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Random walk on a polygon

Jyotirmoy Sarkar1

Indiana University Purdue University Indianapolis

Abstract: A particle moves among the vertices of an (m + 1)-gon which are
labeled clockwise as 0, 1, . . . , m. The particle starts at 0 and thereafter at each
step it moves to the adjacent vertex, going clockwise with a known probability
p, or counterclockwise with probability 1 − p. The directions of successive
movements are independent. What is the expected number of moves needed to
visit all vertices? This and other related questions are answered using recursive
relations.

1. Introduction

Consider a particle subjected to a random walk over the vertices of an (m + 1)-gon
which are labeled 0, 1, 2, . . . ,m in the clockwise direction. Initially the particle is
at 0 and thereafter at each step the particle moves to one of the adjacent vertices,
going in the clockwise direction with probability p, or in the counterclockwise di-
rection with probability q = 1 − p. Throughout we assume that 0 < p < 1 is a
known constant. We also assume that the directions of successive movements are
independent of one another. We answer the following questions in this paper:

1. What is the probability that all vertices have been visited before the particle
returns to 0 for the first time?

2. What is the probability that the last vertex visited is i (i = 1, 2, . . . ,m)?
3. What is the expected number of moves needed to visit all vertices?
4. What is the expected additional number of moves needed to return to 0 after

visiting all vertices?

Question 1 appears in [6] (page 234, Exercise 46), while Questions 2 and 4 appear
in [5] (page 224, Exercises 4.27 and 4.28). For the symmetric case of p = 1/2,
Question 2 is solved in [6] (page 80) and Question 3 in Daudin [2], who furthermore
gives the first five moments of the number of moves needed to visit all vertices. The
asymmetric case of Question 3 also has been studied in the literature, but by using
more advanced techniques (described in the next two paragraphs below), and the
recorded expressions for the expected time to visit all vertices are formidable in
appearance. We, on the other hand, present an elementary method of solution and
derive a simple expression that is easy to comprehend. We hope that our solution
will attract a wider readership.

Regarding the asymmetric case of Question 3, Vallois [8] studies the probability
distribution of the time (called the cover time) taken by an asymmetric random
walk on the integer lattice starting at 0 to visit m + 1 distinct integers (including
the initial 0). That this problem indeed solves the problem of asymmetric random
walk on a polygon is seen easily by simply joining the two extrema with a direct
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edge. Vallois uses the Martingale technique to obtain the probability generating
function (p.g.f.) of the cover time as the ratio of two polynomials. Thereafter, he
obtains the expected cover time by differentiation and the probability masses by
inversion of the p.g.f.

A most comprehensive study on the joint distribution of the cover time, the last
vertex visited (which is an extremum of the set of distinct numbers) and the time
taken to visit the other extremum is presented by Chong, Cowan and Holst [1].
They follow the same approach as in Feller’s classical treatise [3]. They express
the joint p.g.f. in terms of trigonometric functions with complex arguments (as
done by Feller) and also alternatively in terms of hyperbolic functions with real
arguments. Thereafter, they obtain marginal distributions and moments of each of
these component random variables.

In this paper we resolve Questions 1–3 by dissecting each question into parts
that resemble the setup of the celebrated Gambler’s Ruin Problem. We identify
a clockwise movement of the particle with the gambler winning a dollar, and a
counterclockwise movement with her losing a dollar. To solve these various parts we
construct appropriate recursive relations using conditional probability and Bayes’
rule, and then we solve the recursive relations either via difference equations or by
mathematical induction. Finally, we assemble the solutions to the component parts
to answer the entire original question. We solve the symmetric case of p = 1/2 first,
because of its simplicity, and leave it to the reader to verify that this solution can
be obtained also by taking the limit as p → 1/2 in the corresponding result for the
asymmetric case. We also present graphs to illustrate our results.

In Section 2 we review the Gambler’s Ruin Problem by first summarizing the well
known results, and then solving a new question in that setup. Section 3 contains the
answers to Questions 1 through 3. Section 4 presents, without proof, the answer to
Question 4 and also to the question of long run proportion of visits to each vertex
using the well known limit theorem for finite Markov chains.

2. Gambler’s ruin problem

A gambler plays a series of independent bets wagering one dollar on each bet. She
either wins one dollar (and gets back her wager) with probability p, or loses her
wager with probability q = 1 − p. Initially she has i dollars. She must quit broke
when her fortune reaches 0 (no credit is allowed). Also, she has adopted a policy to
quit a winner when her fortune reaches N dollars. Here, N ≥ i is a predetermined
integer where remains fixed throughout.

The familiar questions that are presented in many standard textbooks are: (a)
What is the probability that the gambler quits a winner with N dollars rather than
goes broke? (b) What is the expected number of bets she plays until the game
ends? Below we present a synopsis of the solutions to these questions in the form
of Propositions 2.1 and 2.2. For details the reader may see [3, 5–7], for example.
Thereafter, we answer a new question in the same context: (c) Given that the
gambler quits a winner with fortune N , what is the conditional expected number
of games she has played? Likewise, given that the gambler goes broke, what is the
conditional expected number of games she has played?

2.1. Probability of quitting a winner

Proposition 2.1. A gambler starts with i dollars, wagers one dollar per bet and
wins a dollar with probability p in each bet. The probability, Pi:N , that her fortune
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Fig 1. The probability of reaching N before 0, starting from i = 20. Top to bottom the curves
correspond to N = 25, 40, 50, 100.

reaches N dollars before she goes broke is given by

(2.1) Pi:N =

{
i
N if r = 1
ri−1
rN−1

if r �= 1,

where r = q/p = 1/p − 1 is the odds of losing a bet.

Proof. We condition on the outcome of the first bet. Let F denote the event that
the gambler wins the first bet and W denote the event that the gambler quits a
winner. Then we have the following recursive relations

Pi:N = P{W} = P{F} P{W |F} + P{F c} P{W |F c}
= p Pi+1:N + q Pi−1:N for 1 ≤ i ≤ N − 1,(2.2)

and the associated boundary conditions

(2.3) P0:N = 0 and PN :N = 1,

which follow naturally from the quitting policy.
It is easy to verify that (2.1) satisfies (2.2) with the boundary conditions (2.3).

The actual derivation of (2.1) is well known and may be found in any standard
textbook such as [3, 5–7].

Remark 1. Note that r = 1 if and only if p = 1/2 (the game is fair). It should
be pointed out that here and throughout the rest of the paper in all Propositions,
Theorems and Corollaries the results are simpler in the case of r = 1, and they
serve as a benchmark to verify the accuracy of the corresponding result in the
asymmetric case of r �= 1 by simply taking its limiting value as r = q/p tends to
1. The continuity at r = 1 of expressions in (2.1), (2.4), (2.9), (2.15), (3.1), (3.3),
(3.6), (3.7) and (4.1) can be verified by factoring (r − 1) out and/or by applying
L’Hospital’s rule once or twice.
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Remark 2. The gambler’s expected fortune when the game ends, N Pi:N , decreases
in N ≥ i. Therefore, her optimum choice is N = i; that is, not to gamble at all.
However, if she must gamble, she can minimize her loss by wagering the largest
amount in each bet consistent with her quitting policy. See Feller [3].

2.2. Expected number of bets until the game ends

We only state the recursive relations needed in the elementary proof of Propo-
sition 2.2 given below. Alternatively, for an elegant (though advanced) proof of
Proposition 2.2 using Wald’s Identities, see [5] (page 188), for example. For an
elementary proof of Wald’s Identities see [4].

Proposition 2.2. In the setup of Proposition 2.1, the expected number of bets,
Ei:N , until the gambler either reaches a fortune of N dollars or goes broke, is given
by

(2.4) Ei:N =

{
i (N − i) if r = 1
r+1
r−1

(
i − N ri−1

rN−1

)
if r �= 1.

Proof. Again, by conditioning on the outcome of the first bet, we have

(2.5) Ei:N = 1 + p Ei+1:N + q Ei−1:N for 1 ≤ i ≤ N − 1,

and the quitting policy implies the boundary conditions

(2.6) E0:N = 0 and EN :N = 0.

It is easy to verify that (2.4) satisfies the system of equations (2.5)–(2.6). The
details of the derivation are found in [6] (pages 234–235).

Remark 3. The following two processes are equivalent: (1) Keep track of the
gambler’s fortune when the probabilities of success and failure in each bet are
interchanged, and (2) Count by how many dollars the gambler’s fortune is below
N when the final outcomes of quitting a winner and going broke are interchanged
(but the probabilities remain unchanged). Therefore, we must have

(2.7) Pi:N (p ↔ q) = Pi:N (r ↔ r−1) = 1 − PN−i:N .

and

(2.8) Ei:N (p ↔ q) = Ei:N (r ↔ r−1) = EN−i:N .

Here and throughout the paper, the notation f(p ↔ q) stands for a function identi-
cal in form f(·), but with arguments p and q interchanged. It is easily verified that
(2.1) satisfies (2.7) and (2.4) satisfies (2.8).

2.3. Conditional expected number of bets, given that the gambler quits
a winner

The question dealt with in this Subsection arises quite naturally in the context
of the Gambler’s Ruin problem. However, our literature search did not reveal its
documentation anywhere; although we did find equation (2.13) below stated in [6]
as Exercise 47 (page 234). The result of this Subsection is new, and so it is proved
in complete detail.



Random walk on a polygon 35

Theorem 2.1. In the setup of Proposition 2.1, the conditional expected number
of bets, Wi:N , given that the gambler reaches a fortune of N dollars before going
broke, is given by

(2.9) Wi:N =

{
1
3 (N − i)(N + i) if r = 1
r+1
r−1

[
N rN+1

rN−1
− i ri+1

ri−1

]
if r �= 1.

Proof. Note that for i = 1 < N , given that W occurs, the gambler surely must have
won the first bet, and thereafter she needs an expected number of W2:N additional
bets to quit the game a winner. Hence, we have

(2.10) W1:N = 1 + W2:N .

Next, for 2 ≤ i ≤ N − 1, by conditioning on the outcome of the first bet, as in the
proof of Proposition 2.2, we have

(2.11) Wi:N = 1 + P{F |W} Wi+1:N + (1 − P{F |W}) Wi−1:N .

Lastly, from the quitting policy, we have the boundary condition

(2.12) WN :N = 0.

Now, by Bayes’ rule, for 1 ≤ i ≤ N − 1, we have

(2.13) P{F |W} =
P{F}P{W |F}

P{W} =
p Pi+1:N

Pi:N
=

{
i+1
2i if r = 1
1

r+1
ri+1−1
ri−1 if r �= 1,

in view of Proposition 2.1.
Putting (2.13) in (2.11), one can verify that (2.9) satisfies the system of equations

(2.10)–(2.12). The derivation of (2.9) is given in Appendix A.

Remark 4. From (2.9) it is straightforward to verify that Wi:N remains unchanged
when the probabilities of success and failure in each bet are interchanged. That is,

(2.14) Wi:N (p ↔ q) = Wi:N (r ↔ r−1) = Wi:N .

This is a pleasantly surprising result, especially in light of Remark 3.

Corollary 2.1. In the setup of Proposition 2.1, the conditional expected number of
bets, Bi:N , given that the gambler goes broke before reaching a fortune of N dollars,
is given by

(2.15) Bi:N =

{
1
3 i (2N − i) if r = 1
r+1
r−1

[
N rN+1

rN−1
− (N − i) rN−i+1

rN−i−1

]
if r �= 1.

The Corollary follows from Theorem 2.1, since, in view of Remark 4,

(2.16) Bi:N = WN−i:N (p ↔ q) = WN−i:N (r ↔ r−1) = WN−i:N .

Remark 5. Since the game ends with the gambler either quitting a winner or going
broke, we must necessarily have

Ei:N = Pi:N Wi:N + (1 − Pi:N ) Bi:N ,

which can be verified using (2.1), (2.9) and (2.15).
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Fig 2. The expected number of games until the gambler wins, or until the game ends, or until the
gambler goes broke, starting from i = 20, for N = 50, 25. Top to bottom the curves correspond to
W20:50, E20:50, B20:50, B20:25, E20:25, W20:25.

3. Random walk on a polygon

In this Section we answer Questions 1–3 posed in Section 1. Throughout the paper
we consider vertex m + 1 to be the same as vertex 0. In various steps of our
solution we will renumber the vertices m+1 = 0, 1, 2, . . . ,m, in that order, but the
renumbering may be either in the clockwise or in the counterclockwise direction
with an appropriate starting vertex. Also, we will dissect each question into parts
that resemble the Gambler’s Ruin Problem with the convention that a clockwise
movement of the particle is identified with the gambler winning a dollar, while a
counterclockwise movement is identified with her losing a dollar. Thus, for example,
F will denote the event that the first movement is clockwise (or the outcome of the
first bet is a win), with P{F} = p.

3.1. Probability of visiting all vertices before returning to 0

Theorem 3.1. Suppose that the vertices of an (m + 1)-gon are labeled m + 1 =
0, 1, 2, . . . ,m. A particle starting at 0 moves in each step to a neighboring vertex
going clockwise with probability p, or counterclockwise with probability q = 1 − p.
Let r = q/p. Let A denote the event that the particle visits all vertices before its
first return to 0. Then

(3.1) P{A} =

{
1
m if r = 1
r−1
r+1

rm+1
rm−1 if r �= 1.

Proof. By conditioning on the first move, we have

(3.2) P{A} = p P{A|F} + q P{A|F c}.
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Fig 3. The probability of visiting all m vertices before returning to 0. Top to bottom the curves
correspond to m = 10, 20, 25, 40, 50.

Note that P{A|F} is the probability that the particle starting at vertex 1 visits
vertex m before vertex 0, and is equivalent to the probability that a gambler start-
ing with 1 dollar quits a winner with m dollars (before she goes broke). Hence,
P{A|F} = P1:m. Likewise, P{A|F c} = P1:m(p ↔ q). Therefore, (3.2) becomes

P{A} = p P1:m + q P1:m(p ↔ q) =

{
1
m if r = 1
p r−1

rm−1 + q r−1−1
r−m−1 if r �= 1,

by Proposition 2.1, and simplifies to (3.1).

Remark 6. In (3.1), note that P{A} ≥ 1/m, with equality if and only if r = 1,
implying that the probability of visiting all vertices before the particle returns to
the origin is the smallest in the symmetric case of p = 1/2.

3.2. Probability distribution of the last vertex

Theorem 3.2. In the setup of Theorem 3.1, let Li denote the event that the last
vertex to be visited is vertex i. Then for i = 1, 2, . . . ,m,

(3.3) P{Li} =

{
1
m if r = 1
rm−i(r−1)

rm−1 if r �= 1.

Proof. Again, by conditioning on the first move, we have

P{Li} = P{F} P{Li|F} + P{F c} P{Li|F c}
= p P{Li−1} + q P{Li+1} for 2 ≤ i ≤ m − 1,(3.4)
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and the boundary conditions

(3.5) P{L1} = P1:m(p ↔ q) and P{Lm} = P1:m,

by appropriate renumbering of vertices. To be more specific, by shifting all vertex
labels one step in the counterclockwise direction, we have P{Li|F c} = P{Li+1}
and P{Lm} = P1:m. Likewise, by shifting vertex labels one step in the clockwise
direction, we have P{Li|F} = P{Li−1}. Finally, by renumbering the vertices in the
counterclockwise direction with the original vertex 1 becoming 0, we have P{L1} =
P1:m(p ↔ q).

In view of (3.5), we have the expressions for P{L1} and P{Lm} from Proposi-
tion 2.1. It is straightforward to verify that (3.3) satisfies the system of equations
(3.4)–(3.5). The derivation of (3.3) is similar to that of (2.1), and is left to the
reader.

Remark 7. We may rewrite (3.3) as

P{Li} =
r−i

r−1 + r−2 + · · · + r−m
.

Thus, the probability mass function for the last vertex is truncated geometric with
support set {1, 2, . . . ,m} and probabilities proportional to r−i.

Remark 8. In the symmetric case of r = 1 all vertices are equally likely to be
the last one visited. This result appears in [5] (page 80). It is indeed a mildly sur-
prising result. When we surveyed the students in an undergraduate mathematics
research class or in a graduate level stochastic processes class or even some mathe-
matics/statistics faculty members, most of our subjects thought that the last vertex
is more likely to be away from 0 than near 0.

3.3. Expected number of steps to visit all vertices

Theorem 3.3. In the setup of Theorem 3.1, let E[V ] denote the expected number of
steps needed to visit all vertices, and let vi = E[V |Li] denote the conditional expected
number of moves needed to visit all vertices given that the last vertex visited is i.
Then for i = 1, 2, . . . , m,

(3.6) vi =

{
1
3 (m − 1)(m + 1) + (m + 1 − i) i if r = 1

vi = r+1
r−1

[
m + i − 1 − 2

r−1 + 2m
rm−1 − (m + 1) ri−1

rm+1−1

]
if r �= 1,

and

(3.7) E[V ] =

{
m(m+1)

2 if r = 1
r+1
r−1

[
m − 1

r−1 − m2

rm−1 + (m+1)2

rm+1−1

]
if r �= 1.

Proof. If L1 occurs, the particle first moves to vertex m, then it reaches vertex 2
before reaching vertex 1, and finally it reaches vertex 1. Similarly, if Lm occurs,
the particle starting at 0 first moves to vertex 1, then it reaches vertex m − 1
before reaching vertex m, and finally it reaches vertex m. Hence, by appropriate
renumbering of the vertices, we have

(3.8) v1 = 1 + Bm−2:m + E1:m+1 and vm = 1 + W2:m + Em:m+1.
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Thus, v1 and vm can be computed using (2.4), (2.9) and (2.15).
To compute vi for 2 ≤ i ≤ m − 1, we solve the following recursive relations

(3.9) vi = 1 + q vi−1 + p vi+1 for 2 ≤ i ≤ m − 1.

To justify (3.9), note that by further conditioning on the outcome of the first bet,
we have

vi = E[V |Li] = E[V |Li ∩ F ] P{F |Li} + E[V |Li ∩ F c] P{F c|Li}
= vi−1 P{F |Li} + vi+1 (1 − P{F |Li})

by appropriate renumbering of the vertices. Also, by Bayes’ rule, as in (2.13), we
have

P{F |Li} =
P{F} P{Li|F}

P{Li}
= p

P{Li−1}
P{Li}

= p r = q,

in view of Theorem 3.2.
One can verify that (3.6) satisfies (3.9) subject to (3.8). The derivation of (3.6)

is given in Appendix B.
Finally, using E[V ] =

∑m
i=1 vi P{Li}, (3.6) and Theorem 3.2, we get

E[V ] =

{
1
3 (m − 1)(m + 1) + 1

2 (m + 1)2 − 1
6 (m + 1)(2m + 1) if r = 1

r+1
r−1

[
m − 1

r−1 − m
rm−1 + m+1

rm+1−1 − m(m+1)(r−1)rm

(rm−1)(rm+1−1)

]
if r �= 1.

which simplifies to (3.7).

Remark 9. When the probabilities of clockwise and counterclockwise movements
of the particle are interchanged, we anticipate a priori the following relations to
hold: (a) P{A}(r ↔ r−1) = P{A}, (b) P{Li}(r ↔ r−1) = P{Lm+1−i}, (c) vi(r ↔
r−1) = vm+1−i, and (d) E[V ](r ↔ r−1) = E[V ]. The reader may verify these
relations from (3.1), (3.3), (3.6) and (3.7).

4. Some further questions

In this Section, we answer Question 4 of Section 1, and a related question on the
long run proportion of visits to each vertex. For the sake of brevity, the results are
stated without proof.

4.1. Expected number of additional steps to return to the origin

Theorem 4.1. In the setup of Theorem 3.1, let E[R] denote the expected number of
additional steps needed to return to vertex 0 after visiting all vertices. Then, using
E[R] =

∑m
i=1 P{Li} Ei:m+1, we get

E[R] =

{
1
6 (m + 1)(m + 2) if r = 1
r+1
r−1

[
r

r−1 − m(m+2)
rm−1 + (m+1)2

rm+1−1

]
if r �= 1.
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Fig 4. The expected number of steps needed to visit all m vertices. Top to bottom the curves
correspond to m = 50, 40, 25, 20, 10.

4.2. Limiting results

When the random walk on the (m + 1)-gon continues forever, we ask the following
questions: (5) In the limit, how likely is the particle to be in each vertex? Or
equivalently, what proportion of transitions enter into each vertex? (6) Starting
from a particular vertex, what is the expected number of moves until the particle
returns to that vertex?

To answer Questions 5 and 6, note that the polygonal random walk is a finite,
irreducible and positive recurrent Markov chain. Hence, by invoking the well known
limit theorem, (see, for example, [5], pages 175–177 and Problem 4.17 on page 221),
we know that the limiting distribution is uniform; that is, the limiting probability
for the particle to be in state i is 1/(m+1), and the expected number of transitions
needed to return to any state i starting from itself is m + 1, for i = 0, 1, 2, . . . ,m.

Appendix A: Derivation of (2.9)

For the symmetric case of r = 1, substituting (2.13) in (2.11), we have

Wi:N = 1 +
i + 1
2i

Wi+1:N +
i − 1
2i

Wi−1:N for 2 ≤ i ≤ N − 1,

or equivalently,

(A.1)
1
2
i (i + 1) (Wi:N − Wi+1:N ) = i2 +

1
2
(i − 1) i (Wi−1:N − Wi:N )

for 2 ≤ i ≤ N − 1. This motivates us to define

(A.2) Di:N =
1
2
i (i + 1) (Wi:N − Wi+1:N ) for 1 ≤ i ≤ N − 1.
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Then, (2.10) and (A.1) reduce to

D1:N = 1 and Di:N = Di−1:N + i2 for 2 ≤ i ≤ N − 1

which yields

(A.3) Di:N =
i∑

j=1

j2 =
1
6

i (i + 1) (2i + 1) for 1 ≤ i ≤ N − 1.

Next, substituting (A.3) in (A.2), we obtain

Wi:N − Wi+1:N =
2 Di:N

i (i + 1)
=

2 i + 1
3

for 1 ≤ i ≤ N − 1,

which, together with the boundary condition (2.12), yields

Wi:N = (Wi:N − Wi+1:N ) + (Wi+1:N − Wi+2:N ) + · · · + (WN−1:N − WN :N )

=
N−1∑
j=i

2 j + 1
3

=
1
3

(N − i)(N + i).

This completes the derivation of (2.9) for the symmetric case.

For the asymmetric case of r �= 1, substituting (2.13) in (2.11), we have

Wi:N = 1 +
1

r + 1
ri+1 − 1
ri − 1

Wi+1:N +
r

r + 1
ri−1 − 1
ri − 1

Wi−1:N ,

for 2 ≤ i ≤ N − 1, which we can rewrite as

1
r + 1

(ri+1 − 1)
(ri − 1)

(Wi:N − Wi+1:N ) = 1 +
r

r + 1
(ri−1 − 1)
(ri − 1)

(Wi−1:N − Wi:N ),

or equivalently, as

(ri − 1) (ri+1 − 1)
(r + 1) (r − 1)2

(Wi:N − Wi+1:N )
(A.4)

=
(

ri − 1
r − 1

)2

+ r
(ri−1 − 1)(ri − 1)
(r + 1) (r − 1)2

(Wi−1:N − Wi:N ),

for 2 ≤ i ≤ N − 1. Now letting

(A.5) Ci:N =
(ri − 1) (ri+1 − 1)
(r − 1)2 (r + 1)

(Wi:N − Wi+1:N ) for 1 ≤ i ≤ N − 1,

we note that (2.10) and (A.4) reduce to

(A.6) C1:N = 1 and Ci:N = r Ci−1:N +
(
1 + r + r2 + · · · + ri−1

)2

for 2 ≤ i ≤ N − 1. By induction on i ≥ 1, we solve (A.6) to get

(A.7) Ci:N = (r − 1)−3
[
r2i+1 − (2i + 1)ri+1 + (2i + 1)ri − 1

]
.
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Substituting (A.7) in (A.5), after some algebraic simplification, we obtain for
1 ≤ i ≤ N − 1

Wi:N − Wi+1:N =
r + 1
r − 1

{
1 − 2 i

ri − 1
+

2 (i + 1)
ri+1 − 1

}
,

which, together with the boundary condition (2.12), yields

Wi:N = (Wi:N − Wi+1:N ) + (Wi+1:N − Wi+2:N ) + · · · + (WN−1:N − WN :N )

=
r + 1
r − 1

N−1∑
k=i

{
1 − 2 k

rk − 1
+

2 (k + 1)
rk+1 − 1

}

=
r + 1
r − 1

[
N − i − 2 i

ri − 1
+

2 N

rN − 1

}
,

completing the derivation of (2.9) for the asymmetric case.

Appendix B: Derivation of (3.6)

Letting di = vi − vi−1, we rewrite (3.9) as

(B.1) di+1 = r di − (r + 1), for i ≥ 2

where d2 is yet to be specified so that (3.8) holds.
For the symmetric case of r = 1, (B.1) simplifies to di = d2 − 2(i − 2) for i ≥ 2.

Therefore, we have

(B.2) vi = v1 + d2 + d3 + · · · + di = v1 + (i − 1) [d2 − (i − 2)].

By (3.8), (2.16) and (2.4), vm − v1 = Em:m+1 − E1:m+1 = m − m = 0. Hence,
specializing (B.2) to i = m, we get d2 = m − 2. Also by (3.8), (2.15) and (2.4), we
have v1 = 1 + (m − 2)(m + 2)/3 + m. Therefore, (B.2) reduces to

vi = 1 +
1
3
(m − 2)(m + 2) + m + (i − 1) (m − i) for 1 ≤ i ≤ m

which simplifies to (3.6).
For the asymmetric case of r �= 1, (B.1) becomes

di =
(

d2 −
r + 1
r − 1

)
ri−2 +

r + 1
r − 1

.

Hence, we have

(B.3) vi = v1 + d2 + d3 + · · · + di = v1 +
(

d2 −
r + 1
r − 1

)
ri−1 − 1

r − 1
+

r + 1
r − 1

(i − 1).

Now, by (3.8), (2.16) and (2.4), we have

vm − v1 = Em:m+1 − E1:m+1 =
r + 1
r − 1

[
(m − 1) − (m + 1)

rm − r

rm+1 − 1

]
.

Therefore, specializing (B.3) to i = m, we get

(B.4) d2 −
r + 1
r − 1

=
[
(vm − v1) −

r + 1
r − 1

(m − 1)
]

r − 1
rm−1 − 1

= − (m + 1)r(r + 1)
rm+1 − 1

.
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Also by (3.8), (2.15) and (2.4), we have

(B.5) v1 =
r + 1
r − 1

[
m − 2

r − 1
+

2m

rm − 1
− (m + 1)

r − 1
rm+1 − 1

]
.

Substituting (B.5) and (B.4) in (B.3), and simplifying we establish (3.6) for the
asymmetric case.
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