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Abstract: For the action of an algebraic cellular automaton on a Markov
subgroup, we show that the Cesàro mean of the iterates of a Markov measure
converges to the Haar measure. This is proven by using the combinatorics
of the binomial coefficients on the regenerative construction of the Markov
measure.

1. Introduction and main concepts

Let (A, +) be a finite Abelian group with unit 0 and (AZ, +) be the product group
with the componentwise addition. The shift map σ : AZ → AZ is defined on x ∈ AZ

and n ∈ Z by (σx)n = xn+1.
Let µ be a probability measure on AZ and Φ =

∑r
i=� ciσ

i a linear cellular
automaton on AZ, where �, r, c�, . . . , cr are integers such that � ≤ r. The study
of the convergence of the sequence (Φn(µ) : n ∈ N) started with the pioneering
work of Lind in [8]. This work, devoted to the linear cellular automaton Φ =
σ−1 + id + σ on {0, 1}Z and µ a Bernoulli measure, stated that the Cesàro mean
of the sequence converges to the uniform Bernoulli measure. So Φ randomizes any
Bernoulli measure.

After such work two different strategies were developed to prove the same kind
of results but for more general classes of linear cellular automata and other kind
of starting measures. The combinatorial properties of the Pascal triangle and the
technique of regeneration of measures proposed in [1] were exploited in [2, 3, 5, 9, 10]
to prove Lind’s result in the case Φ = id + σ and µ is a measure with complete
connections and summable memory decay for any finite group A. In [12, 13] an
harmonic analysis formalism was developed to prove that diffusive linear cellular
automata randomize harmonically mixing measures (both concepts were defined in
[12]). Other related results were proved in [5] and [14]

In this paper we consider the same problem for linear cellular automata defined
in a Markov subgroup. Before state our main result we need some precise notations
and definitions. More details and references on the subject can be found in [6, 7, 15].
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dad de Chile, Av. Blanco Encalada 2120 5to piso, Santiago, Chile, e-mail: amaass@dim.uchile.cl
e-mail: smartine@dim.uchile.cl

2Department of Mathematics, Trent University, Canada, e-mail: pivato@xaravve.trentu.ca
e-mail: ryassawi@xaravve.trentu.ca

AMS 2000 subject classifications: primary 54H20; secondary 37B20.
Keywords and phrases: cellular automata, maximal entropy measure, Markov measures, alge-

braic topological Markov chain.

100



Attractiveness of Haar measure by cellular automata 101

Let G ⊆ AZ be a Markov subgroup, that is, it is a topological Markov shift
defined by a 0− 1 incidence matrix M and it is a subgroup of AZ. For every g ∈ A,
let F(g) = {h ∈ A : Mgh = 1} be the set of followers of g and P(g) = {h ∈ A :
Mhg = 1} be the set of predecessors of g. Then F := F(0) and P := P(0) are
subgroups of A and F(g) and P(g) are cosets of F and P in A respectively. It
holds that |F| = |P|, where | · | means the cardinality of a set. We fix a function
f : A → A such that f(g) ∈ F(g) for every g ∈ A, and then F(g) = f(g) + F .

For every g ∈ A and n ≥ 1 define Fn(g) = {h ∈ A : Mn
gh > 0}. One has

Fn+1(g) = ∪h∈F(g)Fn(h) and |Fn(g)| = |Fn(0)| for every g ∈ A. The Markov shift
G is transitive if and only if M is irreducible, that is, there exists n ≥ 1 such that
Fn(0) = A. Denote by r the smallest n verifying this condition. In this case we
have the mixing property Fn(g) = A for every n ≥ r and g ∈ A.

For n ≥ 0 and g0, gn ∈ A such that Mn
g0gn

> 0 define

Cn(g0, gn) = {(g1, . . . , gn−1) ∈ An−1 : Mgigi+1 = 1, i ∈ {0, . . . , n − 1}}.

Then |Cn(g0, gn)| = |Cn(0, 0)|. Therefore, in the transitive case, |Cn(g, h)| = |Cn(0, 0)|
for every g, h ∈ A and n ≥ r.

The Haar measure of (G, +) is denoted by ν. It is the Markov measure defined
by the stochastic matrix L = (Lgh : g, h ∈ A) with Lgh = |F|−1 if h ∈ F(g) and
Lgh = 0 otherwise, and the L−stationary vector ρ = (ρ(g) = |A|−1 : g ∈ A). The
Haar measure is the maximal entropy measure for the Markov shift (G, σ).

It is useful to introduce a notation for the finite-dimensional distributions asso-
ciated to ν. Thus, for � ≥ 1, ν(�) is the finite-dimensional distribution of ν in A�,
and it is concentrated in the subset G� = {(g0, . . . , g�−1) ∈ A� : gi+1 ∈ F(gi), ∀i ∈
{0, . . . , � − 2}}. Hence,

if γ� =
1

|A| · |F|�−1
, then ν(�)(g) =

{
γ� if g ∈ G�,

0 if g �∈ G�.

1.1. Main Result

Let µ be a Markov probability measure in AZ that is defined by a stochastic matrix
P and by some probability vector π invariant for P (π · P = π). The measure µ is
said to be compatible with M if Pgh > 0 if and only if Mgh > 0. This property is
equivalent to the fact that the support of µ is G.

If x ∈ AZ and m, n ∈ Z are two integers with m ≤ n, define

xn
m = (xm, xm+1, . . . , xn) .

Consider the endomorphism Φ = id + σ on AZ, that is (Φx)n = xn + xn+1 for
x ∈ AZ and n ∈ Z. Our main result is the following one.

Theorem 1.1. Assume µ is a Markov probability measure in AZ compatible with
M. Furthermore, assume the Abelian group A is ps-torsion for some prime number
p and s ≥ 1 and that M is irreducible. Then the Cesàro mean of µ, under the action
of Φ, converges to the Haar measure ν. That is, for any m ∈ N and g ∈ Gm:

lim
N→∞

1
N

N−1∑
n=0

µ
(

(Φnx)m−1
0 = g

)
= ν(g). (1.1)
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The elements of our proof includes a regenerative construction of the Markov
measure and the combinatorics of the binomial coefficients associated with the
iterates of the cellular automaton. In [11] a more general result is shown: for Markov
fields verifying a ‘filling property’ it is shown that the attractive property of the
Theorem holds. In the one-dimensional case this ‘filling property’ is always satisfied,
therefore the result follows.

2. Construction of a Markov measure and renewal properties

We use the Athreya–Ney [1] representation of Markov chains. It says that it is
possible to enlarge the probability space we are considering in order to include a
family of integer random times.

2.1. Construction of a Markov measure

Let G ⊆ AZ be a Markov subgroup with incidence matrix M. Let µ be a Markov
probability measure in AZ compatible with M defined by a pair (π,P) as in sub-
section 1.1. We describe a procedure to construct the restriction of µ to AN. In
this purpose it is useful to introduce the following notation: for g ∈ A we put
µg the measure induced on AN by µ conditioned to the event {x−1 = g}; then∑

g∈A π(g)µg coincides with the restriction of µ to AN.
Let α > 0 be a strictly positive number such that

α < min{Pgh : g, h ∈ A,Mgh > 0}.

We consider a probability space (Ω,B, P) and three independent processes of i.i.d.
random variables defined on this space U = (Un : n ∈ N), W = (Wn : n ∈ N) and
V = (Vn : n ∈ N) whose marginal distributions are as follows: Un is Bernoulli(α),
that is P(Un = 1) = α = 1 − P(Un = 0); Wn is uniformly distributed in F , so
P(Wn = g) = |F|−1 for g ∈ F ; and Vn is uniformly distributed in the unit interval
[0, 1].

Let us construct a sequence (xn : n ∈ N) ∈ AN as a deterministic function of
(U,W,V). For any g, h ∈ A define

Qgh =
Pgh − α|F|−1Mgh

1 − α
.

Thus, Q = (Qgh : g, h ∈ A) is a stochastic matrix compatible with M. For each
g ∈ A fix {Q̃gh ⊆ [0, 1] : h ∈ F(g)} a measurable partition of the interval [0, 1] such
that the Lebesgue measure of Q̃gh is Qgh. For all g ∈ A, u ∈ {0, 1}, w ∈ F and
v ∈ [0, 1] define

H(g, u, w, v) = u
(
f(g)+w

)
+ (1−u)

∑
h∈F(g)

h 11
Q̃gh

(v).

Now, for any x−1 ∈ A and for n ≥ 0 we put

xn = H(xn−1, Un, Wn, Vn).

It is clear that the distribution of the sequence x = (xn : n ∈ N) is µx−1 . If x−1 ∈ A
is a random variable with distribution π, then the distribution of x is µ.
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2.2. The associated renewal process

For any s, t ∈ N with s ≤ t define(
Ut

s = 1
)

⇐⇒
(

Uk = 1, for all k ∈ {s, ..., t}
)

.

For every m ≥ 1 define a renewal process (T (m)
n : n ∈ N) given by:

T
(m)
0 = 0, T

(m)
1 = min{i > T

(m)
0 : Ui+m

i = 1},

and
T (m)

n = min{i > T
(m)
n−1 + m : Ui+m

i = 1} for n ≥ 2.

It is clear that (T (m)
n+1−T

(m)
n : n ≥ 1) is a family of i.i.d. random variables. Also, from

our computations below, it follows that the distribution of T
(m)
1 has a geometrical

tail; that is, there exists β := β(m) ∈ [0, 1) such that P(T (m)
1 > t) ≤ βt for any

t ≥ 0.
Let N(m) be the renewal process induced by (T (m)

n : n ∈ N). That is, for any
A ⊆ N,

N(m)(A) = {n ∈ A : for some � ∈ N, T
(m)
� = n}.

Let n ∈ A with n > 0. One has that Un−1 = 0 and Un+m
n = 1 implies n ∈

N(m)(A). Then P(n ∈ N(m)(A)) ≥ αm+1(1 − α) := δ > 0. Clearly if 0 ∈ A then
P(0 ∈ N(m)(A)) = 1 ≥ δ.

For A a finite subset of N and m ∈ N we say A is m-separated if, for any a, b ∈ A
with a �= b, |a − b| ≥ m + 1. One gets,(

A is m-separated
)

=⇒
(

P
(
N(m)(A) �=∅

)
≥ 1−(1−δ)|A|

)
. (2.1)

Let A(m) be the largest m-separated subset of A; then |A(m)| ≥ |A|/(m+1). Thus,

P

(
N(m)(A) = ∅

)
≤ P

(
N(m)(A(m)) = ∅

)
≤

(
(1 − δ)1/(m+1)

)|A|
.

Hence, the distribution of T
(m)
1 has a geometric tail.

3. Convergence of the Cesàro mean

3.1. Independence lemmas

Assume G is transitive and recall r is the smallest integer verifying Fr(0) = A.
Also recall that γ� = |A|−1|F|−(�−1). Let m ≤ n in Z. If x is a random variable in
AZ with distribution µ define Fn

m to be the sigma-algebra generated by xn
m.

Lemma 3.1. Let k ≥ r and m ≥ 0. Then the random variable xk+m
k conditioned

to
(
Uk+m

k−r = 1,Fk−r−1
0

)
is ν(m+1)−distributed. That is, for any g ∈ Gm+1,

P

(
xk+m

k = g
∣∣∣ Uk+m

k−r = 1, Fk−r−1
0

)
= γm+1.

Also, the variable xk+m
k conditioned to (Uk+m+r

k−r = 1, Fk−r−1
0 ∨ Fn

k+m+r+1) is
ν(m+1)−distributed for any n ≥ k + m + r + 1. That is, for any g ∈ Gm+1,

P

(
xk+m

k = g
∣∣∣ Uk+m+r

k−r = 1, Fk−r−1
0 ∨ Fn

k+m+r+1

)
= γm+1.
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Proof. Let g = (g0, . . . , gm) ∈ Gm+1 and put n = k − r. For any fixed h =
(h0, . . . , hn−1) ∈ Gn,

P

(
xk+m

k = g
∣∣∣xn−1 = h and Uk+m

n = 1
)

=
∑

z∈Cr+1(hn−1,g0)

P

(
xn−1

n = z and xk+m = g
∣∣∣xn−1

0 = h and Uk+m
n = 1

)
=

∑
z∈Cr+1(hn−1,g0)

|F|−(r+m+1) = |Cr+1(0, 0)| · |F|(r+m+1)

=
|F|r+1

|A| · |F|−(r+m+1) =
1

|A| · |Fm| = γm+1

This proves the first part, the second one is entirely analogous.

Now assume that A is ps-torsion for some prime number p and some s ≥ 1, with
s being the smallest number verifying this property. That is: mg = 0 for every g ∈ A
and m ∈ ps

Z, and for every m < ps there exists some g ∈ A such that mg �= g.
Observe that for every c ∈ Zps relatively prime to p, there exists a multiplicative
inverse c−1 ∈ Zps , such that cc−1 = 1 mod (ps) and c−1 is also relatively prime
to p. Thus, for any g ∈ A, cc−1g = g. Moreover, (cg = h) ⇐⇒ (g = c−1h).

3.2. The transformation

Recall σ is the shift map in AZ and Φ = id + σ is an endomorphism of AZ. Fix
x ∈ AZ. Then for all n ≥ 0 and i ∈ Z, one has

(Φnx)i =
n∑

k=0

(
n

k

)
xi+k. (3.1)

For every m ∈ N denote by m(s) its equivalent class mod (ps) in Zps . Hence, for
all n ≥ 0 and i ∈ Z, equality (3.1) can be written

(Φnx)i =
n∑

k=0

(
n

k

)(s)

xi+k. (3.2)

Let m, � ≥ 0. For n ≥ 0 and 0 ≤ k ≤ n we say k is (m, �)−isolated in n if
(
n
k

)(s) is

relatively prime to p, while, if k′ ∈ {k−m, . . . , k+�} with k′ �= k then
(

n
k′

)(s) = 0.

Here the convention is
(

n
k′

)(s) = 0 whenever k′ < 0 or k′ > n.

Lemma 3.2. Let m ∈ N and n ≥ 2r+2m+1. If 0 ≤ k ≤ n is (r+m, r+m)-isolated
in n, then for every i ∈ Z and g ∈ Gm+1, one has

P

(
(Φnx)i+m

i = g
∣∣∣ Ui+k+r+m

i+k−r = 1
)

= γm+1.

Proof. Since µ is σ-invariant then Φn(µ) is σ-invariant too; hence it suffices to prove
the result for i = 0. In other words, it suffices to show that

P

(
(Φnx)m

0 = g
∣∣∣ Uk+r+m

k−r = 1
)

= γm+1.
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Consider j ∈ {0, ..., m}. Define Yj =
(

n

k

)(s)

xj+k and

Xj =
n∑

k′=0
k′ �=k

(
n

k′

)(s)

xj+k′
(∗)

k−r−m−1∑
k′=0

(
n

k′

)(s)

xj+k′ +
n∑

k′=k+r+m+1

(
n

k′

)(s)

xj+k′ ,

(3.3)
where (∗) is because k is (r + m, r + m)-isolated.

Thus, (Φnx)j = Xj + Yj . If X = (X0, . . . , Xm) and Y = (Y0, . . . , Ym), then
(Φnx)m

0 = X + Y. One gets,

P

(
(Φnx)m

0 = g
∣∣∣Uk+r+m

k−r = 1
)

= P

(
X + Y = g

∣∣∣Uk+r+m
k−r = 1

)
=

∑
h∈Am+1

P

(
Y = g − h

∣∣∣X = h,Uk+r+m
k−r = 1

)
× P

(
X = h

∣∣∣Uk+r+m
k−r = 1

)
. (3.4)

Let c =
(
n
k

)(s); then c is relatively prime to p, and Y = c · xk+m
k . Thus, if c−1

is the (mod ps) inverse of c, then xk+m
k = c−1 ·Y. Thus, for any fixed h ∈ Am+1,

P

(
Y = g − h

∣∣∣X = h and Uk+r+m
k−r = 1

)
(3.5)

= P

(
xk+m

k = c−1(g − h)
∣∣∣X = h and Uk+r+m

k−r = 1
)

(†)
γm+1,

where (†) is because equation (3.3) implies that X is a function only of xk−r−1
0 and

xn+m
k+r+m+1; and it allows to apply Lemma 3.1. Substituting (3.5) into (3.4) yields

P

(
(Φnx)m

0 = g
∣∣∣Uk+r+m

k−r = 1
)

=
∑

h∈Am+1

γm+1 · P
(
X = h

∣∣∣Uk+r+m
k−r = 1

)
= γm+1.

Therefore the result follows.

3.3. Elementary facts on the Pascal triangle

Now we use the following result on the Pascal triangle. Let n =
∑

j∈N
njp

j be the
decomposition of n in base p, so nj ∈ {0, . . . , p− 1} for every j ∈ N. For 0 ≤ k ≤ n
consider the decompositions k =

∑
j∈N

kjp
j and n − k =

∑
j∈N

(n − k)jp
j . The

Kummer’s Theorem on binomial coefficients, whose proof can be found in [4], states
the following result.

Lemma 3.3. The biggest integer � such that p� divides
(
n
k

)
is the number of carries

needed to sum k and n − k in base p.

We introduce the following notation. For n ∈ N and i ≥ 0 we put

Ji(n) = {j ≥ i : nj �= 0}, ξi(n) = |Ji(n)|.

For a real number c denote by �c� the integer part of c and for a ≥ 0 define

pa
N = {pa · n : n ∈ N} = {n ∈ N : nj = 0 for all 0 ≤ j < a}.
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Lemma 3.4. Let m ≥ 1 and a ≥ 2s+1 be such that p�a/2� > m. For every n ∈ pa
N

and i ≥ a,
∣∣∣{0 ≤ k ≤ n : k is (m, m)-isolated in n}

∣∣∣ ≥ 2ξa+i(n) − 1.

Proof. Fix a nonempty subset J ⊆ Ji+a(n), and define 0 ≤ k ≤ n by kj = nj if
j �∈ J and kj = nj − 1 for j ∈ J . Therefore n− k verifies (n− k)j = 1 for j ∈ J and
(n−k)j = 0 for j �∈ J . Then there is no carry in the sum of k and n−k, so Lemma
3.3 says that

(
n
k

)
is relatively prime to p. It remains to show that

(
n
k′

)(s) = 0 for all
k′ ∈ {k − m, . . . , k + m} \ {k}.

Case 1: Let 1 ≤ v ≤ m and k′ = k − v. Then the p-ary decomposition of k′ has
some nonzero elements in coordinates between 0 and a − 1 (because pa divides k,
but does not divide v); moreover, it has at least b = �a/2� zeros in {0, . . . , a − 1}.
However, the p-ary decomposition of n has no nonzero elements in {0, . . . , a − 1},
so there must be at least b carries in the addition: (n−k′)+k′ = n. Thus, Lemma
3.3 says that pb divides

(
n
k′

)
. But b = �a/2� ≥ �(2s+1)/2� ≥ s, so we conclude that(

n
k′

)(s) = 0.
Case 2: Let k′ = k+v with 1 ≤ v ≤ m. Then k′

j ≥ nj for every j < a+ i and for
some j′ < a we have k′

j′
> nj′ . Hence, the sum in base p of k′ and n − k′ will have

at least a carries, so Lemma 3.3 says that pa divides
(

n
k′

)
and finally

(
n
k′

)(s) = 0.

Lemma 3.5. Let a ≥ 0. Then, the set

M0 =
{

n ∈ pa
N : ξa+� 1

2 logp(n)�(n) ≥ 1
5

logp(n)
}

is of density 1 in pa
N. That is,

lim
N→∞

|M0 ∩ {0, . . . , N − 1}|
|paN ∩ {0, . . . , N − 1}| = 1.

Proof. Let M =
{

n ∈ N : ξ� 1
2 logp(n)�(n) ≥ 1

5 (logp(n) + a)
}

. Then

lim
N→∞

1
N

∣∣∣M∩ {0, . . . , N − 1}
∣∣∣ = 1.

To see this, let n ∈ N be a ‘generic’ large integer; then the Law of Large Numbers
says that only about 1

p of the p-ary digits of n are zero; hence p−1
p are nonzero.

Since there are 1
2 logp(n) digits in the range [12 logp(n), logp(n)], we conclude, with

asymptotic probability 1, that at least p−1
2p logp(n) digits in [12 logp(n), logp(n)] are

nonzero; hence ξ� 1
2 logp(n)�(n) ≥ p−1

2p logp(n) ≥ 1
5 (logp(n) + a) (assuming p ≥ 2

and logp(n) > 4a).
Now define bijection ψ : N → pa

N by ψ(n) = pan; then ψ(M) ⊇ M0. The
lemma follows.

3.4. Proof of Theorem 1.1

Proof. Fix m ≥ 1. If N ⊂ N, we say that the m-dimensional marginal of the Cesàro
mean converges along N if for any g ∈ Gm

lim
N→∞

1
|N ∩ {0, . . . , N − 1}|

∑
n∈N∩{0,...,N−1}

µ
(

(Φnx)m−1
0 = g

)
= ν(g). (3.6)
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Let m′ = m + r and consider a ≥ 2s + 1 with p�a/2� > m′ (as in Lemma 3.4). Let
M0 be as in Lemma 3.5. We claim that the m-dimensional marginal of the Cesàro
mean converges along M0.

Let n ∈ M0 be enough large such that i =
⌊

1
2 logp(n)

⌋
≥ a. Define A =

{0 ≤ k ≤ n : k is (m′, m′) -isolated in n }. Therefore, by Lemma 3.4 and the defi-
nition of M0,

|A| ≥ 2ξa+i(n) − 1 ≥ 2
1
5 logp(n) − 1 = 2

1
C log2(n) − 1 = n1/C − 1, (3.7)

where C = 5 log2(p).Thus,

µ
(
∃k ∈ A with Uk+m′

k−r = 1
)

≥ µ
(
N(2m′)(A − m′) �= ∅

)
≥

(2.1)

1(1 − δ)|A| ≥
(3.7)

1 − (1 − δ)n1/c−1,

where “(3.7)” is by equation (3.7) and “(2.1)” is by equation (2.1) (since A is
(2m′)-separated).

Finally, Lemma 3.2 implies |µ((Φnx)i+m−1
i = g)−γm| ≤ (1−δ)n1/C−1, and thus,

limn→∞,n∈M0 |µ((Φnx)i+m−1
i = g) − γm| = limn→∞(1 − δ)n1/C−1 = 0, as desired.

Lemma 3.5 then implies that the m-dimensional marginal of the Cesàro mean
converges along pa

N. Now, since ν is invariant for powers of Φ, we find that for any
0 ≤ j < pa, the m-dimensional marginal of the Cesàro mean also converges along
Mj = {n + j; n ∈ M0}. Therefore (1.1) follows from the fact that

pa lim
N→∞

1
N

N−1∑
n=0

µ
(
(φnx)m−1

0 = g
)

=
∑

0≤j≤pa

1
|M ∩ {0, . . . , N − 1}|

∑
n∈Mj∩{0,...,N−1}

µ
(
(φnx)m−1

0 = g
)

= ν(g)
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