easily devised.

1. Introduction

Lévy processes are central to the classical theory of stochastic processes, not only as
discontinuous generalizations of Brownian motion, but also as prototypical Markov
processes and semimartingales (see [27] and [5] for monographs on these topics). In
recent years, continuous-time models driven by Lévy processes have received a great
deal of attention mainly because of their applications in the area of mathematical
finance (see e.g. [14] and references therein). The scope of these models goes from
simple exponential Lévy models (e.g. [2, 10, 12] and [16]), where the underlying
source of randomness in the Black-Scholes model is replaced by a Lévy process, to
exponential time-changed Lévy processes (e.g. [11]-[13]) and to stochastic differen-
tial equations driven by multivariate Lévy processes (e.g. [3, 29]). Exponential Lévy
models have proved successful to account for several empirical features observed in
time series of financial returns such as heavy tails, high-kurtosis, and asymmetry
(see, for example, [10] and [16]). Lévy processes, as models capturing the most ba-
sic features of returns and as “first-order approximations” to other more accurate
models, should be considered first in developing and testing a successful statistical
methodology. However, even in such parsimonious models, there are several issues
in performing statistical inference by standard likelihood-based methods.

Lévy processes are determined by three “parameters”: a non-negative real σ2,
a real µ, and a measure ν on R\{0}. These three parameters characterize a Lévy
process {X(t)}t≥0 as the superposition of a Brownian motion with drift, σB(t)+µt,
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and an independent pure-jump Lévy process, whose jump behavior is specified
by the measure ν in that for any A ∈ B(R), whose indicator χA vanishes in a
neighborhood of the origin,

ν(A) =
1
t
E

∑
s≤t

χ
A

(∆X(s))

 ,

for any t > 0 (see Section 19 of [27]). Here, ∆X(t) ≡ X(t) − X(t−) denotes the
jump of X at time t. Thus, ν(A) gives the average number of jumps (per unit time)
whose magnitudes fall in the set A. A common assumption in Lévy-based financial
models is that ν is determined by a function p : R\{0} → [0,∞), called the Lévy
density, as follows

ν(A) =
∫

A

p(x)dx, ∀A ∈ B(R\{0}).

Intuitively, the value of p at x0 provides information on the frequency of jumps
with sizes “close” to x0.

Estimating the Lévy density poses a nontrivial problem, even when p takes simple
parametric forms. Parsimonious Lévy densities usually produce not only intractable
marginal densities, but sometimes marginal densities which are not even expressible
in a closed form. The current practice of estimation relies on numerical approxi-
mations of the density function of X(t) using inversion formulas combined with
maximum likelihood estimation (see for instance [10]). Such approximations make
the estimation computationally expensive and particularly susceptible to numerical
errors and mis-specifications. Even in the case of closed form marginal densities,
maximum-likelihood based methods present serious numerical problems. For in-
stance, analyzing generalized hyperbolic Lévy processes, the author of [24] notices
that the likelihood function is highly flat for a wide range of parameters and good
starting values as well as convergence are critical. Also, the separation of parame-
ters and identification between different subclasses is difficult. These issues worsen
when dealing with “high-frequency” data. Other calibration methods include meth-
ods based on moments, simulation based methods, and multinomial log likelihoods
(see e.g. [29] and [6] and references therein). However, our goal in the present paper
is not to match the precision of some of these parametric methods, but rather gain
in robustness and efficiency using non-parametric methods. That is to say, assuming
only qualitative information on the Lévy density, we develop estimation schemes
for the Lévy density p that provide fairly general function estimators p̂.

We follow the so-called model selection methodology developed in the context of
density estimation in [8], and recently extended to the estimation of intensity func-
tions for Poisson processes in [25]. The essence of this approach is to approximate
an infinite-dimensional, nonparametric model by a sequence of finite-dimensional
models. This strategy has its origins in Grenander’s method of sieves (see [17]). Con-
cretely, the procedure addresses two problems. First, the selection of a good estima-
tor p̂S , called the projection estimator, out of an approximating (finite-dimensional)
linear model S for the Lévy density. Second, the selection of a linear model Sm̂,
among a given collection of linear models {Sm}m, that approximately realizes the
best trade-off between the error of estimation from the first step, and the error
incurred when approximating the unknown Lévy density by the linear model S.
The technique used in the second step has the general flavor of cross-validation via
a penalization term, leading to penalized projection estimators p̃ (p.p.e.).

Comparing our approach to other non-parametric methods for non-homogeneous
Poisson processes (see e.g. [20, 21] and [25]), we will see that the main difficulty here
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is the fact that the jump process associated with a Lévy process has potentially
infinitely many small jumps. To overcome this problem, we introduce a reference
measure and estimate instead the Lévy density with respect to this measure. In
contrast to [25], our treatment does not rely on the finiteness of such a reference
measure. Our main objective here is to estimate the order of magnitude of the
mean-square error, E ‖p − p̃‖2, between the true Lévy density and the p.p.e. To
accomplish this, we apply concentration inequalities for functionals of Poisson point
processes such as functions of stochastic Poisson integrals (see e.g. [9, 18, 25]). This
important statistical application of concentration inequalities is well-known in other
contexts such as regression and density estimation (see [8] and references therein).
The bound for the risk of estimation leads in turn to oracle inequalities implying
that the p.p.e. is at least as good (in terms of the long term rate of convergence)
as the best projection estimator (see Section 4 for details). Also, combining the
bound with results on the approximation of smooth functions by sieves, one can
determine the long-term rate of convergence of the p.p.e. on certain well-known
approximating spaces of functions such as splines.

The statistics underlying our estimators are expressed in terms of deterministic
functions of the jumps of the process, and thus, they are intrinsically based on a
continuous-time observation of the process during some time period [0, T ]. Even
though this observation scheme has an obvious drawback, statistical analysis under
it presents a lot of interest for two reasons. First, very powerful theoretical results
can be obtained, thus providing benchmarks of what can be achieved by discrete-
data-based statistical methods. Second, since the path of the process can in principle
be approximated by high-frequency sampling, it is possible to construct feasible
estimators by approximating the continuous-time based statistics using discrete-
observations. We use this last idea to obtain estimators by replacing the jumps by
increments, based on equally spaced observations of the process.

Let us describe the outline of the paper. We develop the model selection approach
in Sections 2 and 3. We proceed to obtain in Section 4 bounds for the risk of
estimation, and consequently prove oracle inequalities. In Section 5 the rate of
convergence of the p.p.e. on regular splines, when the Lévy density belongs to some
Lipschitz spaces or Besov spaces of smooth functions, are derived. In Section 6,
implementation of the method using discrete-time sampling of the process is briefly
discussed. We finish with proofs of the main results.

2. A non-parametric estimation method

Consider a real Lévy process X = {X(t)}t≥0 with Lévy density p : R0 → R+,
where R0 ≡ R\{0}. Then, X is a càdlàg process with independent and stationary
increments such that the characteristic function of its marginals is given by

(2.1) E

[
eiuX(t)

]
= exp

{
t

(
iub − u2σ2

2
+
∫

R0

{
eiux − 1 − iux1[|x|≤1]

}
p(x)dx

)}
,

with p : R0 → R+ such that

(2.2)
∫

R0

(1 ∧ x2)p(x)dx < ∞.

Since X is a càdlàg process, the set of its jump times{
t > 0 : ∆X(t) ≡ X(t) − X(t−) �= 0

}
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is countable. Moreover, for Borel subsets B of [0,∞) × R0,

(2.3) J (B) ≡ #
{
t > 0 : (t, X(t) − X(t−)) ∈ B

}
,

is a well-defined random measure on [0,∞)×R0, where # denotes cardinality. The
Lévy-Itô decomposition of the sample paths (see Theorem 19.2 of [27]) implies that
J is a Poisson process on the Borel sets B([0,∞) × R0) with mean measure

(2.4) µ(B) =
∫∫
B

p(x) dt dx.

Recall also that the stochastic integral of a deterministic function f : R0 → R with
respect to J is defined by

(2.5) I (f) ≡
∫∫

[0,T ]×R0

f(x)J (dt, dx) =
∑
t≤T

f(∆X(t)),

where this last expression is well defined if∫ T

0

∫
R0

|f(x)|µ(dt, dx) = T

∫
R0

|f(x)|p(x)dx < ∞;

see e.g. Chapter 10 in [19].
We consider the problem of estimating the Lévy density p on a Borel set D ∈

B (R0) using a projection estimation approach. According to this paradigm, p is
estimated by estimating its best approximating function in a finite-dimensional
linear space S. The linear space S is taken so that it has good approximation
properties for general classes of functions. Typical choices are piecewise polynomials
or wavelets. Throughout, we make the following standing assumption.

Assumption 1. The Lévy measure ν(dx) ≡ p(x)dx is absolutely continuous with
respect to a known measure η on B (D) so that the Radon-Nikodym derivative

(2.6)
dν

dη
(x) = s(x), x ∈ D,

is positive, bounded, and satisfies

(2.7)
∫

D

s2(x)η(dx) < ∞.

In that case, s is called the Lévy density, on D, of the process with respect to the
reference measure η.

Remark 2.1. Under the previous assumption, the measure J of (2.3), when re-
stricted to B([0,∞) × D), is a Poisson process with mean measure

(2.8) µ(B) =
∫∫
B

s(x) dt η(dx), B ∈ B([0,∞) × D).

Our goal will be to estimate the Lévy density s, which itself could in turn be
used to retrieve p on D via (2.6). To illustrate this strategy consider a continuous
Lévy density p such that

p(x) = O
(
x−1
)
, as x → 0.
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This type of densities satisfies the above assumption with respect to the measure
η(dx) = x−2dx on domains of the form D = {x : 0 < |x| < b}. Clearly, an estimator
p̂ for the Lévy density p can be generated from an estimator ŝ for s by fixing
p̂(x) ≡ x−2ŝ(x).

Let us now describe the main ingredients of our approach. Let S be a finite
dimensional subspace of L2 ≡ L2 ((D, η)) equipped with the standard norm

‖f‖2
η
≡
∫

D

f2(x) η(dx).

The space S plays the role of an approximating linear model for the Lévy density s.
Of course, under the L2 norm, the best approximation of s on S is the orthogonal
projection defined by

(2.9) s⊥(x) ≡
d∑

i=1

(∫
D

ϕi(y)s(y)η(dy)
)

ϕi(x),

where {ϕ1, . . . , ϕd} is an arbitrary orthonormal basis of S. The projection estimator
of s on S is defined by

(2.10) ŝ(x) ≡
d∑

i=1

β̂iϕi(x),

where we fix

(2.11) β̂i ≡
1
T

∫∫
[0,T ]×D

ϕi(x)J (dt, dx).

This is the most natural unbiased estimator for the orthogonal projection s⊥. No-
tice also that ŝ is independent of the specific orthonormal basis of S. Indeed, the
projection estimator is the unique solution to the minimization problem

min
f∈S

γ
D

(f),

where γ
D

: L2 ((D, η)) → R is given by

(2.12) γ
D

(f) ≡ − 2
T

∫∫
[0,T ]×D

f(x)J (dt, dx) +
∫
D

f2(x) η(dx).

In the literature on model selection (see e.g. [7] and [25]), γD is the so-called contrast
function. The previous characterization also provides a mechanism to numerically
evaluate ŝ when an orthonormal basis of S is not explicitly available.

The following proposition provides both the first-order and the second-order
properties of ŝ. These follow directly from the well-known formulas for the mean
and variance of Poisson integrals (see e.g. [19] Chapter 10).

Proposition 2.2. Under Assumption 1, ŝ is an unbiased estimator for s⊥ and its
“mean-square error”, defined by

χ2 ≡ ‖ŝ − s⊥‖2
η

=
∫ (

ŝ(x) − s⊥(x)
)2

η(dx),
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is such that

(2.13) E
[
χ2
]

=
1
T

d∑
i=1

∫
D

ϕ2
i (x)s(x) η(dx).

The risk of ŝ admits the decomposition

(2.14) E

[
‖s − ŝ‖2

η

]
= ‖s − s⊥‖2

η
+ E
[
χ2
]
.

The first term in (2.14), the bias term, accounts for the distance of the unknown
function s to the model S, while the second term, the variance term, measures the
error of estimation within the linear model S. Notice that (2.13) is finite because s
is assumed bounded on D and thus,

(2.15) E
[
χ2
]
≤ ‖s‖∞

d

T
.

3. Model selection via penalized projection estimator

A crucial issue in the above approach is the selection of the approximating linear
model S. In principle, a “nice” density s can be approximated closely by general
linear models such as splines or wavelet. However, a more robust model S ′ con-
taining S will result in a better approximation of s, but with a larger variance.
This raises the natural problem of selecting one model, out of a collection of linear
models {Sm, m ∈ M}, that approximately realizes the best trade-off between the
risk of estimation within the model and the distance of the unknown Lévy density
to the approximating model.

Let ŝm and s⊥m be respectively the projection estimator and the orthogonal pro-
jection of s on Sm. The following equation, readily derived from (2.14), gives insight
on a sensible solution to the model selection problem:

E

[
‖s − ŝm‖2

η

]
= ‖s‖2

η
+ E

[
−‖ŝm‖2

η
+ pen(m)

]
.(3.1)

Here, pen(m) is defined in terms of an orthonormal basis {ϕ1,m, . . . , ϕdm,m} of Sm

by the equation:

(3.2) pen(m) =
2

T 2

∫∫
[0,T ]×D

(
dm∑
i=1

ϕ2
i,m(x)

)
J (dt, dx).

Equation (3.1) shows that the risk of ŝm moves “parallel” to the expectation of
the observable statistics −‖ŝm‖2

η
+ pen(m). This fact justifies to choose the model

that minimizes such statistics. We will see later that other choices for pen(·) also
give good results. Therefore, given a penalization function pen : M → [0,∞), we
consider estimators of the form

(3.3) s̃ ≡ ŝm̂,

where ŝm is the projection estimator on Sm and

m̂ ≡ argminm∈M

{
−‖ŝm‖2

η
+ pen(m)

}
.
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An estimator s̃ as in (3.3) is called a penalized projection estimator (p.p.e.)
on the collection of linear models {Sm, m ∈ M}.

Methods of estimation based on the minimization of penalty functions have a long
history in the literature on regression and density estimation (for instance, [1, 22],
and [28]). The general idea is to choose, among a given collection of parametric
models, the model that minimizes a loss function plus a penalty term that controls
the variance term, which will forcefully increase as the approximating linear models
become more detailed. Such penalized estimation was promoted for nonparametric
density estimation in [8], and in the context of non-homogeneous Poisson processes
in [25].

4. Risk bound and oracle inequalities

The penalization idea of the previous section provides a sensible criterion to select
an estimator s̃ ≡ ŝm̂ out of the projection estimators {ŝm : m ∈ M} induced by a
given collection of approximating linear models {Sm, m ∈ M}. Ideally, one wishes
to choose that projection estimator ŝm∗ that minimizes the risk; namely, such that

(4.1) E

[
‖s − ŝm∗‖2

η

]
≤ E

[
‖s − ŝm‖2

η

]
, for all m ∈ M.

Of course, to pick the best ŝm is not feasible since s is not available to actually
compute and compare the risks. But, how bad would the risk of s̃ be compared
to the best possible risk that can be achieved by projection estimators? One can
aspire to achieve the smallest possible risk up to a constant. In other words, it is
desirable that our estimator s̃ comply with an inequality of the form

(4.2) E

[
‖s − s̃‖2

η

]
≤ C inf

m∈M
E

[
‖s − ŝm‖2

η

]
,

for a constant C independent of the linear models. The model Sm∗ that achieves
the minimal risk (using projection estimation) is the oracle model and inequalities
of the type (4.2) are called oracle inequalities. Approximate oracle inequalities were
proved in [25] for the intensity function of a nonhomogeneous Poisson process. In
this section we show that for certain penalization functions, the resulting penalized
projection estimator s̃ defined by (3.3) satisfies the inequality

(4.3) E

[
‖s − s̃‖2

η

]
≤ C inf

m∈M
E

[
‖s − ŝm‖2

η

]
+

C ′

T
,

for some “model free” constants C, C ′ (remember that the time period of observa-
tions is [0, T ]). The main tool in obtaining oracle inequalities is an upper bound for
the risk of the penalized projection estimator s̃. The proof of (4.3) follows essentially
from the arguments in [25]; however, to overcome the possible lack of finiteness on
the reference measure η (see Assumption 1), which is required in [25], and to avoid
superfluous rough upper bounds, the dimension of the linear model is explicitly
included in the penalization and the arguments are refined.

Let us introduce some notation. Below, dm denotes the dimension of the linear
model Sm, and {ϕ1,m, . . . , ϕdm,m} is an arbitrary orthonormal basis of Sm. Define

Dm = sup
{
‖f‖2

∞ : f ∈ Sm, ‖f‖2
η

= 1
}

,(4.4)

which is assumed to be finite and can be proved to be equal to ‖
∑dm

i=1 ϕ2
i,m‖∞.
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We make the following regularity condition, introduced in [25], that essentially
controls the complexity of the linear models. This assumption is satisfied by splines
and trigonometric polynomials, but not by wavelet bases.

Assumption 2. There exist constants Γ > 0 and R ≥ 0 such that for every positive
integer n,

# {m ∈ M : dm = n} ≤ ΓnR.

We now present our main result.

Theorem 4.1. Let {Sm, m ∈ M} be a family of finite dimensional linear subspaces
of L2((D, η)) satisfying Assumption 2 and such that Dm < ∞. Let MT ≡ {m ∈
M : Dm ≤ T}. If ŝm and s⊥m are respectively the projection estimator and the
orthogonal projection of the Lévy density s on Sm then, the penalized projection
estimator s̃T on {Sm}m∈MT

defined by (3.3) is such that

(4.5) E

[
‖s − s̃

T
‖2

η

]
≤ C inf

m∈MT

{
‖s − s⊥m‖2

η
+ E [pen(m)]

}
+

C ′

T
,

whenever pen : M → [0,∞) takes either one of the following forms for some fixed
(but arbitrary) constants c > 1, c′ > 0, and c′′ > 0:
(a) pen(m) ≥ cDmN

T 2 + c′ dm

T , where N ≡ J ([0, T ] × D) is the number of jumps
prior to T with sizes in D and where it is assumed that ρ ≡

∫
D

s(x)η(dx) < ∞;

(b) pen(m) ≥ c V̂m

T , where V̂m is defined by

(4.6) V̂m ≡ 1
T

∫∫
[0,T ]×D

(
dm∑
i=1

ϕ2
i,m(x)

)
J (dt, dx),

and where it is assumed that β ≡ infm∈M
E[V̂m]
Dm

> 0 and that φ ≡ infm∈M
Dm

dm
> 0;

(c) pen(m) ≥ c V̂m

T + c′ Dm

T + c′′ dm

T .
In (4.5), the constant C depends only on c, c′ and c′′, while C ′ varies with c, c′,

c′′, Γ, R, ‖s‖
η
, ‖s‖∞, ρ, β, and φ.

Remark 4.2. It can be shown that if c ≥ 2, then for arbitrary ε > 0, there is a
constant C ′(ε) (increasing as ε ↓ 0) such that

(4.7) E‖s − s̃‖2
η
≤ (1 + ε) inf

m∈M

{
‖s − s⊥m‖2

η
+ E [pen(m)]

}
+

C ′(ε)
T

.

One important consequence of the risk bound (4.5) is the following oracle in-
equality:

Corollary 4.3. In the setting of Theorem 4.1(b), if the penalty function is of the
form pen(m) ≡ c V̂m

T , for every m ∈ MT , β > 0, and φ > 0, then

(4.8) E

[
‖s − s̃T ‖2

η

]
≤ C̃ inf

m∈MT

{
E

[
‖s − ŝm‖2

η

]}
+

C̃ ′

T
,

for a constant C̃ depending only on c, and a constant C̃ ′ depending on c, Γ, R,
‖s‖η , ‖s‖∞, β, and φ.
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5. Rate of convergence for smooth Lévy densities

We use the risk bound of the previous section to study the “long run” (T → ∞)
rate of convergence of penalized projection estimators based on regular piecewise
polynomials, when the Lévy density is “smooth”. More precisely, on a window of
estimation D ≡ [a, b] ⊂ R0, the Lévy density of the process with respect to the
Lebesgue measure η(dx) ≡ dx, denoted by s, is assumed to belong to the Besov
space (also called Lipschitz space) Bα

∞ (Lp([a, b])) for some p ∈ [2,∞] and α > 0 (see
for instance [15] and references therein for background on these spaces). Concretely,
Bα
∞ (Lp([a, b])) consists of those functions f ∈ Lp([a, b], dx) if 0 < p < ∞ (or f

continuous if p = ∞) such that

|f |Bα
∞(Lp) ≡ sup

δ>0

1
δα

sup
0<h≤δ

‖∆r
h(f, ·)‖

Lp([a,b],dx) < ∞,

where ∆h(f, x) ≡ f(x + h) − f(x) and ∆r
h(f, x) is the rth-order difference of f

defined by
∆r

h(f, x) ≡ ∆h(∆r−1
h (f, ·), x),

for x such that x + rh ∈ D and r ∈ N. The following spaces are closely related.
For k ∈ N and β ∈ (0, 1] such that α = k + β, let Lip(α, Lp([a, b])) be the class of
functions f such that f, . . . , f (k−1) are absolutely continuous on [a, b] with f (k) ∈
Lp((a, b)) satisfying

‖∆h(f (k), ·)‖
Lp([a,b],dx) ≤ Mhβ ,

for some M < ∞. It is know that if α > 0 is not an integer and 1 ≤ p ≤ ∞, then
f ∈ Lip(α, Lp([a, b])) if and only if f is a.e. equal to a function in Bα

∞ (Lp([a, b])).
In general, Lip(α, Lp([a, b])) ⊂ Bα

∞ (Lp([a, b])), for any 0 < p ≤ ∞ and α > 0 (see
e.g. [15]).

An important reason for the choice of the Besov class of smooth functions is the
availability of estimates for the error of approximation by splines, trigonometric
polynomials, and wavelets (see e.g. [15] and [4]). In particular, if Sk

m denotes the
space of piecewise polynomials of degree at most k, based on the regular partition
of [a, b] with m intervals (m ≥ 1), and s ∈ Bα

∞ (Lp([a, b])) with k > α − 1, then
there exists a constant C(s) such that

(5.1) dp

(
s,Sk

m

)
≤ C(s)m−α,

where dp is the distance induced by the Lp-norm on ([a, b], dx) (see [15]). The
following gives the rate of convergence of the p.p.e. on regular splines.

Corollary 5.1. With the notation of Theorem 4.1, taking D = [a, b] and η(dx) =
dx , let s̃T be the penalized projection estimator on {Sk

m}m∈MT
with penalization

pen(m) ≡ c
V̂m

T
+ c′

Dm

T
+ c′′

dm

T
,

for some fixed c > 1 and c′, c′′ > 0. Then, if the restriction to D of the Lévy density
s belongs to Bα

∞ (Lp([a, b])), with 2 ≤ p ≤ ∞ and 0 < α < k + 1, then

lim sup
T→∞

T 2α/(2α+1)
E

[
‖s − s̃

T
‖2

η

]
< ∞.

Moreover, for any R > 0 and L > 0,

(5.2) lim sup
T→∞

T 2α/(2α+1) sup
s∈Θ(R,L)

E

[
‖s − s̃T ‖2

η

]
< ∞,
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where Θ(R, L) consists of all the Lévy densities f such that ‖f‖L∞([a,b],dx) < R, and
such that the restriction of f to [a, b] is a member of Bα

∞ (Lp([a, b])) with |f |Bα
∞(Lp) <

L.

The previous result implies that the p.p.e. on regular splines has a rate of con-
vergence of order T−2α/(2α+1) for the class of Besov Lévy densities Θ(R, L).

6. Estimation based on discrete time data

Let us finish with some remarks on how to approximate the continuous-time sta-
tistics of our methods using only discrete-time observations. In practice, we can
aspire to sample the process X(t) at discrete times, but we are neither able to
measure the size of the jumps ∆X(t) ≡ X(t) − X(t−) nor the times of the jumps
{t : ∆X(t) > 0}. In general, Poisson integrals of the type

(6.1) I (f) ≡
∫∫

[0,T ]×R0

f(x)J (dt, dx) =
∑
t≤T

f(∆X(t)),

are not accessible. Intuitively, the following statistic is the most natural approxi-
mation to (6.1):

(6.2) In (f) ≡
n∑

k=1

f (∆kX) ,

where ∆kX is the kth increment of the process with time span hn ≡ T/n; that is,

∆kX ≡ X (khn) − X ((k − 1)hn) , k = 1, . . . , n.

How good is this approximation and in what sense? Under some conditions on f ,
we can readily prove the weak convergence of (6.2) to (6.1) using properties of the
transition distributions of X in small time (see [5], Corollary 8.9 of [27], and [26]).
The following theorem summarizes some known results on the small-time transition
distribution.

Theorem 6.1. Let X = {X(t)}t≥0 be a Lévy process with Lévy measure ν. The
following statements hold true.

(1) For each a > 0,

lim
t→0

1
t
P (X(t) > a) = ν([a,∞)),(6.3)

lim
t→0

1
t
P (X(t) ≤ −a) = ν((−∞,−a]).(6.4)

(2) For any continuous bounded function h vanishing in a neighborhood of the
origin,

(6.5) lim
t→0

1
t
E [h (X(t))] =

∫
R0

h(x)ν(dx).

(3) If h is continuous and bounded and if lim|x|→0 h(x)|x|−2 = 0, then

lim
t→0

1
t
E [h (X(t))] =

∫
R0

h(x)ν(dx).

Moreover, if
∫

R0
(|x| ∧ 1)ν(dx) < ∞, it suffices to have h(x)(|x| ∧ 1)−1 contin-

uous and bounded.
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Convergence results like (6.5) are useful to establish the convergence in distrib-
ution of In (f) since

E

[
eiuIn(f)

]
=
(
E

[
eiuf(X(T

n ))
])n

=
(
1 +

an

n

)n

,

where an = nE
[
h
(
X
(

T
n

))]
with h(x) = eiuf(x) − 1. So, if f is such that

(6.6) lim
t→0

1
t
E

[
eiuf(X(t)) − 1

]
=
∫

R0

(
eiuf(x) − 1

)
ν(dx),

then an converges to a ≡ T
∫

R0
h(x)ν(dx), and thus

lim
n→∞

(
1 +

an

n

)n

= lim
n→∞

en log(1+ an
n ) = ea.

We thus have the following result.

Proposition 6.2. Let X = {X(t)}t≥0 be a Lévy process with Lévy measure ν.
Then,

lim
n→∞

E

[
eiuIn(f)

]
= exp

{
T

∫
R0

(
eiuf(x) − 1

)
ν(dx)

}
,

if f satisfies either one of the following conditions:

(1) f(x) = 1(a,b](x)h(x) for an interval [a, b] ⊂ R0 and a continuous function h;
(2) f is continuous on R0 and lim|x|→0 f(x)|x|−2 = 0.

In particular, In(f) converges in distribution to I(f) under any one of the previous
two conditions.

Remark 6.3. Notice that if (6.5) holds true when replacing h by f and f2, then
the mean and variance of In(f) obey the asymptotics:

lim
n→∞

E [In(f)] = T

∫
R0

f(x)ν(dx);

lim
n→∞

Var [In(f)] = T

∫
R0

f2(x)ν(dx).

Remark 6.4. Very recently, [23] proposed a procedure to disentangle the jumps
from the diffusion part in the case of jump-diffusion models driven by finite-jump
activity Lévy processes. It is proved there that for certain functions r : R+ →
R+, there exists N(ω) such that for n ≥ N(ω), a jump occurs in the interval
((k − 1)hn, khn] if and only if (∆kX)2 > r(hn). Here, hn = T/n and ∆kX is the
kth increment of the process. These results suggest to use statistics of the form

n∑
k=1

f (∆kX)1
[
(∆kX)2 > r(hn)

]
instead of (6.2) to approximate the integral (6.1).
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7. Proofs

7.1. Proof of the risk bound

We break the proof of Theorem 4.1 into several preliminary results.

Lemma 7.1. For any penalty function pen : M → [0,∞) and any m ∈ M, the
penalized projection estimator s̃ satisfies

(7.1) ‖s − s̃‖2
η
≤ ‖s − s⊥m‖2

η
+ 2χ2

m̂ + 2νD

(
s⊥m̂ − s⊥m

)
+ pen(m) − pen(m̂),

where χ2
m ≡ ‖s⊥m − ŝm‖2

η
and where the functional νD : L2 ((D, η)) → R is defined

by

(7.2) νD(f) ≡
∫∫

[0,T ]×D

f(x)
J (dt, dx) − s(x) dt η(dx)

T
.

The general idea in obtaining (4.5) is to bound the “inaccessible” terms on the
right hand side of (7.1) (namely χ2

m̂ and νD

(
s⊥m̂ − s⊥m

)
) by observable statistics.

In fact, the penalizations pen(·) given in Theorem 4.1 are chosen so that the right
hand side in (7.1) does not involve m̂. To carry out this plan, we use concentration
inequalities for χ2

m̂ and for the compensated Poisson integrals νD(f). The following
result gives a concentration inequality for general compensated Poisson integrals.

Proposition 7.2. Let N be a Poisson process on a measurable space (V,V) with
mean measure µ and let f : V → R be an essentially bounded measurable function
satisfying 0 < ‖f‖2

µ
≡
∫
V

f2(v)µ(dv) and
∫
V
|f(v)|µ(dv) < ∞. Then, for any u > 0,

(7.3) P

[∫
V

f(v)(N(dv) − µ(dv)) ≥ ‖f‖µ

√
2u +

1
3
‖f‖∞u

]
≤ e−u.

In particular, if f : V → [0,∞) then, for any ε > 0 and u > 0,
(7.4)

P

[
(1 + ε)

(∫
V

f(v)N(dv) +
(

1
2ε

+
5
6

)
‖f‖∞u

)
≥
∫

V

f(v)µ(dv)
]
≥ 1 − e−u.

For a proof of the inequality (7.3), see [25] (Proposition 7) or [18] (Corollary
5.1). Inequality (7.4) is a direct consequence of (7.3) (see Section 7.2 for a proof).

The next result allows us to bound the Poisson functional χ2
m. This result is

essentially Proposition 9 of [25].

Lemma 7.3. Let N be a Poisson process on a measurable space (V,V) with mean
measure µ(dv) = p(v)ζ(dv) and intensity function p ∈ L2(V,V, ζ). Let S be a finite
dimensional subspace of L2(V,V, ζ) with orthonormal basis {ϕ̃1, . . . , ϕ̃d}, and let

p̂(v) ≡
d∑

i=1

(∫
V

ϕ̃i(w)N(dw)
)

ϕ̃i(v)(7.5)

p⊥(v) ≡
d∑

i=1

(∫
V

p(w)ϕ̃i(w)η(dw)
)

ϕ̃i(v).(7.6)

Then, χ2(S) ≡ ‖p̂ − p⊥‖2
ζ

is such that for any u > 0 and ε > 0

(7.7) P

[
χ(S) ≥ (1 + ε)

√
E [χ2(S)] +

√
2kMSu + k(ε)BSu

]
≤ e−u,
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where we can take k = 6, k(ε) = 1.25 + 32/ε, and where

MS ≡ sup
{∫

V

f2(v)p(v)ζ(dv) : f ∈ S, ‖f‖
ζ

= 1
}

,(7.8)

BS ≡ sup
{
‖f‖∞ : f ∈ S, ‖f‖

ζ
= 1
}

.(7.9)

Following the same strategy as in [25], the idea is to obtain from the previous
lemmas a concentration inequality of the form

P

[
‖s − s̃‖2

η
≤ C

(
‖s − s⊥m‖2

η
+ pen(m)

)
+ h(ξ)

]
≥ 1 − C ′e−ξ,

for constants C and C ′, and a function h(ξ) (all independent of m). This will prove
to be enough in view of the following elementary result (see Section 7.2 for a proof).

Lemma 7.4. Let h : [0,∞) → R+ be a strictly increasing function with continuous
derivative such that h(0) = 0 and limξ→∞ e−ξh(ξ) = 0. If Z is random variable
satisfying

P [Z ≥ h(ξ)] ≤ Ke−ξ,

for every ξ > 0, then

EZ ≤ K

∫ ∞

0

e−uh(u)du.

We are now in a position to prove Theorem 4.1. Throughout the proof, we
will have to introduce various constants and inequalities that will hold with high
probability. In order to clarify the role that the constants play in these inequalities,
we shall make some convention and give to the letters x, y, f , a, b, ξ, K, c, and C,
with various sub- or superscripts, special meaning. The letters with x are reserved to
denote positive constants that can be chosen arbitrarily. The letters with y denote
arbitrary constants greater than 1. f, f1, f2, . . . denote quadratic polynomials of
the variable ξ whose coefficients (denoted by a′s and b′s) are determined by the
values of the x′s and y′s. The inequalities will be true with probabilities greater
that 1−Ke−ξ, where K is determined by the values of the x′s and the y′s. Finally,
c′s and C ′s are used to denote constants constrained by the x′s and y′s. It is
important to remember that the constants in a given inequality are meant only for
that inequality. The pair of equivalent inequalities below will be repeatedly invoked
throughout the proof:

(7.10)
(i) 2ab ≤ xa2 + 1

xb2, and
(ii) (a + b)2 ≤ (1 + x) a2 +

(
1 + 1

x

)
b2, (for x > 0).

Also, for simplicity, we write below ‖ · ‖ to denote the L2−norm with respect to the
reference measure η.
Proof of Theorem 4.1. We consider successive improvements of the inequality
(7.1):

Inequality 1. For any positive constants x1, x2, x3, and x4, there exist a positive
number K and an increasing quadratic function f (both independent of the family
of linear models and of T ) such that, with probability larger than 1 −Ke−ξ,

‖s − s̃‖2 ≤ ‖s − s⊥m‖2 + 2χ2
m̂ + 2x1‖s⊥m̂ − s⊥m‖2

+ x2
Dm̂

T
+ x3

Dm

T
+ x4

dm̂

T
(7.11)

+ pen(m) − pen(m̂) +
f(ξ)
T

.
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Proof. Let us find an upper bound for νD(s⊥m′−s⊥m), m′, m ∈ M. Since the operator
νD defined by (7.2) is just a compensated integral with respect to a Poisson process
with mean measure µ(dtdx) = dtη(dx), we can apply Proposition 7.2 to obtain
that, for any x′

m′ > 0, and with probability larger than 1 − e−x′
m′

(7.12) νD

(
s⊥m′ − s⊥m

)
≤
∥∥∥s⊥m′ − s⊥m

T

∥∥∥
µ

√
2x′

m′ +
‖s⊥m′ − s⊥m‖∞x′

m′

3T
.

In that case, the probability that (7.12) holds for every m′ ∈ M is larger than
1 −
∑

m′∈M e−xm′ because P (A ∩ B) ≥ 1 − a − b, whenever P (A) ≥ 1 − a and
P (B) ≥ 1 − b. Clearly,

∥∥∥s⊥m′ − s⊥m
T

∥∥∥2
µ

=
∫∫

[0,T ]×D

(
s⊥m′(x) − s⊥m(x)

T

)2

s(x)dtη(dx)

≤ ‖s‖∞
‖s⊥m′ − s⊥m‖2

T
.

Using (7.10)(i), the first term on the right hand side of (7.12) is then bounded as
follows:

(7.13)
∥∥∥s⊥m′ − s⊥m

T

∥∥∥
µ

√
2x′

m′ ≤ x1‖s⊥m′ − s⊥m‖2 +
‖s‖∞x′

m′

2Tx1
,

for any x1 > 0. Using (4.4) and (7.10-i),

‖s⊥m′ − s⊥m‖∞x′
m′ ≤

(
‖s⊥m′‖∞ + ‖s⊥m‖∞

)
x′

m′

≤
(√

Dm′‖s⊥m′‖ +
√

Dm‖s⊥m‖
)

x′
m′

≤
√

Dm′‖s‖x′
m′ +

√
Dm‖s‖x′

m′

≤ 3x2Dm′ + 3x3Dm +
‖s‖2x′2

m′

12

(
1
x2

+
1
x3

)
,

for all x2 > 0, x3 > 0. It follows that, for any x1 > 0, x2 > 0, and x3 > 0,

νD

(
s⊥m′ − s⊥m

)
≤ x1‖s⊥m′ − s⊥m‖2 + x2

Dm′

T
+ x3

Dm

T

+
‖s‖∞x′

m′

2Tx1
+

‖s‖2x′2
m′

36T x̄
,

where we set 1
x̄ = 1

x2
+ 1

x3
. Next, take

x′
m′ ≡ x4

√
dm′

(
1
‖s‖ ∧ 1

‖s‖∞

)
+ ξ.

Then, for any positive x1, x2, x3, and x4, there is a K and a function f such that,
with probability greater than 1 −Ke−ξ,

νD

(
s⊥m′ − s⊥m

)
≤ x1‖s⊥m′ − s⊥m‖2 + x2

Dm′

T
+ x3

Dm

T(7.14)
+
(

x2
4

18x̄
+

x4

2x1

)
dm′

T
+

f(ξ)
T

, ∀m′ ∈ M.
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Concretely,

f(ξ) =
‖s‖
18x̄

ξ2 +
‖s‖∞
2x1

ξ,
(7.15)

K = Γ
∞∑

n=1

nR exp
(
−
√

nx4

(
1
‖s‖ ∧ 1

‖s‖∞

))
.

Here, we used the assumption of polynomial models (Definition 2) to come up with
the constant K. Plugging (7.14) in (7.1), and renaming the coefficient of dm′/T , we
can corroborate inequality 1.

Inequality 2. For any positive constants y1 > 1, x2, x3, and x4, there are positive
constants C1 < 1, C ′

1 > 1, and K, and a strictly increasing quadratic polynomial f
(all independent of the class of linear models and of T ) such that with probability
larger than 1 −Ke−ξ,

C1‖s − s̃‖2 ≤ C ′
1‖s − s⊥m‖2 + y1χ

2
m̂

+ x2
Dm̂

T
+ x3

Dm

T
+ x4

dm̂

T
(7.16)

+ pen(m) − pen(m̂) +
f(ξ)
T

.

Moreover, if 1 < y1 < 2, then C ′
1 = 3 − y1 and C1 = y1 − 1. If y1 ≥ 2, then

C ′
1 = 1 + 4x1 and C1 = 1 − 4x1, where x1 is any positive constant related to f via

to the equation (7.15).

Proof. Let us combine the term on the left hand side of (7.11) with the first three
terms on the right hand side. Using the triangle inequality followed by (7.10-ii),

‖s⊥m̂ − s⊥m‖2 ≤ 2‖s − s⊥m‖2 + 2‖s⊥m̂ − s‖2.

Then, since χ2
m̂ = ‖s⊥m̂ − ŝm̂‖2, and ‖s⊥m̂ − s‖2 = ‖s− ŝm̂‖2 −‖s⊥m̂ − ŝm̂‖2, it follows

that

‖s − s⊥m‖2 + 2χ2
m̂ + 2x1‖s⊥m̂ − s⊥m‖2 − ‖s − s̃‖2

≤ (1 + 4x1) ‖s − s⊥m‖2 + (2 − 4x1) ‖s⊥m̂ − ŝm̂‖2

+ (4x1 − 1) ‖s − s̃‖2,

for every x1 > 0. Then, for any y1 > 1, there are positive constants C > 0, C ′
1 > 1,

and C1 < 1 such that

‖s − s⊥m‖2 + 2χ2
m̂ + 2C‖s⊥m̂ − s⊥m‖2 − ‖s − s̃‖2

(7.17) ≤ C ′
1‖s − s⊥m‖2 + y1χ

2
m̂ − C1‖s − s̃‖2.

Combining (7.11) and (7.17), we obtain (7.16).

Inequality 3. For any y2 > 1 and positive constants xi, i = 2, 3, 4, there exist
positive reals C1 < 1, C ′

1 > 1, an increasing quadratic polynomial of the form
f2(ξ) = aξ2 + bξ, and a constant K2 > 0 (all independent of the family of linear
models and of T ) so that, with probability greater than 1 −K2e

−ξ,

C1‖s − s̃‖2 ≤ C ′
1‖s − s⊥m‖2

+ y2
Vm̂

T
+ x2

Dm̂

T
+ x3

dm̂

T
− pen(m̂)(7.18)

+ x4
Dm

T
+ pen(m) +

f(ξ)
T

.
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Proof. We bound χ2
m′ using Lemma 7.3 with V = R+×D and µ(dx) = s(x)dtη(dx).

We regard the linear model Sm as a subspace of L2(R+ × D, dtη(dx)) with ortho-
normal basis {ϕ1,m√

T
, . . . ,

ϕdm,m√
T

}. Recall that

χ2
m = ‖s⊥m − ŝm‖2 =

d∑
i=1

 ∫∫
[0,T ]×D

ϕi,m(x)
J (dt, dx) − s(x)dtη(dx)

T


2

.

Then, with probability larger than 1 −
∑

m′∈M e−x′
m′ ,

(7.19)
√

Tχm′ ≤ (1 + x1)
√

Vm′ +
√

2kMm′x′
m′ + k(x1)Bm′x′

m′ ,

for every m′ ∈ M, where Bm′ =
√

Dm′/T ,

Vm′ ≡
∫

D

(
dm∑
i=1

ϕ2
i,m(x)

)
s(x)η(dx),(7.20)

Mm′ ≡ sup
{∫

D

f2(x)s(x)η(dx) : f ∈ Sm′ , ‖f‖ = 1
}

.

Now, by Cauchy-Schwarz
∫

D
f2(x)s(x)η(dx) ≤ ‖f‖∞‖s‖, when ‖f‖ = 1, and so the

constant Mm′ above is bounded by ‖s‖
√

Dm′ . In that case, we can use (7.10-i) to
obtain √

2kMm′x′
m′ ≤ x2

√
Dm′ +

k‖s‖
2x2

x′
m′ ,

for any x2 > 0. On the other hand, by hypothesis Dm′ ≤ T , and (7.19) implies that

√
Tχm′ ≤ (1 + x1)

√
Vm′ + x2

√
Dm′ +

(
k‖s‖
2x2

+ k(x1)
)

x′
m′ .

Choosing the constant x′
m′ as

x′
m′ =

x3

√
dm′

k‖s‖
2x2

+ k(x1)
+ ξ,

we get that for any x1 > 0, x2 > 0, x3 > 0, and ξ > 0,

(7.21)
√

Tχm′ ≤ (1 + x1)
√

Vm′ + x2

√
Dm′ + x3

√
dm′ + f1(ξ),

with probability larger than 1 −K1e
−ξ, where

f1(ξ) =
(

k‖s‖
2x2

+ k(x1)
)

ξ,

(7.22)
K1 = Γ

∞∑
n=1

nR exp
(
−
√

nx3/

(
k‖s‖
2x2

+ k(x1)
))

.

Squaring (7.21) and using (7.10-ii) repeatedly, we conclude that, for any y > 1,
x2 > 0, and x3 > 0, there exist both a constant K1 > 0 and a quadratic function
of the form f2(ξ) = aξ2 (independent of T , m′, and of the family of linear models)
such that, with probability greater than 1 −K1e

−ξ,

(7.23) χ2
m′ ≤ y

Vm′

T
+ x2

Dm′

T
+ x3

dm′

T
+

f2(ξ)
T

, ∀m′ ∈ M.

Then, (7.18) immediately follows from (7.23) and (7.16).
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Proof of (4.5) for the case (c). By the inequality (7.4), we can upper bound Vm′

by V̂m′ on an event of large probability. Namely, for every x′
m′ > 0 and x > 0, with

probability greater than 1 −
∑

m′∈M e−x′
m′ ,

(7.24) (1 + x)
(

V̂m′ +
(

1
2x

+
5
6

)
Dm′

T
x′

m′

)
≥ Vm′ , ∀m′ ∈ M,

(recall that Dm = ‖
∑dm

i=1 ϕ2
i,m‖∞). Since by hypothesis Dm′ < T , and choosing

x′
m′ = x′dm′ + ξ, (x′ > 0),

it is seen that for any x > 0 and x4 > 0, there exist a positive constant K2 and
a function f(ξ) = bξ (independent of T and of the linear models) such that with
probability greater than 1 −K2e

−ξ

(7.25) (1 + x)V̂m′ + x4dm′ + f(ξ) ≥ Vm′ , ∀m′ ∈ M.

Here, we get K2 from the polynomial assumption on the class of models. Combining
(7.25) and (7.18), it is clear that for any y2 > 1, and positive xi, i = 1, 2, 3, we
can choose a pair of positive constants C1 < 1, C ′

1 > 1, an increasing quadratic
polynomial of the form f(ξ) = aξ2 + bξ, and a constant K > 0 (all independent of
the family of linear models and of T ) so that, with probability greater than 1−Ke−ξ

C1‖s − s̃‖2 ≤ C ′
1‖s − s⊥m‖2

+ y2
V̂m̂

T
+ x1

Dm̂

T
+ x2

dm̂

T
− pen(m̂)(7.26)

+ x3
Dm

T
+ pen(m) +

f(ξ)
T

.

Next, we take y2 = c, x1 = c′, and x2 = c′′ to cancel −pen(m̂) in (7.26). By Lemma
7.4, it follows that

(7.27) C1E
[
‖s − s̃‖2

]
≤ C ′

1‖s − s⊥m‖2 +
(
1 +

x3

c′

)
E [pen(m)] +

C ′′
1

T
.

Since m is arbitrary, we obtain the case (c) of (4.5).

Proof of (4.5) for the case (a). One can bound Vm′ , as given in (7.20), by Dm′ρ
(assuming that ρ < ∞). On the other hand, (7.4) implies that

(7.28) (1 + x1)
(
N
T

+
(

1
2x1

+
5
6

)
ξ

T

)
≥ ρ,

with probability greater than 1− e−ξ. Using these bounds for Vm′ and the assump-
tion that Dm′ ≤ T , (7.18) reduces to

C1‖s − s̃‖2 ≤ C ′
1‖s − s⊥m‖2

+ y
Dm̂N

T 2
+ x1

dm̂

T
− pen(m̂)(7.29)

+ x2
DmN

T 2
+ pen(m) +

f(ξ)
T

,

which is valid with probability 1 − Ke−ξ. In (7.29), y > 1, x1 > 0 and x2 > 0 are
arbitrary, while C1, C ′

1, the increasing quadratic polynomial of the form f(ξ) =
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aξ2 + bξ, and a constant K > 0 are determined by y, x1, and x2 independently of
the family of linear models and of T . We point out that we divided and multiplied
by ρ the terms Dm̂/T and Dm/T in (7.18), and then applied (7.28) to get (7.29).
It is now clear that y = c, and x1 = c′ will produce the desired cancelation.

Proof of (4.5) for the case (b). We first upper bound Dm̂ by β−1Vm̂ and dm̂ by
(βφ)−1Vm̂ in the inequality (7.18):

C1‖s − s̃‖2 ≤ C ′
1‖s − s⊥m‖2 +

(
y + x1β

−1 + x2(βφ)−1
) Vm̂

T(7.30)
− pen(m̂) + x3β

−1 Vm

T
+ pen(m) +

f(ξ)
T

.

Then, using dm′ ≤ (βφ)−1Vm′ in (7.25) and letting x4(βφ)−1 vary between 0 and
1, we verify that for any x′ > 0, a positive constant K4 and a polynomial f can be
found so that with probability greater than 1 −K4e

−ξ,

(7.31) (1 + x′)V̂m′ + f(ξ) ≥ Vm′ , ∀m′ ∈ M.

Putting together (7.31) and (7.30), it is clear that for any y > 1 and x1 > 0, we can
find a pair of positive constants C1 < 1, C ′

1 > 1, an increasing quadratic polynomial
of the form f(ξ) = aξ2 + bξ, and a constant K > 0 (all independent of the family
of linear models and of T ) so that, with probability greater than 1 −Ke−ξ,

(7.32) C1‖s − s̃‖2 ≤ C ′
1‖s − s⊥m‖2 + y V̂m̂

T − pen(m̂)
+x1

Vm

T + pen(m) + f(ξ)
T .

In particular, by taking y = c, the term −pen(m̂) cancels out. Lemma 7.4 implies
that

(7.33) C1E
[
‖s − s̃‖2

]
≤ C ′

1‖s − s⊥m‖2 + (1 + x1) E [pen(m)] +
C ′′

1

T
.

Finally, (4.5) (b) follows since m is arbitrary.

Remark 7.5. Let us analyze more carefully the values that the constants C and
C ′ can take in the inequality (4.5). For instance, consider the penalty function of
part (c). As we saw in (7.27), the constants C and C ′ are determined by C1, C ′

1, C ′′
1 ,

and x3. The constant C1 was proved to be y1−1 if 1 < y1 < 2, while it can be made
arbitrarily close to one otherwise (see the comment immediately after (7.16)). On
the other hand, y1 itself can be made arbitrarily close to the penalization parameter
c since c = y2 = y1(1 + x)y, where x is as in (7.24) and y is in (7.23). Then, when
c ≥ 2, C1 can be made arbitrarily close to one at the cost of increasing C ′′

1 in (7.27).
Similarly, paying a similar cost, we are able to select C ′

1 as close to one as we wish
and x3 arbitrarily small. Therefore, it is possible to find for any ε > 0, a constant
C ′(ε) (increasing in ε) so that

(7.34) E‖s − s̃‖2 ≤ (1 + ε) inf
m∈M

{
‖s − s⊥m‖2 + E [pen(m)]

}
+

C ′(ε)
T

.

A more thorough inspection shows that

lim
ε→0

C ′(ε)ε = K,

where K depends only c, c′, c′′, Γ, R, ‖s‖, and ‖s‖∞. The same reasoning applies
to the other two types of penalty functions when c ≥ 2. In particular, we point out
that C̃ can be made arbitrarily close to 2 in the oracle inequality (4.8) at the price
of having a large constant C̃ ′.
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7.2. Some additional proofs

Proof of Corollary 5.1. The idea is to estimate the bias and the penalized term
in (4.5). Clearly, the dimension dm of Sk

m is m(k + 1). Also, Dm is bounded by
(k + 1)2m/(b − a) (see (7) in [8]), and

E

[
V̂m

]
=
∫ b

a

(∑
i

ϕ2
i,m(x)

)
s(x)dx ≤ (k + 1)m‖s‖∞,

since the functions ϕi,m are orthonormal. On the other hand, by (10.1) in Chapter
2 of [15], if s ∈ Bα

∞ (Lp([a, b])), there is a polynomial q ∈ Sk
m such that

‖s − q‖Lp ≤ c[α]|s|Bα
∞(Lp)(b − a)αm−α.

Thus,
‖s − s⊥m‖ ≤ c[α](b − a)

1
2− 1

p +α|s|Bα
∞(Lp)m

−α.

By (4.5)), there is a constant M (depending on C, c, c′, c′′, α, k, b−a, p, |s|Bα
∞(Lp),

and ‖s‖∞), for which

E
[
‖s − s̃T ‖2

]
≤ M inf

m∈MT

{
m−2α +

m

T

}
+

C ′

T
.

It is not hard to see that, for large enough T , the infimum on the above right hand
side is Oα(T−2α/(2α+1)) (where Oα means that the ratio of the terms is bounded
by a constant depending only on α). Since M is monotone in |s|Bα

∞(Lp) and ‖s‖∞,
(5.2) is verified.

Proof of Lemma 7.1. Let

(7.35) γD(f) ≡ − 2
T

∫∫
[0,T ]×D

f(x)J (dt, dx) +
∫

D

f2(x) η(dx),

which is well defined for any function f ∈ L2((D, η)), where D ∈ B(R0) and
η is as in (2.6)-(2.8). The projection estimator is the unique minimizer of the
contrast function γD over S. Indeed, plugging f =

∑d
i=1 βiϕi in (7.35) gives

γD(f) =
∑d

i=1(−2βiβ̂i + β2
i ), and thus, γD(f) ≥ −

∑d
i=1 β̂2

i , for all f ∈ S. Clearly,

γD(f) = ‖f‖2 − 2〈f, s〉 − 2νD(f) = ‖f − s‖2 − ‖s‖2 − 2νD(f).

By the very definition of s̃, as the penalized projection estimator,

γD(s̃) + pen(m̂) ≤ γD(ŝm) + pen(m) ≤ γD(s⊥m) + pen(m),

for any m ∈ M. Using the above results,

‖s̃ − s‖2 = γD(s̃) + ‖s‖2 + 2νD(s̃)

≤ γ(s⊥m) + ‖s‖2 + 2νD(s̃) + pen(m) − pen(m̂)

= ‖s⊥m − s‖2 + 2νD(s̃ − s⊥m) + pen(m) − pen(m̂).

Finally, notice that νD(s̃−s⊥m) = νD(s̃−s⊥m̂)+νD(s⊥m̂−s⊥m) and that νD(ŝm−s⊥m) =
χ2

m.
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Proof of inequality (7.4). Just note that for any a, b, ε > 0:

(7.36) a −
√

2ab − 1
3
b ≥ a

1 + ε
−
(

1
2ε

+
5
6

)
b.

Evaluating the integral in (7.3) for −f , we can write

P

[∫
X

f(x)N(dx) ≥
∫

X

f(x)µ(dx) − ‖f‖µ

√
2u − 1

3
‖f‖∞u

]
≥ 1 − e−u.

Using ‖f‖2
µ ≤ ‖f‖∞

∫
X
|f(x)|µ(dx) and (7.36), lead to

P

[∫
X

f(x)N(dx) ≥ 1
1 + ε

∫
X

f(x)µ(dx) −
(

1
2ε

+
5
6

)
‖f‖∞u

]
≥ 1 − e−u,

which is precisely the inequality (7.4).

Proof of Lemma 7.4. Let Z+ be the positive part of Z. First,

E [Z] ≤ E
[
Z+
]

=
∫ ∞

0

P[Z > x]dx.

Since h is continuous and strictly increasing, P[Z > x] ≤ K exp(−h−1(x)), where
h−1 is the inverse of h. Then, changing variables to u = h−1(x),∫ ∞

0

P[Z > x]dx ≤ K

∫ ∞

0

e−h−1(x)dx = K

∫ ∞

0

e−uh′(u)du.

Finally, an integration by parts yields
∫∞
0

e−uh′(u)du =
∫∞
0

h(u)e−udu.
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[4] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model
selection via penalization. Probability Theory and Related fields 113 301–413.
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[7] Birgé, L. and Massart, P. (1994). Minimum contrast estimation on Sieves.
Technical Report 34, Université Paris-Sud.
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