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The Relation between Subfactors arising from Conformal Nets and the Realization of Quantum
Doubles

MARCEL BISCHOFF

Abstract. We give a precise definition for when a subfactor arises from a conformal net which can be
motivated by classification of defects. We show that a subfactor N ⊂ M arises from a conformal net if there is
a conformal net whose representation category is the quantum double of N ⊂ M.
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1. Introduction

Finite index subfactors N ⊂ M generalize finite group fixed points and can be seen as describing
quantum symmetries. An important invariant of a subfactor N ⊂ M is its index [M : N]. It generalizes the
index of a subgroup in the sense that for group-subgroup subfactors we have [MH : MG] = [G : H]. By
Jones’ index theorem [Jon83] the index takes values in:

[M : N] ∈
{
4 cos2

( π
m

)
: m = 3, 4, . . .

}
∪ [4 :∞]

and all subfactors with index less than four have finite depth. For index greater than 4 there are some known
exotic subfators with finite depth and the classification has been recently pushed to 5 1

4 [JMS14, AMP15].
Finite depth subfactors are rather algebraic objects, but since everything is defined on a Hilbert space this
algebraic structure still has important positivity properties. It is an interesting question if and how they arise
describing symmetries in models of quantum physics.

Using the Haag–Kastler axioms of algebraic quantum field theory [Haa96] one can describe quantum
field theory directly using nets of local von Neumann algebras. Under natural assumptions the local algebras
turn out to be factors and are in many cases isomorphic to the hyperfinite type III1 factor [Con73, Haa87].
The theory of Doplicher–Haag–Roberts superselection sectors studies the representation theory of Haag–
Kaster nets in terms of so-called localized endomorphisms. Each endomorphism gives a subfactor, but in
higher dimensional QFT the index is rather boring and takes values in {n2 : n ∈ N}, indeed all subfactors
come from a representation of a compact group [DR89]. On the other hand, in low-dimensional QFT
the superselection theory gets interesting. The superselection sectors have braid group statistics [FRS89]
and the index is in general not a square of an integer. For example all values

{
4 cos2

(
π
m

)
: m = 3, 4, . . .

}
of
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the index can be realized by a loop group model ASU(2)m−2 of SU(2) at level m − 2 [Was98]. But these
subfactors always come with a braiding and there are known subfactors which do not admit such a braiding.
Now there are two ways out. First: The quantum double of a subfactor gives a braided subfactor, namely it
gives a unitary modular tensor category and one can try to construct quantum field theories realizing such
quantum doubles as DHR category of superselection sectors. But these does in general not give the original
subfactor back (at least not directly). Second: One can look into higher structures of the quantum field
theory for example one can allow boundary conditions and defects. Here one needs to consider extensions
and new subfactors arise which are not braided. The goal of this note is to show that these two directions
are directly related.

The experience shows that it might be enough to consider completely rational Möbius covariant nets
on the circle which describes chiral conformal field theory (CFT).1 In this framework we want to make a
precise statement what is meant by the following question.

Question 1.1 (cf. [Jon14]). Do all subfactors come from quantum field theory?

By a subfactor we mean from now on always a finite index, finite depth subfactor which is hyperfinite
of type III1. If we have a finite index and finite depth subfactor N ⊂ M of type II1 we can always pass to a
hyperfinite III1 subfactor. Namely, Ñ := N ⊂ A ⊂ M̃ := M ⊗ A with A the hyperfinite type III1 factor has
the same standard invariant.

Kawahigashi, Longo and Müger [KLM01] showed that under the rather natural assumption of complete
rationality of a conformal netA, its representation category Rep(A) is a unitary modular tensor category
(UMTC). Unitary modular tensor categories play a prominent role in topological quantum computing, they
give 3 manifold invariants and topological quantum field theories via the Reshetikhin–Turaev construction
[RT90, Tur94]. The natural question arises if one can find a general solution to the following problem (cf.
[Kaw15]).

Problem 1.2. Given a unitary modular tensor category C, find a conformal net with Rep(A) braided
equivalent to C.

The modular tensor category encodes topological information about the conformal net in terms of a
three dimensional topological field theory. Note that nevertheless the conformal net has more information
than just its representation category, because there infinitely many non-isomorphic conformal nets sharing
the same UMTC as representation category. They arise by tensoring with a holomorphic net (see below).

Nevertheless, the problem does not seem completely hopeless. It is similar to inverse scattering
problems in quantum field theory. One idea is to use all or some of the data of the UMTC to construct a
statistical mechanical model which in a limit at critical temperature gives a conformal field theory. This
way is full of technical difficulties and we will not further comment on it.

Since the quantum double D(N ⊂ M) of a finite index finite depth subfactor N ⊂ M is a UMTC, it
seems to be natural to consider the following subproblem of Problem 1.2 (cf. [EG11, Kaw15]).

Problem 1.3. Given a finite index finite depth subfactor N ⊂ M,
(1) Find a conformal net A, such that Rep(A) � D(N ⊂ M).
(2) Find a conformal net A, such that Rep(A) ⊃ D(N ⊂ M), i.e. D(N ⊂ M) is equivalent to a full

subcategory of Rep(A). In this case Rep(A) � D(N ⊂ M) � C, where C is a modular tensor
category.

1Probably one wants assume diffeomorphism covariance. But one the one hand for our structural results this is not necessary
to assume. On the other hand, we are not aware that there is a known completely rational net which is not diffeomorphism
covariant.
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If we have a UMTC C we get a UMTC Crev by replacing the braiding with the opposite braiding. In
general Crev is not braided equivalent to C. Since the braiding is instrinisically defined and conformal nets
have a posititvity of energy condition, there seems to be no easy way to get a net realizing the opposite
braiding without destroying the positivity of energy condition. Therefore the following question naturally
arises:

Question 1.4 ([Lon12]). Let A be a completely rational net. Is there a completely rational net Ã with
Rep(Ã) � Rep(A)rev?

This question can be answered positively, if we solve the following problem (see Proposition 4.6).

Problem 1.5. Given a completely rational net A, find a holomorphic net B, such that A ⊂ B is normal and
cofinite.

Motivated by the study of phase boundaries and topological defects, we say a subfactor N ⊂ M
arises from a conformal net A, if there are two relatively local extensions Ba,Bb ⊃ A, and a sector
β : Ba(I)→ Bb(I) related to A, such that N ⊂ M ≈ β(Ba(I)) ⊂ Bb(I), see Definition 4.1

Proposition 1.6. Let N ⊂ M be a finite index, finite depth subfactor.
(1) If there is a conformal net with Rep(A) braided equivalent to D(N ⊂ M), then N ⊂ M arises from
A. Actually, it is enough that Rep(A) contains a full subcategory braided equivalent to D(N ⊂ M).

(2) Conversely, if N ⊂ M arises from A, then there is a 2D conformal net B2 ⊃ A ⊗ A with
Rep(B2) � D(N ⊂ M).

(3) Further, if N ⊂ M arises from A, and there is a net Ã, with Rep(Ã) � Rep(A)rev then there is a
conformal net B ⊃ A⊗ Ã with Rep(B) braided equivalent to D(N ⊂ M).

2. Subfactors and Unitary Fusion Categories

Let M be the hyperfinite type III1 factor and N ⊂ M a finite index and finite depth subfactor. We denote
by ι : N → M the canonical inclusion map, which is a morphism (normal ∗-homomorphism) N → M. Then
finite index of N ⊂ M is equivalent to the existence of a morphism ῑ : M → N, such that idN ≺ ῑ ◦ ι and
idM ≺ ι ◦ ῑ cf. [Lon90]. Here we say a morphism ρ : N → M is contained in σ : N → M, written ρ ≺ σ if
and only if there is an isometry e ∈ Hom(ρ, σ) = {t ∈ M : tρ(N) = σ(N)t}.

All endomorphisms ρ of M, such that ρ(M) ⊂ M have finite index, form a rigid C∗-tensor category
End0(M). The arrows t : ρ → σ are given by t ∈ Hom(ρ, σ) as above and the tensor product is given by
composition of endomorphisms. An endomorphism ρ is called irreducible if Hom(ρ, ρ) = C · 1 and since
Hom(ρ, ρ) = ρ(N)′ ∩ N this is equivalent with the subfactor ρ(N) ⊂ N being irreducible. We denote by
[ρ] the sector of ρ which is the unitary equivalence class {uρ( · )u∗ : u ∈ N unitary}. There is a direct
sum, well-defined on sectors, given by ρ⊕ σ = v1ρ( · )v∗1 + v2σ( · )v∗2 with vi isometries fulfilling the Cuntz
algebra relations:

∑
i viv∗i = 1 and v∗i v j = δi, j.

A finite index subfactor N ⊂ M with ι : N → M and conjugate ῑ : M → N gives two rigid C∗-tensor
categories,

• the dual even part NFN⊂M
N = 〈ρ ≺ (ῑ ◦ ι)n〉 ⊂ End0(N) and

• the even part MFN⊂M
M = 〈ρ ≺ (ι ◦ ῑ)n〉 ⊂ End0(M).

Here the 〈S 〉 denotes the full and replete tensor subcategory generated by S and closed under taking direct
sums.

The subfactor N ⊂ M is called finite depth if and only if the set Irr( AFN⊂M
A ) = {[ρ] : ρ ∈

AFN⊂M
A irreducible} with A = N,M is finite. In this case, NFN⊂M

N and MFN⊂M
M are unitary fusion

categories.
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The subfactor actually generates a 2-category FN⊂M with zero objects {N,M}, by taking all finite
morphisms β : {N,M} → {N,M} contained in compositions of {ι, ῑ}, such that NFN⊂M

N and MFN⊂M
M sit in

the N − N and M − M corner, respectively, of FN⊂M.
We remark that a unitary fusion category given as a full and replete subcategory MFM ⊂ End0(M) is

completely fixed by its finite set of sectors. Conversely, given a finite set of endomorphisms ∆ = {ρ0 =

id, ρ1, . . . , ρn} which is closed under
• conjugates, i.e. there is a permutation i 7→ ī on {1, . . . , n}, such that [ρī] = [ρ̄i] and
• fusion, i.e. there are numbers Nk

i j, the so-called fusion rule coefficients, such that [ρi ◦ ρ j] =⊕
ρk∈∆

Nk
i, j[ρk]

there is a unique unitary fusion 〈ρ ∈ ∆〉 ⊂ End0(M).
Every fusion category MFM can be seen as the even part of a subfactor N ⊂ M. For example we

can simply take the subfactor N = ρ⊕(M) ⊂ M, where [ρ⊕] =
⊕

ρ∈Irr( MFM)[ρ]. This particular subfactor
actually has the special feature that the depth is two, which implies that there is a weak Kac algebra Q, such
that N = MQ ⊂ M [Reh97, NSW98, NV00]. In this sense, one can see fusion categories as representation
categories of weak Kac algebras, but the choice of Q with this property is not unique.

Further every abstract unitary fusion category F can be realized as a (as a concrete fusion category)
in End0(M), i.e. there is a full and replete MFM ⊂ End0(M), which is equivalent to F . Namely, [HY00]
gives a realization as bimodules of the hyperfine II1 factor R and by tensoring with the hyperfinite type III1

factor we get it realized as endomorphisms (cf. [Lon90]). Using Popa’s theorem [Pop95] such a realization
is unique, i.e. if we have another relation on M̃ then there is an isomorphism φ : M → M̃ which gives an
equivalence of categories (cf. [KLM01, Proof of Corollary 35]).

Often one wants a spherical structure on a fusion category. In the unitary case, we don’t need to worry,
because there is always (a unique up unitary to equivalence) spherical structure [LR97].

The categorical dimension dρ of ρ ∈ End0 coincides with the square root of the minimal index
[M : ρ(M)]. A unitary fusion category F is called braided if there is a natural family of unitaries ε(ρ, σ) ∈
Hom(ρσ, σρ). It is called a unitary modular tensor category (UMTC) if ε(ρ, σ)ε(σ, ρ) = 1 = 1σ◦ρ for
all ρ ∈ F implies [σ] = N[id].

One source of UMTCs are quantum doubles of subfactors. Given N ⊂ M, we take S = M ⊗ Mop

and SCS = 〈ρ⊗ σop : ρ, σ ∈ MFN⊂M
M 〉 which equivalent with the fusion category MFN⊂M

M � ( MFN⊂M
M )op.

Then there is a subfactor ιT⊂S (T ) ⊂ S and TCT := 〈ρ ≺ ῑT⊂SβιT⊂S : β ∈ SCS 〉 can be identified with the
category Z( MFN⊂M

M ), which is a UMTC by [Müg03b]. Here Z(F) denotes the unitary (Drinfeld) center
of a unitary fusion category F .

We could have started with N and NFN⊂M
N and obtain Z( NFN⊂M

N ) which is braided equivalent to
Z( MFM). Indeed, NFN⊂M

N and MFN⊂M
M are (weakly) Morita equivalent and Morita equivalent fusion

categories have braided equivalent Drinfeld centers by combining [Sch01] with [Müg03a]. Therefore we
denote the obtained UMTC Z( MFN⊂M

M ) byD(N ⊂ M) and call it the quantum double of N ⊂ M. There is
a Galois correspondence between intermediate subfactors S ⊂ A ⊂ T and subfusion categories G ⊂ MCM
[Izu00].

3. Conformal and Completely Rational Nets

A conformal net is a mathematical prescription of a chiral conformal quantum field theory on the circle
using operator algebras. A well-behaving family of conformal nets are the so-called completely rational
nets, which have a representation theory similar to finite groups and quantum groups at root of unity.

We denote by I the set of proper intervals I ⊂ S1 on the circle and by I′ = S1 \ I the opposite interval.
By a conformal net A, we mean a local Möbius covariant net on the circle. It associates with every proper
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interval I ∈ I a von Neumann algebra A(I) ⊂ B(H) on a fixed Hilbert space H, such that the following
properties hold:
A. Isotony. I1 ⊂ I2 implies A(I1) ⊂ A(I2).
B. Locality. I1 ∩ I2 = ∅ implies [A(I1),A(I2)] = {0}.
C. Möbius covariance. There is a unitary representation U of Möb on H such that U(g)A(I)U(g)∗ =

A(gI).
D. Positivity of energy. U is a positive energy representation, i.e. the generator L0 (conformal Hamiltonian)

of the rotation subgroup U(z 7→ eiθz) = eiθL0 has positive spectrum.
E. Vacuum. There is a (up to phase) unique rotation invariant unit vector Ω ∈ H which is cyclic for the

von Neumann algebra A :=
∨

I∈I A(I).
A conformal net A is called completely rational if it
F. fulfills the split property, i.e. for I0, I ∈ I with I0 ⊂ I the inclusion A(I0) ⊂ A(I) is a split inclusion,

namely there exists an intermediate type I factor M, such that A(I0) ⊂ M ⊂ A(I).
G. is strongly additive, i.e. for I1, I2 ∈ I two adjacent intervals obtained by removing a single point from

an interval I ∈ I the equality A(I1) ∨ A(I2) = A(I) holds.
H. for I1, I3 ∈ I two intervals with disjoint closure and I2, I4 ∈ I the two components of (I1 ∪ I3)′, the

µ-index of A
µ(A) := [(A(I2) ∨ A(I4))′ : A(I1) ∨ A(I3)]

is finite.
All known examples of completely rational nets also turn out to be covariant with respect to a projective rep-
resentation of the diffeomorphism group of the circle and this leads to representation of the Virasoro algebra,
but we just assume Möbius covariance, although the term conformal net often refers to diffeomorphism
covariant nets.

Examples of completely rational nets are:
• Diffeomorphism covariant nets with central charge c < 1 [KL04].
• The nets AL where L is a positive even lattice [DX06] which contain as a special case [Bis12] loop

group nets AG,1 at level 1 for G a compact connected, simply connected simply-laced Lie group.
• The loop group nets ASU(n),` for SU(n) at level `. [Xu00].

Further examples of rational conformal nets come from standard constructions:
• Finite index extensions and subnets of completely rational nets. Namely, let A ⊂ B be a finite

subnet i.e. [B(I) : A(I)] < ∞ for some (then all) I ∈ I, then A is completely rational iff B is
completely rational [Lon03], in particular orbifolds AG of completely rational nets A with G a
finite group are completely rational.
• Let A ⊂ B be a co-finite subnet, i.e. [B(I),A(I) ∨ Ac(I)] <∞ for some (then all) I ∈ I , where the

coset net Ac is defined by Ac(I) = A′ ∩B(I) with A′ = (∨I∈IA(I))′. Then B is completely rational
iff A and Ac are completely rational [Lon03].

A representation π of A is a family of unital representations π = {πI : A(I) → B(Hπ)}I∈I on a
common Hilbert spaceHπ which are compatible, i.e. πJ � A(I) = πI for I ⊂ J. An example is the trivial
representation π0 = {π0,I = idA(I)} on the defining Hilbert space H. Let us fix through out an abitrary
interval I ∈ I. Every representation π with Hπ separable turns out to be equivalent to a representation
localized in I, i.e. ρ on H, such that ρJ = idA(J) for J ∩ I = ∅. Then Haag duality implies that ρ = ρI

is an endomorphism of A(I). The statistical dimension of a localized endomorphism ρ is given by
dρ = [N : ρ(N)]

1
2 and we will restrict to endomorphisms with finite statistical dimension.

The category RepI(A) of representations of A with finite statistical dimension which are localized in I
naturally is a full and replete subcategory of the rigid C∗ tensor category of endomorphisms End0(A(I)). In
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particular, this gives the representations of A the structure of a tensor category [DHR71]. It has a natural
braiding, which is completely fixed by asking that if ρ is localized in I1 and σ in I2 where I1 is left of I2

inside I then ε(ρ, σ) = 1 [FRS89].

Proposition 3.1 ([KLM01]). Let A be completely rational net, then RepI(A) is a UMTC and µA =

dim(RepI(A)), where dim(C) =
∑
ρ∈Irr(C)(dρ)2 is the global dimension.

We call a completely rational net A with µ(A) = 1 a holomorphic net. This means that every
representation is equivalent to a direct set of the trivial representation π0. Examples of holomorphic nets are
conformal nets AL associated with even self-dual lattices L constructed in [DX06], the the Moonshine net
A\ [KL06] and certain framed nets [KS14].

Similar to the concept of subgroups, there is the notion of a subnet. We write A ⊂ B or B ⊃ A if there
is a representation π = {πI : A(I) → B(I) ⊂ B(HB)} of A on HB and an isometry V : HA → HB with
VΩA = ΩB and VUA(g) = UB(g)V . We ask that further that Va = πI(a)V for I ∈ I, a ∈ A(I). Define p
the projection onHA0 = πI(A(I))Ω. Then pV is a unitary equivalence of the nets A onHA and A0 defined
by A0(I) = πI(A(I))p onHA0 .

4. Subfactors arising from Conformal Nets

If we have a completely rational net, then A = A(I) is the hyperfinite type III1 factor. With ACA =

RepI(A) ⊂ End0(A), every ρ ∈ ACA gives a subfactor ρ(A) ⊂ A.
But we are interested in taking all subfactors arising from ACA and Morita equivalent fusion categories.
The philosophy is similar to the following one: If we have one fusion category, e.g. the even part of

a subfactor, we can look into all Morita equivalent fusion categories and then into all subfactors arising
this way [GS15]. This is related to Ocneanu’s maximal atlas [Ocn01] and the Brauer–Picard groupoid of a
fusion category [ENO05].

An irreducible finite index overfactor B ⊃ ι(A) with A = A(I), where the dual canonical endomorphism
ῑ ◦ ι is in RepI(A) gives rise to a relatively local extension B ⊃ A and all such extension arise in this way.
The net B is itself is in general not local but just relatively local to A. The net B is local and therefore
itself a completely rational net [Lon03] if the extension comes from a commutative Q-system. Relatively
local extensions arose by the study of boundary conformal field theory [LR04]; they give a boundary net by
holographic projection. By removing the boundary [LR09] one obtains a full CFT on Minkowski space
(see below).

This motivates the following definition.

Definition 4.1. Let A be a completely rational net. We say a subfactor arises from A if it is of the form
β(Ba) ⊂ Bb, where β ∈ Bb

CBa
= 〈β ≺ ιbρῑa : ρ ∈ RepI(A)〉, with A = A(I), B• = B•(I) and Ba,Bb ⊃ A

irreducible relatively local extensions.

Let A be a completely rational net on the circle. The net A describes the chiral symmetries of a full
two-dimensional CFT. For example the Virasoro net with central charge c < 1 [KL04] is a completely
rational net and the symmetries it describes are the the conformal transformations Diff+(S1) on the circle.
For c ≥ 1 the Virasoro net is not completely rational but one can consider larger class of symmetries, for
example the loop group net AG,k which is known to be completely rational for G = SU(N) and level k ∈ N
and which describes SU(N) gauge transformations.

A full CFT based on A on Minkowski space R2, is a maximal local extension B2 of the net A2 which
is defined by

A2(I+ × I−) = A(I+)⊗A(I−), I+ × I− = {(t, x) ∈ R2 : t ± x ∈ I±} ,
20
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where we see A by restriction as a net on R. Since A is completely rational, RepI(A) is a unitary modular
tensor category C. The category of representations of A2 is equivalent to the category C � C̄ and B2 is
completely characterized by a commutative Q-system in C � C̄. With Kawahigashi and Longo, the author
has obtained a classification of full CFTs in terms of A:

Theorem 4.2 ([BKL15]). Full CFTs based on A, i.e. maximal local extensions B2 ⊃ A2 are in one-to-one
correspondence with Morita equivalence classes of non-local extensions B ⊃ A.

Given two full CFTs Ba
2,Bb

2 ⊃ A2, there is a notion of a defect line or phase boundary [BKLR16,
BKLR15] between the full conformal field theories Ba

2 and Bb
2 on 2D Minkowski space, which is invisible if

restricted toA2, also calledA–topological. If a subfactor arises fromA it comes from such anA–topological
Ba

2–Bb
2 defect.

Theorem 4.3 ([BKLR16]). A–topological Ba
2–Bb

2 defects are in one-to-one correspondence with sectors
β ∈ Ba

CBb
= 〈β ≺ ιb ACAῑa〉, for ACA = RepI(A) with A = A(I), B• = B•(I) and Ba,Bb ⊃ A irreducible

relatively local extension corresponding to the full CFT Ba
2,Bb

2 ⊃ A2, respectively.

Remark 4.4. (1) The conditions that B• comes from relatively local extension is equivalent to saying
that ACA and B•CB•

are weakly Morita equivalent in the sense of [Müg03a].
(2) Ba

CBb
is a bimodule category over Ba

CBa
and Bb

CBb
.

(3) Theorem 4.2 and 4.3 show that non-local extensions give full CFTs and endomorphisms between
these extensions classify topological defects between this full CFTs. So if a subfactor arises from a
conformal net A in the sense of Definition 4.1, then the subfactor describes a topological defect.

So far we have seen two sources of UMTCs:
• Quantum double of subfactors or equivalently Drinfeld centers of unitary fusion categories.
• Representation categories of completely rational nets.

They for sure don’t give the same examples, e.g. ASU(2)1 has no local extensions and non-trivial representa-
tion category and we have the following characterization of nets having quantum doubles as representation
category.

Proposition 4.5. Let A be a completely rational conformal net. Then the following are equivalent:
(1) Rep(A) � Z(F) for some unitary fusion category F .
(2) There exists a holomorphic net B ⊃ A.

Every F with Rep(A) � Z(F ) gives a particular holomorphic net BF ⊃ A and there is a Galois correspon-
dence between full subcategories G ⊂ F and intermediate nets BF ⊃ B ⊃ A.

Proof. If Rep(A) � Z(N ⊂ M) then there is an extension, such that A(I) ⊂ B(I) is isomorphic to
the Longo–Rehren subfactor of MFM. Conversely, given B ⊃ A we get that Rep(A) � Z(F) with
F = 〈β ≺ α+

ρ : ρ ∈ Rep(A)〉 the category coming from α+-induction. See [Bis16] for details. �

To find a net A which realizes the quantum double D(N ⊂ M) is the mentioned Problem 1.3. We
mention that if we find one net A with Rep(A) � D(N ⊂ M) there are infinitely many examples since for
every holomorphic net B we have Rep(A) � Rep(A⊗ B) and there a infinitely man holomorphic nets.

Proposition 4.6. Given a completely rational net A, then the following are equivalent:
(1) There is a completely rational net Rep(Ã) � Rep(A)rev

(2) There is a holomorphic net B, such that A ⊂ B is normal and cofinite.

Proof. We sketch the proof, more details are in [Bis16]. If (1) is true we take B the Longo–Rehren extension
of A⊗ Ã. Conversely, if (2) is true, we take Ã to be the coset of A ⊂ B. �
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Proposition 4.7. Let N ⊂ M be a finite index, finite depth subfactor.
(1) If there is a conformal net with Rep(A) braided equivalent to D(N ⊂ M), then N ⊂ M arises from
A. Actually it is enough that Rep(A) contains a full subcategory braided equivalent to D(N ⊂ M).

(2) Conversely, if N ⊂ M arises from A, then there is a 2D conformal net B2 ⊃ A2 with Rep(B2) �
D(N ⊂ M).

(3) Further, if N ⊂ M arises from A, and there is a net Ã, with Rep(Ã) � Rep(A)rev then there is a
conformal net B ⊃ A⊗ Ã with Rep(B) � D(N ⊂ M).

Proof. The dual of the Longo–Rehren subfactor applied to NFN gives an extension B of A and it follows
that BCB ⊃ NFN . We remark, that in the case Rep(A) � D(N ⊂ M) the net B is a holomorphic net. We can
take an overfactor B̃ ⊃ B equivalent to M ⊃ N. This does in general not give a relatively local extension of
B but it gives a relatively local extension of B̃ ⊃ A and the inclusion ι(B) ⊂ B̃ does the job.

That N ⊂ M arises fromAmeans that there are two extensions Ba,Bb ⊃ A and for B• = B(I)• there is a
morphism β : Ba → Bb, such that β(Ba) ⊂ Bb is isomorphic to N ⊂ M. But this means that the dual category
Ba
CBa

contains NFN⊂M
N as a full subcategory. Since Rep(A2) � Z(Rep(A)) � Z( Ba

CBa
) it follows from

Galois correspondence that there is a local extension B2 ⊃ A2 with Rep(B2) � Z( NFN⊂M
N ) ≡ D(N ⊂ M).

The net A⊗ Ã is a conformal net with Rep(A⊗ Ã) � Z(Rep(A), then by exactly the same argument
as before, there is a local extension B ⊃ A⊗ Ã with Rep(B) � D(N ⊂ M). �

In [Bis16] we used (3) and well-known constructions a to identify net AN⊂M with Rep(AN⊂M) �
D(N ⊂ M) for all subfactors with index less than 4. It seems to be interesting to generalize this to other
families of subfactors and fusion categories. Particular interesting are near group categories [EG14], since
all subfactors in the small index classifications besides extended Haagerup [Haa94] seem to be related
to near group fusion categories. The double of the 2221 subfactor or equivalently the Z3 + 3 near group
category is realized by the loop group net AG2,3 ⊗ASU(3)1 and the 241 subfactor or the Z4 + 4 near category
is related to a unitary fusion category coming from the conformal inclusion ASU(3)5 ⊂ ASU(6)1 cf. [Liu15].
This gives hope that near group categories all come from rational nets.

We hope that we convinced the reader that the following are interesting problems.
• Finding interesting finite index subnets A ⊂ B for B a holomorphic net which give new interesting

subfactors/unitary fusion categories
• For interesting subfactors, find a completely rational net A with Rep(A) � D(N ⊂ M). Evans and

Gannon argue that for the Haagerup subfactor such a subnet of the conformal net associated with
the E8 lattice [EG11] should exist, but so far it has not been constructed.
• Find a general construction for every finite index, finite depth subfactor N ⊂ M which gives a

conformal net A with Rep(A) � D(N ⊂ M). This would show that all finite index, finite depth
subfactors come from conformal nets.

Acknowledgements. I would like thank Yasuyuki Kawahigashi, Roberto Longo and Zhengwei Liu for
discussions.
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