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A note on percolation in cocycle measures

Ronald Meester1

Vrije Universiteit, Amsterdam

Abstract: We describe infinite clusters which arise in nearest-neighbour per-
colation for so-called cocycle measures on the square lattice. These measures
arise naturally in the study of random transformations. We show that infinite
clusters have a very specific form and direction. In concrete situations, this
leads to a quick decision whether or not a certain cocycle measure percolates.
We illustrate this with two examples which are interesting in their own right.

1. Introduction

Much of Mike’s work in probability and percolation theory has been inspired by his
background in ergodic theory. His ergodic-theoretical viewpoint of spatial stochas-
tic models turned out to be very fruitful, both for answering long standing open
questions as for generating new problems. Among many other things, Mike taught
me how to think ‘ergodically’, and I have enjoyed the interplay between probability
and ergodic theory ever since.

In this note, we will further illustrate this interplay in a concrete situation; we
discuss some percolation properties of a particular class of random colourings of the
nearest neighbour edges of the square lattice Z

2. The (probability) measures in this
note are related to measure-preserving random transformations, and for reasons
that will become clear we shall call it the class of cocycle measures.

We consider colourings of the edges of Z
2 with two colours, red and blue, with

the cocycle property. This property can be reformulated as follows. Consider four
nearest-neighbour edges forming a square. When you travel in two steps from south-
west to north-east along this square, the number of blue and red edges you see along
the way does not depend on the route you take. A second way of defining this class of
colourings is as follows. Take any two vertices x and y ∈ Z

2, and consider a vertex-
self-avoiding path π between x and y, i.e. a sequence of distinct edges ei = (ui, vi)
i = 1, . . . , k such that u1 = x, vk = y, vi = ui+1 for i = 1, . . . , k−1. When travelling
along π from x to y, we travel edges horizontally to the right, vertically upwards,
horizontally to the left or vertically downwards. We collect the first two types of
edges in a set π+, and the last two in a set π−. Now consider the number of red edges
in π+, minus the number of red edges in π− and call this number f1(π). Similarly,
f2(π) is defined as the number of blue edges in π+ minus the number of blue edges
in π−. The requirement we impose on the configurations is that (f1(π), f2(π)) is
the same for all paths π from x to y.

Motivation for this type of measures can for instance be found in Burton, Dajani
and Meester (1998). Indeed, the last characterisation above is in fact a formulation
of a so called cocycle-identity, but this will play no role in the present note. We give
some examples of cocycle measures in the last section of this note.
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Let µ be a stationary, ergodic (with respect to the group of all translations of
Z

2) cocycle measure. We are interested in percolation properties of µ, i.e. we are
interested in the question whether or not infinite red or blue clusters exist, and if
so, how many. It is easy to come up with examples in which both blue and red
edges percolate; for instance take the measure µ which makes all horizontal edges
blue and all vertical edges red. On the other hand, it is just as easy to find an
example where neither the blue nor the red edges percolate; just colour the four
edges of every second square blue and the remaining edges red, and choose the
origin randomly as to get something stationary. We leave it to the reader to find
an easy example of a measure for which exactly one colour percolates.

The goal of the present note is to discuss some general percolation properties for
this type of measures, which in concrete examples lead to a quick decision whether
or not a given measure actually percolates. For reasons that will become clear soon,
we will no longer speak about red or blue edges, but about edges labelled 0 or 1,
and from now on this refers to a number, not a colour. We shall concentrate on
percolation of edges labelled 0. Of course, this is in some sense arbitrary, but 0’s
really seem to have advantages over 1’s, as we shall see.

The next section gives some general background on cocycle measures. Section 3
deals with general facts about percolation in cocycle measures, and the last section
is devoted to a number of examples. The first example in the last section was the
motivation to study percolation properties of cocycle measures; in this example we
answer a question which was asked by T. Hamachi.

2. General background

We start with some notation. The expection of the label of a horizontal edge is
denoted by h, the expection of the label of a vertical edges by v. To avoid trivial
situations, we assume that 0 < h, v < 1. We write f(z) = f(z1, z2) = f(z1, z2, ω)
for the sum of the labels in π+ minus the sum of the labels in π−, where π is an
arbitrary self-avoiding path from 0 to z = (z1, z2). L1 distance is denoted by ‖ · ‖.

Note that our weak assumption on ergodicity of µ does not imply that the right
or up shift are individually ergodic. However, since by the defining property of
cocycle measures we have that

|(f(n, m) − f(0, m)) − (f(n, m + 1) − f(0, m + 1))| ≤ 2,

the limits limn→∞(f(n, m) − f(0, m))/n, which exist by stationarity, are invariant
under both horizontal and vertical translations and therefore a.s. constant. This
constant has to be h then. A similar remark is valid for vertical limits.

The cone
{(x, y) ∈ Z

2 : α − ε ≤ y

x
≤ α + ε}

is denoted by C(α, ε). Throughout, µ denotes a cocycle measure. The following
lemma is taken from Dajani and Meester (2003).

Lemma 2.1. Let {(kn, mn)} be a sequence of vectors in Z
2.

(i) Suppose that (kn, mn) → (c1 · ∞, c2 · ∞) for some c1, c2 ∈ {1,−1} and in
addition that mn

kn
→ α ∈ [−∞,∞]. Then

f(kn, mn)
|kn| + |mn|

→ c1

1 + |α|h +
c2|α|

1 + |α|v
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in µ-probability as n → ∞. (The quotient 1
1+∞ is to be interpreted as 0 and

∞
1+∞ as 1.)

(ii) Suppose that {kn} is bounded and mn → c3 · ∞ for some c3 ∈ {1,−1}. Then

f(kn, mn)
|kn| + |mn|

→c3v

in µ-probability as n → ∞.
(iii) Suppose that {mn} is bounded and kn → c4 · ∞ for some c4 ∈ {1,−1}. Then

f(kn, mn)
|kn| + |mn|

→c4h

in µ-probability as n → ∞.

This leads to

Lemma 2.2. Let α ∈ (−∞,∞). Then for any ε > 0, there a.s. exist Nε > 0 and
δε > 0 such that whenever |mn|, |kn| > Nε and (kn, mn) ∈ C(α, δε), then

∣∣∣∣ f(kn, mn)
|kn| + |mn|

− c1

1 + |α|h − c2|α|
1 + |α|v

∣∣∣∣ < ε, (1)

for appropriate c1 and c2. When α = ±∞, δε should be replaced by a constant
Mε and the condition (kn, mn) ∈ C(α, δε) should be replaced by |mn/kn| > Mε.
Moreover, similar statements are valid for all other cases of Lemma 2.1.

Proof. Draw a uniform (0, 1) distributed random variable U and consider the line
y = αX + U . Let yn be the (random) point on the vertical line {(x, y) : x = n}
closest to this line. It is not hard to see that (f(y0), f(y1), . . .) forms a random walk
with (dependent) stationary increments. We write xn = (kn, mn) and write yj(n)

for the (or a) vertex among (y0, y1, . . .) which is closest to xn. We then have

f(xn)
‖xn‖

=
(

f(yj(n))
‖yj(n)‖

+
f(xn) − f(yj(n))

‖yj(n)‖

) ‖yj(n)‖
‖xn‖

.

Since (f(y0), f(y1), . . .) has stationary increments, the ergodic theorem tells us that
f(yn)/‖yn‖ converges a.s., and it then follows from the corresponding convergence
in probability in Lemma 2.1 that this a.s. limit must be the same limit as in Lemma
2.1. Therefore, if kn and mn are large enough and |mn/kn−α| is small enough, then
j(n) is large and therefore f(yj(n))/‖yj(n)‖ is close to the correct limit in Lemma
2.1. At the same time, the term ‖yj(n)‖/‖xn‖ is close to 1 by construction. Finally,
the norm of the vector (f(xn) − f(yj(n)))/‖yj(n)‖ is bounded above by

‖xn − yj(n)‖
‖yj(n)‖

.

This last expression is close to 0 when kn and mn are large and |mn/kn − α| is
small.

For α = α0 := −h
v , the limit in Lemma 2.1(i) is equal to 0, and we write C0(ε)

for C(α0, ε).

Lemma 2.3. Let ε > 0. With µ-probability one, only finitely many points z outside
C0(ε) have f(z) = 0.
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Proof. The proof is by contradiction. Suppose infinitely many such z exist. Look
at the set B of directions β outside C0(ε) such that for every δ > 0, the cone
C(β, δ) contains infinitely many z with f(z) = 0. The set B is closed and invariant
under translations and therefore β̄ := sup{β : β ∈ B} is well defined and an a.s.
constant. According to Lemma 2.2, for every γ > 0, we now have infinitely many z
with f(z) = 0 for which

∣∣∣∣f(z)
‖z‖ − c1β̄

1 + |β̄|h − c2β̄|β̄|
1 + |β̄|v

∣∣∣∣ < γ.

But since f(z) = 0 and γ is arbitrary, this implies that

c1β̄

1 + |β̄|h +
c2β̄|β̄|
1 + |β̄|v = 0,

which implies that β̄ = α0, a contradiction.

3. Percolation

As mentioned in the introduction, we will concentrate on percolation of edges la-
belled with 0. The cluster C(z) of the vertex z is the set of vertices that can be
reached from z by travelling over 0-labelled edges only. We are interested in the
question whether or not infinite clusters exist and if so, how many.

A subset S of Z
2 is said to have density r if for each sequence R1 ⊆ R2 ⊆ · · · of

rectangles in Z
2 with ∪nRn = Z

2, it is the case that

lim
n→∞

#(S ∩ Rn)
#(Rn)

= r,

where #(·) denotes cardinality. Burton and Keane (1991) showed that for every
stationary percolation process Z

2, a.s. all clusters have density. In addition, they
showed that either all infinite clusters have positive density a.s., or all infinite
clusters have zero density a.s.

Lemma 3.1. For any cocycle measure µ, all clusters have zero density a.s.

Proof. If infinite clusters exist with positive probability, then the probability that
the cluster of the origin is infinite must be positive. All elements z in this cluster
have f(z) = 0. But according to Lemma 2.3, this implies that for all ε > 0, up to a
finite number of vertices, the whole cluster is contained in C0(ε). Since the density
of C0(ε) goes to zero with ε tending to zero, we find that the cluster of the origin
has density zero a.s. The result now follows from the result of Burton and Keane
just mentioned.

Lemma 3.2. If infinite clusters exist with positive µ-probability (and hence with
probability one according to the ergodicity of µ), then there are infinitely many
infinite clusters µ-a.s.

Proof. There are at least two quick proofs of this fact. (1): If infinite clusters exists,
then the set of vertices z for which C(z) is infinite has positive density a.s. Since
each single cluster has zero density, the only conclusion is that there are infinitely
many clusters. (Note that density is not countably additive!) (2): If there are infinite
clusters a.s., then there are infinitely many points z on the x-axis for which C(z)
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is infinite. It is clear that f(z) takes infinitely many values among these points z.
However, when f(z) 	= f(z′), then C(z)∩C(z′) = ∅, since f(z) is obviously constant
on a cluster. Hence infinitely many infinite clusters must exist.

The following result could be stated in higher generality. Strictly speaking, it
follows from a general result like Lemma 2.3 in Häggström and Meester (1996),
but for this particular situation an independent simple proof is possible. See also
Meester (1999) for related results.

Lemma 3.3. For any cocycle measure µ, with probability one every infinite cluster
C satisfies

sup{y ; (x, y) ∈ C} = ∞,

and
inf{y ; (x, y) ∈ C} = −∞.

Similar statements are true for the horizontal direction.

Proof. Since C is contained (up to finitely many points) in every C0(ε), the as-
sumption that C is infinite implies that C is unbounded in at least one of the
two vertical directions. We now assume (wlog) that with positive probability (and
therefore with probability 1) a cluster C exists for which sup{y ; (x, y) ∈ C} = ∞
and inf{y ; (x, y) ∈ C} > −∞. According to Lemma 2.3, the intersecion of C with
a horizontal line contains at most finitely many points, and therefore there is a left-
most point C�(n) at every level y = n, for n large enough. The collection {C�(n)},
where C ranges over all upwards unbounded clusters of the halfspace {y ≥ n}, has
a well defined (one-dimensional horizontal) density dn. It is clear from the con-
struction that dn+1 ≥ dn, since the restriction to {y ≥ n + 1} of every upwards
unbounded cluster of {y ≥ n} contains at least one upwards unbounded cluster in
{y ≥ n + 1}. At the same time, (dn) forms a stationary sequence. We conclude
that dn is constant a.s. On the other hand, note that our assumption implies that
any given vertex z is the left-lowest point of an upwards unbounded cluster with
positive probability. Therefore the line y = n+1 contains a positive density of such
points. Clearly, these points are ‘new’ in the sense that they are not in previous
clusters. From this we see that dn+1 > dn, the required contradiction.

Next, we show that percolation occurs in a directed sense:

Lemma 3.4. Every infinite cluster C contains a strictly northwest-southeast di-
rected bi-infinite path. More precisely, the left boundary of C forms such a path.

Proof. Define, for every n, the leftmost vertical edge in C between {y = n} and
{y = n + 1} by en. Connect, for all n, the upper endpoint of en with the lower
endpoint of en+1 through the horizontal edges in between them (if necessary). I
claim that the union of these vertical and horizontal edges is the required path. To
see this, note that the upper endpoint of en is connected by a path of 0-edges to
the upper endpoint of en+1 since they belong to the same cluster C. Since we can
also travel from the upper endpoint of en to the upper endpoint of en+1 by first
travelling horizontally to the lower endpoint of en+1 and the last step via en+1, all
these last travelled horizontal edges must have zero labels. Finally, en+1 cannot be
strictly at the right of en, since then the path constructed by traveling vertically
from the upper endpoint of en and then horizontally to the upper endpoint of en+1

would consist of zero labels only, which contradicts the definition of en+1.

Finally, we show that ‘dead ends’ are impossible:
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Lemma 3.5. Consider the following event: there is a directed path from the origin
going down-right, which is completely labelled 0, and the two edges ((−1, 0), (0, 0))
and ((0, 1), (0, 0)) are both labelled 1. This event has probability 0.

Proof. According to the previous lemma, the left boundary of the 0-cluster of the
origin forms a bi-infinite directed path π. This bi-infinite path crosses the x-axis to
the left of the origin. The cluster of the origin must contain a connection between
π and the directed path going down from the origin. Now label all edges which are
forced to be zero, given this connection. It is easy to see that these 0’s run into
conflict with one of the two designated edges having label 1.

By now we have a fairly precise and specific description of the geometry of infinite
clusters in cocycle measures, if they exist: there are in that case infinitely many
such clusters, essentially contained in a cone in the α0-direction, and bounded at
the left by a bi-infinite directed path. This description is so specific that it makes
it easy in many case to rule out percolation almost immediately. On the other
hand, one might suspect that this specific description makes it almost impossible
for ‘natural’ cocycle measures to percolate, and that a percolating cocycle measure
must be more or less constructed for that purpose. It seems hard to formulate
a general property which excludes percolation. One is tempted to try to connect
certain ergodic-theoretical mixing properties with percolation here, since the above
description of percolation clusters seems highly non-mixing. However, we will see
that mixing cocycle measures that percolate can be constructed; they can even have
trivial full tail.

4. An example

The following example is discussed to some extent in Burton, Dajani and Meester
(1998). Here we shall discuss the example in detail. Choose 0 < p < 1 and let
q = 1− p. Label all edges of the x-axis 0 with probability q and 1 with probability
p, independently of each other. For the y-axis we do the same with interchanged
probabilities. Now denote the square [n, n + 1]× [0, 1] by Wn, and denote the lower
and upper edge of Wn by en and fn respectively. The labelling procedure is at
follows: first label the remaining edges of W1; if there are two possibilities for doing
this we choose one of them with equal probabilities. At this point, the lower and
left edge of W2 are labelled, and we next complete the labelling of W2, noting again
that if there are two ways to do this, we choose one of them with equal probabilities.
This procedure is continued and gives all labels in the strip [0,∞)× [0, 1]. Then we
move one unit upwards, and complete in a similar fashion the labels in the strip
[0,∞)× [1, 2]. (Of course, if you want to carry out this labelling, you never actually
finish any strip. Instead, you start at some moment with the second strip which
can be labelled as far as the current labelling of the first strip allows, etc.)

This procedure yields a random labelling of all edges in the first quadrant. Using
for instance Kolmogorov’s consistency condition, we can extend this to a cocycle
measure on the labels in the whole plane.

Lemma 4.1. The procedure described above yields a stationary and mixing measure
µ. In particular, the labelling is ergodic.

Proof. If we can show that the labelling of the edges fn has the same distribution as
the labelling of the edges en, then we have shown that the labelling in the quadrant
[0,∞)× [1,∞) has the same distribution as the labelling in [0,∞)× [0,∞) and we
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can use a similar argument for vertical lines plus induction to finish the argument.
Therefore we only need to show that the labelling of the edges fn is i.i.d. with
the correct marginals. To do this properly, consider the labels of the edges of Wn.
There are six possible labellings of the edges of Wn. Four of these are such that en

and fn have the same label. The exceptional labellings are (starting at the lower
left vertex and moving clockwise) 0110 and 1001. Denote the labelling of the edges
of Wn by Ln. Then it is not hard to see that Ln is a Markov chain on the state
space {0110, 1001, 1010, 0101, 1111, 0000}. Take the transition matrix P of Ln,
interchange the rows and the columns corresponding to 0110 and 1001 to obtain P ′,
and consider the backward Markov chain corresponding to P ′, denoted by Mn. An
easy calculation then shows that Ln and Mn have the same transition matrix and
that they are both in stationarity. But now note that Mn represents the right-to-left
labelling of the strip [0,∞)× [0, 1]. This means that the distribution of the random
vector (fk1 , fk2 , . . . , fkn) is the same as the distribution of (ekn , ekn−1 , . . . , ek1). The
last vector has independent marginals, hence so has the first, and we are done.

Next we show that µ is mixing. For this, consider finite-dimensional cylinder
events A and B, i.e. A and B only depend on edges in the box Bn = [0, n]2. Denote
by Mk the labelling of all the edges in the box Bn + (k, 0). It is easy to check that
Mk is a mixing Markov chain. This implies that for the events A and B, we have

µ(A ∩ T−1
(k,0)(B)) → µ(A)µ(B),

where Tz denotes translation over the vector z. This shows that µ is mixing in
the horizontal direction. For the vertical direction, we consider the Markov chain
associated with the labellings of the boxes Bn + (0, k), k = 0, 1, . . ., and repeat the
argument.

Theorem 4.2. The measure µ described in this subsection does not percolate a.s.

Before we give a proof, we need to look at the construction of µ. The above
definition of µ is simple, but has the disadvantage that we need to appeal to Kol-
mogorov’s consistency theorem to define it on the whole plane. In this sense, the
definition is not constructive. There is an alternative way of defining µ that is con-
structive, and that will be quite useful. The first step towards this construction is
the following lemma.

Lemma 4.3. Let π be a bi-infinite path (. . . , z−1, z0, z1, . . .), where zi = (zi1 , zi2),
and with the property that zk1 is non-decreasing in k, and zk2 is non-increasing
in k. Denote the edge (zi, zi+1) by ei. Then the labels (. . . , c(e−1), c(e0), c(e1), . . .)
form an independent sequence.

Proof. Independence is defined in terms of finite collection of edges, so by station-
arity we need only look at finite paths with these monotonicity properties which
travel from the y-axis to the x-axis. That is, we only work in the first quadrant for
now.

Denote such a path by (z0, . . . , zk), where z0 is on the y-axis, and zk is on the x-
axis. We may assume that z0 and zk are the only points of the path on the coordinate
axes. Again denoting the edge (zi, zi+1) by ei, We claim that the last edge c(ek−1)
is independent of the collection {c(e0), . . . , c(ek−2)}. To see this, first assume that
ek−2 is a horizontal edge. (Note that ek1 is always vertical by assumption.) Then
by considering the reversed Markov chain in the proof of Lemma 4.1, it follows
immediately that c(ek−1) is independent of c(ek−2) and is also independent of the
labels of all horizontal edges to the left of ek−2. But all labels {c(e1), . . . , c(ek−2)}
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are measurable with respect to these last labels together with some independent
labels on the y-axis and some independent choices when appropriate. This proves
the claim. If ek−2 is vertical, we walk back along the path until the first horizontal
edge, and repeat the argument with the Markov chain corresponding to the strip
with the appropriate width. The lemma now follows with induction in the obvious
way.

The last lemma tells us how to construct a labelling of the whole plane in a
constructive manner. We first take a bi-infinite northwest-southest directed path π
that is unbounded in all directions. Label the edges of this path in an independent
fashion, with the correct one-dimensional marginals. Next start ‘filling the plane’
in a way similar to the original construction. Above the path, we can do what we
did before, and label strips from left to right; below the path we use the backwards
Markov chain mentioned in the proof of Lemma 4.1, and we label strips from right
to left. It is clear that the labelling obtained this way has the correct distribution:
just note that all finite-dimensional distributions are correct. Here we need Lemma
4.3 of course, to make sure we start off with the correct distribution on our path
π. Note that the labellings above and below π are conditionally independent, given
the labelling of π itself. Also note that the sigma fields generated by E1(π) := {e : e
is both below π and to the right of the line x = 0 (inclusive)} and E2 := {e : e is
both above π and to the left of the line x = 0 (inclusive)} are independent.

Proof of Theorem 4.2. We assume µ does percolate, and show that this leads to a
contradiction. Choose a northwest-southeast directed path π = (. . . , z−1, z0, z1, . . .)
as follows (recall the definition of h and v): z0 is the origin, and for some (possibly
large) M , z−M , . . . , zM are all on the x-axis. The vertices zM+1, zM+2, . . . can now
be chosen in such a way that they are all above the line through zM with direction
−h/2v; the vertices z−M−1, z−M−2, . . . can now be chosen in such a way that they
are all below the line through z−M with direction −h/2v. Label the edges of π in-
dependently (with the correct marginals). The point of this choice is that according
to our geometrical picture obtained in the previous section, for some M , there must
be a positive probability that the origin is contained in a 0-labelled directed infinite
path going down-right, all whose edges are strictly below π. We call this event E1.
It is clear that E1 is measurable with respect to the sigma field generated by E1(π).

On the other hand, there is a positive probability that the four edges between
the origin, (0, 1), (−1, 0) and (−1,−1) are all labelled 1. This event, let’s call it
E2, is measurable with respect to the sigma field generated by E2(π). We noted
above that these two sigma fields are independent and it follows that E1 and E2

are independent. Hence P (E1 ∩E2) > 0, but on this event, the origin is a dead end
in the sense of Lemma 3.5, a contradiction.

It is interesting to compare the last theorem with a result of Kesten (1982). He
showed that if we label all edges independently, with vertical edges being 0 with
probability p and horizontal edges with probability 1 − p, then the system does
not percolate. In fact, the system is critical in the sense that if one increases the
probability for either the horizontal or vertical edges by a positive amount, the
sytem does in fact percolate.

5. A percolating cocycle with trivial full tail

The geometrical picture of infinite clusters looks highly non-mixing. After all, if we
look at the realisation below the horizontal line y = n, we have a lot of information
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about the infinite clusters, an this should tell a lot about the realisation in the
halfplane y ≥ n + m, for m large. So it seems that a percolating cocycle measure
has long distance dependencies and therefore weak mixing properties. But we shall
now see that a percolating cocycle measure can be constructed which has trivial
full tail, which is much stronger than being mixing. The construction is based on
an exclusion process introduced in Yaguchi (1986) and studied by Hoffman (1998).

We first describe Yaguchi’s construction. We shall initially work in the half plane
x ≥ 0, but the measure can of course be extended to a measure on the full plane.
Consider the y-axis. Each vertex is either blue, red or not coloured (probability
comes in later). We next colour the line x = 1 as follows. Each coloured vertex z
(on the y-axis) decides independently with a certain (fixed and constant) probability
if it wants to move down one unit. It also checks whether or not the vertex below is
not coloured. If both the vertex wants to move, and the vertex below is not coloured,
then we colour the vertex z+(1,−1) with the same colour as z. Otherwise we colour
z + (1, 0) with the same colour as z. This procedure is repeated when we go from
x = 1 to x = 2, etc. Yaguchi (1986) characterised the stationary measures of the
associated Z

2 action, in particular he showed such measures exist. Hoffman (1999)
showed that these measures have trivial full tail; in particular they are mixing.

How does this relate to cocycle measures? We shall make a few minor modifica-
tions. First, we look at all red points on the y-axis that are between two given blue
points (with no other blue points in between). Take the top vertex among these red
vertices and change its colour into green. When a coloured vertex z causes z+(1, 0)
to be coloured with the same colour as z we also colour the edge between these two
vertices with the same colour. When z causes z + (1,−1) to be coloured, we colour
the two edges (z, z + (0,−1)) and (z + (0,−1), z + (1,−1)) with the same colour.
Finally we keep the green edges and ‘uncolour’ all other edges. A configuration now
consists of infinitely many disjoint, bi-infinite strictly northwest-southeast directed
green paths. We can transform a realisation to a labelling of the edges that satisfy
the cocycle identity as follows: All green edges are labelled 0. All edges that have
one endpoint in common with a green edge are label 1. All remaining edges are
labelled 0. It is easy to prove that the realisation obtained this way satisfies our
cocycle identity. It is obtained as a ergodic-theoretical factor of a mixing process,
and therefore also mixing. On the other hand, it percolates along the edges that
are coloured green.
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