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Abstract. This is a short survey paper based on the topics of the au-
thor’s research along with his collaborators. Main topics presented in
the paper are on the regularity and rigidity theorems for the solutions of
the elliptic differential equations. In particular, the author poses several
open problems in these topics for further study. The paper contains
six sections. Regularity theorems for the elliptic equations of the non-
divergence form with rough coefficients are presented in Section 1. In
Section 2, we introduce and summarize some recent developments on
the rigidity problems and theorems for the solution of some linear de-
generate elliptic equations. A typical example is the rigidity problem
for the solution of the Dirichlet problem of the Laplace-Beltrami op-
erator on the unit ball in Cn with Bergman metric. In Section 3, the
rigidity theorems and problems for harmonic maps between two com-
plete non-compact Kähler manifolds are discussed. In Section 4, we
summarize the approximation formula for the potential function of the
Kähler-Einstein metric. In Section 5, we summarize some rigidity theo-
rems for the degenerate Monge-Ampère equations as well as some char-
acterization theorems for some strictly pseudoconvex pseudo-Hermitian
manifolds. Finally, in Section 6, we summarize some recent results on
the bottom of the spectrum of the Laplace-Beltrami operators on Kähler
manifolds.

1. Boundary value problem for uniform elliptic PDEs

Let Ω be a bounded domain in IRn, and let A(x) = [aij(x)] be an n × n
symmetric matrix-valued function on Ω. Let

(1.1) LA =

n∑
i,j=1

aij
∂2

∂xi∂xj
.

Then we say that L is elliptic if there are non-negative functions λ(x) and
Λ(x) such that

(1.2) λ(x)In ≤ A(x) ≤ Λ(x)In, x ∈ Ω.

We say that LA is uniformly elliptic if there are two positive constants λ0

and Λ0 such that

(1.3) λ0 ≤ λ(x) ≤ Λ(x) ≤ Λ0, x ∈ Ω.

We say that LA is degenerate elliptic if L is not uniformly elliptic on Ω. For
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any 0 < α ≤ 1, we let C0,α(Ω) = C0,α(Ω) denote the set of all continuous
functions u on Ω such that

(1.4) ‖u‖C0,α(Ω) = sup
{
|u(x)|+ |u(x)− u(y)|

‖x− y‖α
: x, y ∈ Ω, x 6= y

}
<∞.

For any positive integer k and 0 < α ≤ 1, we let Ck,α(Ω) = Ck,α(Ω) denote
the set of all functions u having all partial derivatives up to order k and
satisfying

(1.5) ‖u‖Ck,α(Ω)

= ‖u‖Ck(Ω) + sup
{∑|β|=k ∣∣∣Dβu(x)−Dβu(y)

∣∣∣
‖x− y‖α

: x, y ∈ Ω, x 6= y
}
<∞,

where

(1.6) Dβu(x) =
∂|β|u

∂xβ
(x), β = (β1, · · · , βn) and |β| =

n∑
j=1

βj .

With the above notations, one may prove the following proposition.

Proposition 1. Let Ω be a bounded domain in IRn with Ck,α boundary.
Then (Ck,α(Ω); ‖ · ‖Ck,α) forms a Banach space for any non-negative integer
k and 0 < α < 1.

1.1. Existence, uniqueness and regularity. The following theorem is a
well-known result in the elliptic theory of linear PDEs, which can be found
in the book of Gilbarg and Trudinger [23] and in the book of Evans [20].

Theorem 2. Let k ≥ 2 be an integer. Let Ω be a bounded domain in
IRn with Ck,α boundary ∂Ω. Let L be a uniformly elliptic operator with
aij ∈ Ck−2,α(Ω) and if φ ∈ Ck,α(∂Ω) and f ∈ Ck−2,α(Ω). Then the Dirichlet
boundary value problem:

(1.7)
{LAu = f, in Ω
u = φ, on ∂Ω

has a unique solution u ∈ Ck,α(Ω) for any 0 < α < 1.

• If there are no any smooth assumptions on aij , then the boundary value
problem for the non-divergence form elliptic equation (1.7) may not have a
weak solution because integration by parts may not make sense.
• If aij ∈ C(Ω), then (1.7) has a unique weak solution (see [23]). Even if
a weaker condition, aij ∈ VMO(Ω), (1.7) still has a unique solution (see
[12, 13]). S. Byun and L. Wang wrote a series papers on how to weaken
the condition on aij so that (1.7) has a unique weak solution and provide
regularities (see [5, 6, 7]). Here, we only state a theorem by Chiarenza,
Frasca and Longo in [12, 13].

Theorem 3. Let Ω be a bounded domain in IRn with C1,1 boundary and
1 < p < ∞. Let LA be the uniform elliptic operator satisfying (1.2) and
(1.3) with aij ∈ VMO(Ω). Then the boundary value problem (1.7) with
φ = 0 on ∂Ω and f ∈ Lp(Ω) has a unique solution u ∈W 2,p(Ω) and

(1.8) ‖u‖W 2,p(Ω) ≤ Cn,p,Ω‖f‖Lp(Ω)

where Cn,p,Ω is constant depending only on p, n,Ω, λ0 and Λ0.
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It is well known that u may not belong to W 2,p(Ω) when f ∈ Lp(Ω) when
p = 1 and ∞ even if aij = δij . Instead, one may replace L∞ by BMO and
L1 by H1. The following theorem was proved by Chang and Li in [9].
• A function a on Ω is said to be in Dini(Ω) if

(1.9) ‖a‖Dini(Ω) =

∫ 1

0

ω(a, t)

t
dt,

where

(1.10) ω(a, t) = sup{|a(x)− a(y)| : |x− y| ≤ t, x, y ∈ Ω}.

Theorem 4. Let Ω be a bounded domain in IRn. Let LA be the uniform
elliptic operator satisfying (1.2) and (1.3). Then

(i) If ∂Ω is C1,1 and aij ∈ Dini(Ω), then

(1.11)
∥∥∥ ∂2

∂xi∂xj
L−1
A (f)

∥∥∥
BMOr(Ω)

≤ CA,Ω‖f‖BMOz(Ω)

(ii) If ∂Ω is Lipschitz (C0,1) and aij ∈ VMO(Ω), then

(1.12)
∥∥∥ ∂2

∂xi∂xj
L−1
A (f)

∥∥∥
H1
r (Ω)
≤ CA,Ω‖f‖H1

z (Ω)

where BMOr(Ω) is the restriction of BMO(IRn) on Ω and BMOz(Ω) is a
subset of BMO(IRn) with zero value on IRn \ Ω. One can define H1

r (Ω) and
H1
z (Ω) respectively in a similar manner.

• Uniqueness: Uniqueness can be obtained by the Maximum Principle.

• Existence: Existence can be obtained by the method of continuity plus
an a priori estimate. We will explain the idea here; details can be found in
the book of Gilbarg and Trudinger [23] and references therein.

• Method of Continuity:

Theorem 5. Let T0 and T1 be two densely defined, bounded linear operators
from Banach space X1 to X2. Assume that there is a constant C such that

(1.13) ‖u‖X1 ≤ C‖((1− t)T0 + tT1)u‖X2 , for all u ∈ Dom(T0)∩Dom(T1)

and all t ∈ [0, 1]. If T0 : X2 → X2 is onto, then T1 : X1 → X2 is onto.

Proof. Write

(1.14) Tt = (1− t)T0 + tT1.

Then

‖Ttu‖X2 = ‖(1− t)T0u+ tT1u‖X2 .

Let I = {t ∈ [0, 1] : Tt(X1) = X2}. Then 0 ∈ I. It is sufficient to 1 ∈ I.
Assume that t1 ∈ I. Then T−1

t1
: X2 → X1 is bounded, and ‖T−1

t1
‖ ≤ C.

Notice that

(1.15) Tt = Tt1 + (t− t1)(T1 − T0) = Tt1 [I + (t− t1)T−1
t1

(T1 − T0)].

One can easily see that if

(1.16) |t− t1|‖T−1
t1
‖(‖T0‖+ ‖T1‖) < 1,



86 SONG-YING LI

then t ∈ I. By (1.11), if Tt is invertible, then ‖T−1
t ‖ ≤ C. After repeating

the above process N =: [C(‖T0‖+ ‖T1‖] + 1 times, one has that 1 ∈ I. The
proof is complete. �

• A priori estimate (1.13) for Tt with T0 = ∆ and T1 = LA.

Let

(1.17) λ̃0 = min{λ0, 1} and Λ̃0 = min{Λ0, 1}.

Then

(1.18) λ̃0In ≤ tIn + (1− t)A ≤ (t+ Λ0(1− t))In = Λ̃0In.

Notice the fact that

(1.19) t∆ + (1− t)LA = LtIn+(1−t)A.

To prove t∆ + (1 − t)LA satisfies a priori estimate (1.13), by (1.18) and
(1.19), it suffices to prove a priori estimate for LA with A satisfying (1.2)
and (1.3).

We will sketch the main idea of the proof of (1.8) as originally proved
in [12] and [13] and the idea of the proofs of (1.11) and (1.12) in [9] using
integral operators. Without loss of generality, we may only consider the case
n ≥ 3.

1.2. Potential functions.
• It is well known that the the Newton potential for ∆ on IRn is

(1.20) N(x, y) = − 1

(n− 2)ωn

1

|x− y|n−2
, x, y ∈ IRn

where ωn is the area of the unit sphere in IRn, which means that

(1.21) ∆xN(x, y) = δy

where δy is the Dirac mass concentrated at y. Let

(1.22) ‖x− y‖2A(w) =:

n∑
i,j=1

aij(w)(xi − yi)(xj − yj), x, y ∈ IRn

with [aij(w)] being the inverse matrix of A(w).

•When A = [aij(x)] is a constant positive definite matrix, then the potential
function (Green function) for LA on IRn is

(1.23) NA(x, y) = − 1

(n− 2)ωn
√

detA
‖x− y‖−(n−2)

A .

This means that

(1.24) (LA)xNA(x, y) = δy, y ∈ IRn.

• When A = [aij(x)] is not a constant matrix, then the Green function for
LA on Ω is much more complicated. However, one may divide the domain
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into many small pieces and use constant matrices to approximate A(x) in
each small piece. In order to do this, we will use the following notation:

(1.25) Γ(w; ξ) = − 1

(n− 2)ωn
√

detA(w)
‖ξ‖−n+2

A(w) , w ∈ Ω, ξ ∈ IRn

and

(1.26) Γi(w; ξ) =
∂Γ(w; ξ)

∂ξi
Γij(w; ξ) =

∂2Γ(w; ξ)

∂ξi∂ξj
, 1 ≤ i, j ≤ n.

For w ∈ Ω and x, y ∈ IRn, we will use the following notations:

(1.27) Γ(w;x, y) = Γ(w;x− y)

and similarly, Γi(w;x, y) = Γi(w;x− y), Γij(w;x, y) = Γij(w;x− y).
• If we write

(1.28) LA(x)u(y) =
n∑

i,j=1

aij(x)
∂2u(y)

∂yi∂yj
, x, y ∈ Ω,

then for u ∈ C2
0 (Ω), for any fixed w ∈ Ω, one has that

(1.29) u(x) =

∫
Ω

Γ(w;x− y)LA(w)u(y)dy, x ∈ Ω.

By applying the Divergence theorem, if one applies ∂2

∂xi∂xj
to (1.29), one has

that

(1.30)
∂2u(x)

∂xi∂xj

= p.v.

∫
Ω

Γij(w;x− y)LA(w)u(y) + LA(w)u(x)

∫
|t|=1

tjΓi(w, t)dσ(t).

Notice that

(1.31) LA(x)u(y) = (LA(x) − LA(y))u(y) + LA(y)u(y)

=
n∑

i,j=1

(aij(x)− aij(y))
∂2u(y)

∂yi∂yj
+ LA(y)u(y).

Replacing w by x in (1.30), and combining it with (1.31), one has

(1.32)
∂2u(x)

∂xi∂xj
= p.v.

∫
Ω

Γij(x;x− y)LA(x)u(y)

+LA(x)u(x)

∫
|t|=1

tjΓi(x, t)dσ(t)

= p.v.

∫
Ω

Γij(x;x− y)
∑
k,`

(ak`(x)− ak`(y))
∂2u(y)

∂yi∂yj
dy

+p.v.

∫
Ω

Γij(x;x− y)LA(y)u(y)dy

+LA(x)u(x)

∫
|t|=1

tjΓi(x, t)dσ(t).
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If we let

(1.33) Tij(f)(x) = p.v.

∫
Ω

Γij(x;x− y)f(y),

then it was verified that Tij is a standard Calderòn-Zygmund operator (see
[12] and [9] for details). Thus,

(1.34) p.v.

∫
Ω

Γij(x;x− y)
∑
k,`

(ak`(x)− ak`(y))
∂2u(y)

∂yi∂yj
dy

=
n∑

k,`=1

[Mak` , Tij ]
∂2u

∂yk∂y`
.

It has been proved in [17], [43], [2], [16] and references therein that

(1.35) ‖[Mak` , Tij ]‖Lp→Lp ≤ Cp,n‖aij‖BMO(Ω)

for all 1 < p <∞. Moreover, it was proved in [9] that

(1.36) ‖[Mak` , Tij ]‖BMOz→BMOr ≤ CΩ‖aij‖LMO(Ω) ≤ CΩ‖aij‖Dini(Ω)

and

(1.37) ‖[Mak` , Tij ]‖H1
z→H1

r
≤ CΩ‖aij‖LMO(Ω) ≤ CΩ‖aij‖Dini(Ω),

where Br(x) =: B(x, r) and

(1.38) ‖a‖LMO(Ω) =: sup
Br(x)⊂Ω

{ | log |Br(x)||
|Br(x)|

∫
Br(x)

|f(y)− fBr(x)|dy
}
.

We use a partition of unity: Choose ψk ∈ C∞(IRn) with supp(ψk) ⊂
B(xk, 2ε) and ψk = 1 on B(xk, ε) and 0 ≤ ψk ≤ 1 with xk ∈ Ω so that

(1.39)
N∑
k=1

ψk = 1, on Ω.

Let u be the unique solution of (1.7). Then

(1.40) u =

N∑
k=1

uψk, z ∈ Ω.

We separate our argument into the following two cases:

(i) Interior estimate when supp(ψk) ∩ ∂Ω = ∅,
(ii) Boundary estimate when supp(ψk) ∩ ∂Ω 6= ∅.

• For the interior estimate: One can apply the formula (1.32) to the function
uψk, then use (1.34)–(1.37) to get an interior estimate.

• For the boundary estimate: One can not apply the formula (1.32) directly
to the function uψk. Instead, one may use the standard technique of flat-
tening the boundary through changes of variables. The operator LA will be
changed to LB +

∑n
j=1 hj(x) ∂

∂xj
, where LB remains uniform elliptic. With-

out loss of generality, one may assume that B = A, Ωk = {x ∈ IRn : ‖x‖ <
2ε, xn > 0} and uk =: uψk = 0 on ∂Ωk with xn 6= 0. Let

(1.41) T (x, y) = x− 2xn
ann(x)

(an1(y), · · · , ann(y)) = (T1, · · ·Tn)
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and

(1.42) Tnj(x) = δnj −
2

ann(x)
anj(x).

Without loss of generality, one may also assume that u(x′, 0) = 0 for ‖x′‖ <
2ε. It was proved in [13] that one has the following formula for uk holds:

(1.43)
∂2u(x)

∂xi∂xj
= P.V.

∫
Ωk

Γij(x;x− y)
∑
k,`

(ak`(x)− ak`(y))
∂2u(y)

∂yi∂yj
dy

+P.V.

∫
Ωk

Γij(x;x− y)LA(y)u(y)dy

+LA(x)u(x)

∫
|ξ|=1

tjΓi(x, ξ)dσ(ξ) + Iij(u)(x),

where

(1.44) Iij =

∫
Ωk

Γij(x;T (x)− y)
∑
k,`

(ak`(x)− ak`(y))
∂2u(y)

∂yi∂yj
dy

+

∫
Ωk

Γij(x;T (x)− y)LA(y)u(y)dy),

(1.45) Iin = Ini =

∫
Ωk

n∑
j=1

Γij(x;T (x)− y)Tnj(x)

×
∑
k,`

(ak`(x)− ak`(y))
∂2u(y)

∂yi∂yj
dy

+

∫
Ωk

Γij(x;T (x)− y)Tnj(x)LA(y)u(y)dy,

for 1 ≤ i, j ≤ n− 1, and

(1.46) Inn =

∫
Ωk

n∑
i,j=1

Γij(x;T (x)− y)Tni(x)Tnj(x)

×
∑
k,`

(ak`(x)− ak`(y))
∂2u(y)

∂yi∂yj
dy

+

∫
Ωk

Γij(x;T (x)− y)Tni(x)Tnj(x)LA(y)u(y)dy.

Using the above formulae (1.35)–(1.37), (1.43)–(1.46), the embedding
W 2,p ⊂ W 1,p being compact and interior estimate, one can obtain a pri-
ori estimates stated in (1.11) and (1.12).

2. Degenerate linear PDEs

There are many kinds of degenerate linear elliptic PDEs, here, we will
introduce one which is from complex analysis and complex geometry.
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2.1. Basic knowledge on domains in Cn. First, we introduce some no-
tations and definitions:
• A bounded domain Ω ⊂ Cn with C2 boundary is pseudoconvex (strictly
pseudoconvex) if there is a function, called defining function, ρ ∈ C2(Cn) so
that

(i) Ω = {z ∈ Cn : ρ(z) < 0},
(ii) ∂Ω = {z ∈ Cn : ρ(z) = 0},
(iii) ∇ρ(z) 6= 0 on ∂Ω

(vi) Lρ(z, w) :=
∑n

i,j=1
∂2ρ(z)
∂zi∂zj

wiwj ≥ 0 (> 0) for all w ∈ Hz(∂Ω) and

w 6= 0, where

(2.1) Hz(∂Ω) = {w ∈ Cn :
n∑
j=1

∂ρ(z)

∂zj
wj = 0}.

• A real-valued function u ∈ C2(Ω) is said to be strictly plurisubharmonic
(plurisubharmonic) in Ω if the complex Hessian matrix H(u)(z) is positive
definite (positive semi-definite) for all z ∈ Ω, where

(2.2) H(u)(z) =

[
∂2u(z)

∂zi∂zj

]
is n× n self-adjoint matrix.

The following is a summary for some properties of pseudoconvex domains
in Cn, one may find them in the books of Chen and Shaw [14] and Krantz
[40] and (iv) below can be found in [8] and [61].

Proposition 6. The following statements hold:
(i) Every bounded domain in complex plane is strictly pseudoconvex;
(ii) Every convex (strictly convex) domains are pseudoconvex (strictly

pseudoconvex);
(iii) Every smoothly bounded pseudoconvex domain D, there is a defin-

ing function ρ so that u = − log(−ρ) is strictly plurisubharmonic (H(u) is
positive definite) on D.

(iv) If D is a smoothly bounded strictly pseudoconvex domain in Cn, then
there is a defining function ρ ∈ C∞(D) so that H(ρ)(z) is positive definite
on D.

(v) For any weakly smoothly bounded pseudoconvex domain D in Cn

there is εD ∈ (0, 1] and function ρ ∈ CεD(D) with ρ < 0 on D, ρ(z) = 0 on
∂D and H(ρ)(z) is positive definite. In fact, we can make H(ρ) ≥ In.

(vi) A(0, 1, 2) = {z ∈ Cn : 1 < |z| < 2} (with n > 1) is not a pseudoconvex
domain.

• The following question is a very important in several complex variables.

Question: For a given smoothly bounded pseudoconvex domain D in Cn,
does there exist a smooth plurisubharmonic defining function for D ?

The above question has been studied by several authors (see the book of
Krantz [40] and the book of Chen and Shaw [14]). Well-known Worm domain
in C2 constructed by Diedrich and Fornaess [19] is a counterexample to the
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above question. The Diederich-Fornaess Worm domain is defined as follows:

D =
{

(z1, z2) ∈ Cn :
∣∣∣z1 + ei log |z2|2

∣∣∣ < 1− Φ(log |z2|2)
}
,

where Φ ∈ C∞(−∞,∞) vanishes identically on some interval [−r, r] of pos-
itive length. Moreover, Φ can be chosen so that D is pseudoconvex, but D
does not admit a smooth plurisubharmonic defining function.

• A real-valued function u ∈ C2(Ω) is said to be a strictly plurisubharmonic
exhaustion function for Ω if

1) Ω = {z ∈ Cn : u(z) <∞}
2) ∂Ω = {z ∈ Cn : u(z) =∞}
3) Complex hessian H(u)(z) =

[
∂2u(z)
∂zi∂zj

]
is positive definite for z ∈ Ω.

Then metric g =
∑n

i,j=1 uijdzi⊗ dzj is a Kähler metric, in many cases, it
is also a complete metric on Ω.
• Laplace-Beltrami operator associated to the metric g above is given as:

(2.3) ∆g = ∆u := −4

n∑
i,j=1

uij
∂2

∂zi∂zj
, [uij ]t = H(u)−1.

• We know that −∆u is elliptic, but, in general, it is not uniformly elliptic
on Ω.

EXAMPLE 1. Let Ω = Bn be the unit ball in Cn and ρ(z) = |z|2 − 1 and

(2.4) u(z) = − log(−ρ(z)) = − log(1− |z|2), z ∈ Bn.

Then

(2.5) H(u) =
1

1− |z|2
[
δij +

zizj
1− |z|2

]
, uij = (1− |z|2)(δij − zizj).

Then u is strictly plurisubharmonic exhausted function for Bn and the met-
ric induced by u is the well-known Bergman metric as well as Kähler-Einstein
metric. Moreover,

(2.6) ∆u = −4(1− |z|2)
n∑

i,j=1

(δij − zizj)
∂2

∂zi∂zj

is a degenerate elliptic operator, the degeneracy for ∆u is on ∂Ω.

2.2. Dirichlet boundary value problem/homogeneous case.

(2.7)
{

∆uh(z) = 0, z ∈ Ω
h(z) = φ(z), z ∈ ∂Ω

• Question: For φ ∈ C∞(∂Ω), what regularity does the solution u of (2.7)
satisfy?

• When Ω = Bn, the unit ball in Cn, the Dirichlet boundary value problem
(2.7) becomes:

(2.8)
{∑n

i,j=1(δij − zizj) ∂
2h(z)
∂zi∂zj

= 0, z ∈ Ω

h(z) = φ(z), z ∈ ∂Ω
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has the unique solution (see Hua [35], Rudin [77]):

(2.9) h(z) = P [φ](z) =

∫
∂Bn

(1− |z|2)n

|1− 〈z, w〉|2n
φ(w)dσ(w), z ∈ Bn.

• When n = 1, ∆g is not degenerate since

(2.10)

n∑
i,j=1

(δij − zizj)
∂2h

∂zi∂zj
= 0 ⇐⇒ ∂2h(z)

∂z∂z
= 0.

Therefore, the uniform elliptic theory implies that

Proposition 7. If n = 1 and if φ ∈ C∞(∂Bn), then h = P [φ] ∈ C∞(Bn).

• When n > 1,
∑n

i,j=1(δij − zizj) ∂2

∂zi∂zj
is not uniformly elliptic in Bn. By

the results in [24] and [70], one has that

Proposition 8. If φ ∈ C∞(∂Bn) with n > 1, there are two functions
f, g ∈ C∞(Bn) so that the unique solution h of (2.8) or (2.9) satisfies:

(2.11) h(z) = f(z) + g(z)(1− |z|2)n log(1− |z|2), z ∈ Bn.

2.3. Rigidity of smooth solutions. By (2.11) in Proposition 2.3, one has
that

• P [φ] ∈ Cn−ε(Bn) if φ ∈ Cn(∂Bn).

An example given by Garnett and Krantz [41] and by Graham [24] shows
that

• P [φ] 6∈ C2(B2) if even φ(z) = |z1|2 is smooth on ∂B2.

• Question: Assume φ ∈ C∞(∂Bn) so that P [φ] ∈ C∞(Bn). What can
one says about φ?

• R. C. Graham [24] gave a perfect answer of the above question. He proved
the following celebrated theorem.

Theorem 9. If P [φ](z) ∈ C∞(Bn), then P [φ](z) must be pluriharmonic,
real part of holomorphic function in Bn.

• When D is polydisc in Cn, the following theorem was proved by Li and
Simon in [67].

Theorem 10. Let D = D(0, 1)n be the unit polydisc and the subharmonic

defining function for D(0, 1) be ρj(zj) ∈ C∞(D(0, 1)). Let

u(z) = −
n∑
j=1

log(−ρj(zj))

introduce the Kähler metric u. If h ∈ C(D(0, 1)
n
) is u-harmonic, then h(z)

must be harmonic in each variable zj for 1 ≤ j ≤ n.

Furthermore, one may ask the following questions:

• Question 1) Does the above theorem of Graham hold for ∆u in Bn with
more general potential function u?

2) Does it hold for more general strictly pseudoconvex domain in Cn?
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• The questions were studied by C. R. Graham and J. Lee in [32]. They
studied the problem on a smoothly bounded strictly pseudoconvex domain
D in C2 with some symmetry (invariant under one-parameter group) as well
as the potential satisfies similar symmetry. They proved the above theorem
of Graham holds on those special domains. In particular, they consider the
rotation symmetric defining function ρ(z) = ψ(|z|2) for the unit ball Bn.
Then u(z) = − log(−ψ(|z|2)) is strictly plurisubharmonic on Bn if and only
if

(GL) ψ ∈ C∞[0, 1], ψ(1) = 0, ψ′(t) > 0 (−ψ)ψ′′ + (ψ′)2 > 0 on [0, 1].

Let u be the Kähler metric induced by u = − log(−ψ(|z|2)) satisfying (GL).
Then the following theorem was proved by Graham and Lee in [32]

Theorem 11. If u = − log(−ψ(|z|2)) and ψ satisfying (GL), then
(i) For n = 2, if h ∈ C∞(B2) and ∆uh = 0 in B2, then h(z) must be
pluriharmonic.
(ii) For any n > 2, there is a ψ satisfying (GL) and u(z) = − log(−ψ(|z|2)),
and there is a h ∈ C∞(Bn) with ∆uh = 0 in Bn, but h(z) is not plurihar-
monic in Bn.

• In order to understand the above theorem of Graham and Lee better,
a joint work by the author and D. Wei in [70], we obtained the following
results:

1) We give a formula to construct ρ = ψ(|z|2) satisfying (GL).

Proposition 12. If ψ : [0, 1] → (−∞, 0] satisfies (GL), then there is nega-
tive function B0 ∈ C∞([0, 1]) so that

(LW) ψ(t) = ψ(0) exp
[ψ′(0)

ψ(0)

∫ t

0
exp

(∫ t1

0

B0(s)

s− 1
ds
)
dt1

]
.

Remark: If −ψ(0) = ψ′(0) = −B0(s) = 1, (LW) gives ψ(t) = t− 1.

2) We give a characterization on ρ(z) = ψ(|z|2) when the theorem of
Graham type holds; when it fails. Let u be the metric induced by the
plurisubharmonic function u = − log(−ψ(|z|2)), where ψ is given by (LW).
We also assume that ψ(t) is real analytic at t = 0 and t = 1. The following
theorem was proved in [70].

Theorem 13. For n > 1, if h ∈ Cn(Bn) ∩C∞(∂Bn) is u−harmonic in Bn,
then h ∈ C∞(Bn).

• By the example of Graham and Lee, in general h is not pluriharmonic for
all u = − log(−ρ) with ρ satisfying (LW).

• We will formulate a necessary and sufficient condition to guarantee the
theorem of Graham type holds.

For any negative function B0 ∈ C∞([0, 1]). which is real analytic at t = 0
and t = 1, after a normalization, we may write

(LW1) B0(t) = −1 +

∞∑
j=1

bj(t− 1)j .
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• In [70], the author and Wei were able to formulate a condition Qn such
that coefficients b1, · · · , bn−2 ∈ Qn if and only if that h(z) ∈ Cn(Bn) and
∆uh(z) = 0 on Bn imply h(z) is pluriharmonic in Bn.

• The statement of our theorem for general n is a little bit complicated. It
is very clean when n = 3.

Theorem 14. Let Q3 = {−1
2(1 + p)(1 + q) : p, q ∈ IN}. Then b1 6∈ Q3 if and

only that for any h ∈ C3(B3) is u-harmonic in B3 implies h is plurisubhar-
monic in B3.

• Let b0 = −1. For n ≥ 3 and k ≥ 1, one has the following recursively
relations [70].

(RF) (n− k − 2)gk+2

=
[
p+ q + k + (n− 1)b1(k + 1) + pq

] gk+1

k + 2

+

k∑
j=2

[
(n− 1)j(bk+2−j + bk+1−j)− jpqbk+1−j

] gj
k + 2

+bk
(n− 1− pq)

(k + 2)(n− 1)
pq

and

(2.12) g2 =
(1 + p+ q + pq)

2(n− 2)(n− 1)
pq, n ≥ 3.

Let Qn be the set of (b1, · · · , bn−2) so that the right hand side of (RF) is
zero where n = k+ 2, p and q are any positive integers. This set is uniquely
determined by (RF). The following theorem was proved by the author and
Wei in [70].

Theorem 15. Let B0 ∈ Cn([0, 1]) be negative with b0 = −1. Then the
following two statements are equivalent:

(i) (b1, · · · , bn−2) 6∈ Qn;

(ii) If h ∈ Cn(Bn) is u-harmonic in Bn then h is pluriharmonic in Bn.

Remark: Question about whether one has Graham type’s theorem for do-
main D without symmetry. A natural example for such domain D is the
following convex domain

(2.13) D(A) = {z ∈ Cn : ρ(z) = |z|2 + Re

n∑
j=1

ajz
2
j − 1 < 0} Aj ∈ (−1, 1).

The boundary of D(A) is real ellipsoid in Cn. Kähler metric induced by
u = − log(−ρ) is complete without any symmetry. It is natural to ask:
Does the Graham type theorem hold for (D(A),∆u)? This problem is still
open. In [85], Wei proved some partial result on this problem.
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3. Rigidity theorem and problems for harmonic maps

Let Mm and Nn be two Kähler manifolds with Kähler metrics h =
hijdzidzj and g = gαβdw

αdwβ, respectively. Let u : M → N be a map

from M to N . When M and N are compact, we say that u is harmonic if u
minimizes the the energy functional

(3.1) E[u] =:

∫
M
e[u]dvh,

where

(3.2) e[u](z) =
m∑

i,j=1

n∑
α,β=1

hijgαβ(∂iu
α∂juβ + ∂ju

α∂iu
β).

Let Γstγ be the Christoffel symbols of the Hermitian metric g on N , and let

u = (u1, u2, · · · , un) : M → N ⊂ Cn be a map. We can define harmonic
map in local coordinates as follows which works if M is not compact:

(a) We say that u is harmonic if the tension field

(3.3) τ s[u] = 4Mu
s +

n∑
t,γ=1

m∑
i,j=1

Γstγh
ij∂iu

t∂ju
γ = 0, for 1 ≤ s ≤ n

where 4M = hij∂2
ij

and (hij) is the inverse matrix of the matrix (hij).

(b) We say that u is pluriharmonic if

(3.4) ∂∂us +
∑
t,γ

Γstγ∂u
t∂uγ = 0, for 1 ≤ s ≤ n.

(c) We say that u is holomorphic. if ∂us = 0 for 1 ≤ s ≤ n.

• Implication relations. Since N is Kähler, it is well-known that any
pluriharmonic maps are harmonic, and any holomorphic or anti-holomorphic
maps are pluriharmonic.

(d) We say that Kähler manifold (N, g) has strongly negative (semi-
negative) curvature in the sense of Siu if curvature tension Rijk` satisfy

the following condition:

(3.5)
n∑

i,j,k,`=1

Rijk`ξijξk` > 0 (respectively ≥ 0)

for any nonzero matrix (ξij) of the form:

(3.6) ξij = AiBj − CiDj .

• Strong rigidity theorem of Siu: When both M and N are compact,
Siu [79] gave the following celebrated strong rigidity theorem on harmonic
map.

Theorem 16. Let (Mm, h) and (Nn, g) be two compact Kähler manifolds
with (N, g) having strongly negative curvature in the sense of Siu. Then any
harmonic map u : M → N with the rank of du at one point being greater
than or equal to four must be holomorphic or antiholomorphic.
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• Note that the last condition excludes the case of complex dimension one
when the theorem is obviously false.

• The key of the proof of Siu’s super rigidity theorem is his ∂∂-Bochner
formula:

(3.7) ∂∂(gαβu
α
i
uβj dzi ∧ dzj) = Rαβγδu

α
i
uβj u

γ
ku

δ
`
dzi ∧ dzj ∧ dzk ∧ dz`

− gαβD∂u
α ∧D∂uβ.

• Idea of Siu’s proof: When M is a compact manifold, the integration
of the left hand side, after wedging a (m-2) power of the Kähler form, is
zero from integration by parts. It was shown in [79], that both terms of
the right hand side are non-negative when u is a harmonic map and the
curvature of N is strongly negative, and therefore they are pointwise zero.
This fact coupling with the the rank assumption on du shows that u must
be holomorphic or antiholomorphic (cf. [79]).

• General question: A general question one may ask is when a harmonic
map u is holomorphic or antiholomorphic if N is Kähler with strongly neg-
ative curvature.

When M is a complete (noncompact) manifold, N is strongly negative is
not enough guarantee the harmonic map becomes holomorphic or antiholo-
morphic. Let us see a simple example. Let N = Bn the unit ball in Cn, g is
Bergman or Kähler-Einstein metric
(3.8)

g = −
n∑

i,j=1

∂2 log(1− |z|2)

∂zi∂zj
dzi ⊗ dzj =

n∑
i,j=1

[ δij
1− |z|2

+
zizj

(1− |z|2)2

]
dzi ⊗ dzj

Then curvature tensor for (N, g) is:

(3.9) Rijk` = (gijgk` + gkjgi`).

Therefore,

(3.10) Rijk`ξijξk` = |
∑
ij

ξij |
2 + gi`gkjξijξk` > 0 if [ξij ] 6= 0.

and the Christofle’s symbols for (N, g) is:

(3.11) Γstγ [w] = (1− |w|2)−1(wγδts + wtδγs).

Therefore, the boundary value problem:
(3.12){

τα[u] = ∆Mu
α +

∑m
i,j=1 h

ij
∑n

t,γ=1
(uγδts+utδγs)∂iu

t∂ju
γ

(1−|u|2)
= 0, if z ∈ D

u = φ(z), if z ∈ ∂D

with φ : ∂D → Cn and |φ(z)| ≤ c0 < 1 on ∂D always has a solution if ∆M is
uniform elliptic. Such u can not be either holomorphic or anti-holomorphic
if φ is not a boundary value of a holomorphic map or anti-holomorphic map.

With some extra condition, the following natural question was studied by
the author and Ni [64].
Problem 1. Let h, g denote the Bergman metrics on Bm and Bn, respec-
tively; and let u : (Bm, h)→ (Bn, g) be a proper harmonic map so that u can
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be extended to C1 map up to the boundary ∂Bm. Is u either holomorphic or
anti-holomorphic?

A closely related problem of Problem 1 is the existence and regularity of
proper harmonic maps, namely
Problem 2. Let φ : ∂Bm → ∂Bn be a smooth map. Does there exist a
proper harmonic map u so that u = φ on ∂Bm? If such harmonic map u
exists what can one say about the regularity of u ?

For the real hyperbolic space, Peter Li and L. F. Tam initiated the sys-
tematic study of the existence, uniqueness and regularity of proper harmonic
maps from the unit ball Dm in IRm to Dn in IRn with respect to the hyper-
bolic metrics (cf. [48, 49, 50]). In [48, 49], among other things, they proved
that if φ : Sm−1 → Sn−1 is a C1 map with energy density e(φ)(x) 6= 0 for
all x ∈ Sm−1 (here e(φ) is defined with respect to the standard metrics on
S2m−1 and S2n−1) then there is a unique proper harmonic map extension
u : Dm → Dn with boundary value φ. Moreover, if φ ∈ Cm(Sm−1, Sn−1)

then u ∈ Cm−1,α(D
m
, D

n
) for any α < 1. They also proved that if e(φ) 6= 0

on Sm−1 then the energy density e[u] of the harmonic map u with respect
to the hyperbolic metric satisfying

(3.13) lim
x→Sm−1

e[u](x) = lim
x→Sm−1

hijgk`
∂uk

∂xi

∂u`

∂xj
(x) = m, x ∈ Sm−1.

where h = hijdxidxj is the hyperbolic metric for Dm and g = gijdyidyj is
the hyperbolic metric for Dn, and (hij) is the inverse matrix of (hij).

For the complex case when the domain and target manifolds are rank one
symmetric space of noncompact type, the problem was first studied by H.
Donnelly [18]. He generalized the above existence and uniqueness results
of Li-Tam to the setting with some necessary contact conditions on the
boundary map φ.

When e(φ) vanishes on Sm−1, the existence of a proper harmonic ex-
tension becomes less tractable, partial progress was made by J. Wang [84],
where he proved the existence under the assumption that e(φ) has finitely
many zeros on Sm−1 and φ is locally rotationally symmetric around those
points.

The answer with lower regularity solution to Problem 1 is negative. The
example was constructed by the author and Ni in [64].

Theorem 17. For any 0 < ε < 1, there is a proper harmonic map u ∈
C2−ε(B2) from B2 to B3 with respect to the Bergman metric, which is
neither holomorphic nor anti-holomorphic.

This theorem tells us, in general, a proper harmonic map is not necessarily
holomorphic or anti-holomorphic. It is natural to find out what are the
necessary and sufficient conditions under which the proper harmonic map
is holomorphic or anti-holomorphic. The following definition was given in
[64]:

•(e) We say that a map u : Bm → Bn is k-harmonic with respect to the
origin 0 if the restriction of u is harmonic on the intersection of Bm and to
any k-dimensional complex linear subspace through the origin.
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• Remark: It is clear that a map is harmonic if and only if it is m-harmonic
with respect to the origin, and pluriharmonic map are k-harmonic with
respect to the origin for all 1 ≤ k ≤ m.

The following theorem was proved in [64].

Theorem 18. Let u ∈ C2(Bm, Bn) (m > 1) be a proper map from Bm to
Bn with respect to the Bergman metrics. Then the following statements are
equivalent.

(i) u is either holomorphic or anti-holomorphic;
(ii) (m− 1)-harmonic with respect to the origin;
(iii) u is harmonic; and Lu is orthogonal to u on ∂Bm where L = (δij −

zizj)
∂2

∂zi∂zj
;

(iv) u is harmonic and

lim
r→1−

e[u](rz) = m on {z ∈ ∂Bm : Eb[u] = |∂bu(z)|2 + |∂bu(z)|2 6= 0},

where the energy density e[u] is given by

e[u](z) =
(1− |z|2)

(1− |u(z)|2)2
(δij − zizj)(δαβ(1− |u|2) + uαuβ)

× (∂iu
α∂juβ + ∂ju

α∂iu
β).

Here we sum i, j from 1 to m, and sum α, β from 1 to n.

Combining Theorem 3.3 and a recent work of X. Huang [31] on the rigidity
of proper holomorphic maps we have the following corollary.

Corollary 19. Let u ∈ C2(Bm, Bn) (m > 1) be a proper (m− 1)-harmonic
map with respect to the origin from Bm → Bn with respect to the Bergman
metric with n ≤ 2m − 2. Then there are φ ∈ Aut(Bm) and ψ ∈ Aut(Bn)
such that either ψ ◦ u ◦ φ or ψ ◦ u ◦ φ is a holomorphic linear map.

Let Ω1 and Ω2 be two smoothly bounded strictly pseudoconvex domains in
Cm and Cn, respectively. Let ρ is smooth strictly plurisubharmonic defining
function for Ω1 and r for Ω2. Let

h = −∂
2 log(−ρ)

∂zi∂zj
dzi ⊗ dzj , g = −∂

2 log(−r)
∂wi∂wj

dwi ⊗ dwj

• The rigidity problem for proper harmonic map from u : (Ω1, h) →
(Ω2, g) was studied by the author and Simon [68]. They generalize Theorem
3.3 in this setting.

With arguments of the proof of Theorem 3.3 and Fefferman’s asymptotic
expansion of the Bergman kernel function of a smoothly bounded strictly
pseudoconvex domain in Cn (cf. [21]) and the result in [68], one has the
following corollary in [68].

Corollary 20. Let Ω1 and Ω2 be smoothly bounded strictly pseudoconvex
domains in Cm (m > 1) and Cn, respectively. Let u ∈ C2(Ω1,Ω2) be a
proper (m − 1)-harmonic map with respect to the origin from Ω1 to Ω2

with respect to the Bergman metrics on Ω1 and on Ω2. Then u is either
holomorphic or antiholomorphic.
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• Open Questions

One can see that if u : (Bm, h) → (Bn, g) is a harmonic map with h is
Bergman or Kähler-Einstein metric, then u satisfies a system of n semi-linear
degenerate partial differential equations and we know solution of (3.12) can
be up to Cm−ε(Bm) with some necessary boundary condition on φ [64]. The
natural question arose as follows:

QUESTION. Let h, g denote the Bergman metrics on Bm and Bn, respec-
tively; and let u : (Bm, h)→ (Bn, g) be a harmonic map so that u ∈ Cn(Bm)
with m > 1. Is u either holomorphic or anti-holomorphic?

4. Kähler-Einstein metric/Monge-Ampère equations

Let D be a domain in Cn. Let u ∈ C2(D) be a strictly plurisubharmonic
function on D. Let

(4.1) uij(z) =
∂2u(z)

∂zi∂zj
, 1 ≤ i, j ≤ n.

Then
∑n

i,j=1 uijdzi ⊗ dzj defines a Kähler metric on D since

(4.2) dω = d
n∑

i,j=1

uijdzi ∧ dzj = 0.

Fact 1: If g = gijdzi ⊗ dzj is a Kähler metric, then the Ricci curvature for
g is

(4.3) Rk` = − ∂2

∂zkz`
log det[gij ].

After a normalization, we have the following definition:

Definition 21. We say that Kähler metric g = gijdzi ⊗ dzj is Einstein

metric if Rk` = −(n+ 1)gk`.

Fact 2: If u is a strictly plurisubharmonic solution of the Monge-Ampère
equation:

(4.4) detH(u)(z) = e(n+1)u, z ∈ D

then the metric uijdzi ⊗ dzj defines a Kähler-Einstein metric.

The following theorem was proved by Cheng and Yau (1980) in [15].

Theorem 22. Let D be a smoothly bounded domain in Cn. Then
(i) If D is pseudoconvex, the Einstein equation (4.4) with boundary con-

dition:

(4.5) u = +∞ on ∂D

has a unique plurisubharmonic solution on D, and metric uijdzi⊗dzj defines
a complete metric on D

(ii) If D is strictly pseudoconvex, then ρ(z) = −e−u(z) ∈ Cn+3/2(D)
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Remark: The smoothness assumption in Part (i) of the theorem of Cheng
and Yau has been replaced by a very weak condition by Mok and Yau [74].
Part (ii) of the theorem of Cheng and Yau has been sharpen by J. Lee and
Melrose in [46]. They gave the following asymptotic expansion theorem on
ρ.

Theorem 23. Let D be a smoothly bounded strictly pseudoconvex domain
in Cn. Let u be the plurisubharmonic solution of (4.4) and (4.5), and let
ρ(z) = −e−u. Then for given a defining function ρ0(z) ∈ C∞(D) of D, there
are functions aj ∈ C∞(D) such that

(4.6) ρ(z) = ρ0(z)[a0(z) +

∞∑
j=1

aj(z)[ρ
(n+1)
0 log(−ρ0(z)))j ],

where a0(z) > 0 on ∂D. In particular, one has ρ ∈ Cn+2−ε(D).

• Approximating ρ. Question about how approximate the solution ρ(z) =
−e−u was first studied by C. Fefferman in [22] who studied the following fully
non-linear operator:

(4.7) J [ρ](z) = −det

[
ρ (∂ρ)

(∂ρ)∗ H(ρ)

]
, ∂ρ(z) = [

∂ρ

∂z1
, · · · , ∂ρ

∂zn
].

The relation between J [ρ] and detH(u) was given by Cheng and Yau [15]
when J [ρ] = 1, the general case was given in [58], which can be stated as
the following theorem.

Proposition 24. If ρ(z) = − exp(u(z)), then

(4.8) detH(u) = J [ρ]e(n+1)u

Therefore, one has that

(4.9)

{
detH(u) = e(n+1)u in D

u = +∞ on ∂D.
⇐⇒

{
det J [ρ] = 1 in D

ρ = 0 on ∂D.

In (4.6), one can write

(4.10) a0(z) =
∞∑
j=0

a0j(z)ρ0(z)j

Question about how to compute a0,j in (4.10) in terms of ρ0 explicitly has
been studied by C. Fefferman [22] and R. Graham [25] and others. Graham
[25] provided an iteration formula to evaluate a0,j . An alternative formula
for a0,j or approximation for ρ in terms of ρ0 was given by the author [63]
as follows.

Theorem 25. Let r(z) be a smooth negative defining function for D so
that `(ρ) := − log(−r(z)) is strictly plurisubharmonic in D. Let

(4.11) ρ0(z) = r(z), ρj+1(z) = ρj(z)J(ρj)
−1/(n+1)e−Bj

with

(4.12) Bj(z) =
tr(H(`(ρj))

−1H(log J(ρj))

(j + 2)(n− j)(n+ 1)
.
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Then

(4.13) J(ρj+1)(z) = 1 +O(δ(z)j+2), j = 0, 1, · · · , n− 1

and

(4.14) δ(z) = dist(z, ∂D), a0(z) =
ρn(z)

ρ0(z)

Moreover, if

(4.15) Bn =
tr(H(`(ρn))−1H(log J(ρn)))

(n+ 2)(n+ 1)
`(ρn(z))

then

(4.16) J(ρn+1) = 1 +O(δ(z)n+2 log δ(z)).

• Condition on Ricci lower bound: By (4.3), (4.4) and Proposition 4.4,
one has the following corollary.

Corollary 26. Let u be strictly plurisubharmonic in D and ρ(z) = −e−u.
Let g =

∑n
i,j=1 uijdzi ⊗ dzj be the Kähler metric induced by u. Then there

is a relation between the Ricci curvature Rij and plurisubharmonicity of

− log J [ρ] as follows:

(4.17) Rij ≥ −(n+ 1)gij in D ⇐⇒ − log J [ρ] is plurisubharmonic in D.

• Plurisubharmonicity for ρ(z).

Let D be a smoothly bounded pseudoconvex domain in Cn. Let u be the
plurisubharmonic potential function for Kähler-Einstein metric (the solution

of (4.9)). Let ρ(z) = ρD(z) =: −e−u(z).

Question. What pseudoconvex domain D has plurisubharmonic ρD(z)?

• A simple example is D = Bn, the unit ball in Cn, where u(z) = − log(1−
|z|2) and ρ(z) = |z|2 − 1 is strictly plurisubharmonic in Bn.

• The result was proved by the author in [63].

Theorem 27. If D(A) is domain defined by (2.13) whose boundary is real

ellipsoid in Cn. Let ρ(z) = −e−u(z) with u is the potential function for
Kähler-Einstein metric on D(A). Then ρ(z) is strictly plurisubharmonic on
D(A).

Since u is the plurisubharmonic solution of (4.9), one can easily see that
ρ(z) is strictly plurisubharmonic in D if and only if detH(ρ)(z) > 0 on D.
The following theorem was proved in [63] and in [70] which is helpful to
verify if detH(ρ) > 0 on D.

Theorem 28. Let ρ(z) = −e−u(z) with u is the potential function for
Kähler-Einstein metric on D. Then detH(ρ)(z) attains its minimum over
D at some point in ∂D.
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•Ricci-flat Kähler metric. By (4.3), one can easily see that if u is strictly
plurisubharmonic solution of

(4.18) detH(u) = ef(z), z ∈ C

with f is plurisubharmonic, then the Ricci curvature for the Kähler metric

(4.19) g = −
n∑

i,j=1

∂2 log(−ρ)

∂zi∂zj
dzi ⊗ dzj

is flat. In particular, when f = 0, one has

(4.20) detH[u] ≡ 1, z ∈ Cn.

It is easy to verify that if

(4.21) u(z) =

n∑
i,j=1

cijzizj +

n∑
j=1

(bjzj + b̄jzj) + c

with
[
cij
]

is positive definite matrix and det[cij ] = 1, then u is a solution of

(2.20). Thus, a natural open question arises:

Problem Under what geometric condition, any plurisubharmonic solution
u ∈ C2(Cn) of detH(u) ≡ 1 on Cn is a quadratic form (4.21).

•Without a strong geometric condition on uijdzi⊗dzj , the answer of the
above problem is negative even if uijdzi ⊗ dzj is complete.

• This problem related to the Jacobian conjecture:

Jacobian Conjecture: Let ψ : C2 → C2 be a holomorphic polynomial
map so that detψ′(z) ≡ 1 on C2. Then ψ is one-to-one and onto.

•We know there are a counter example if we replace polynomial by entire
holomorphic map (see the book of Rudin [77]).

EXAMPLE 2. There is a holomorphic map φ : C2 → C2 such that
(i) φ(C2) 6= C2;
(ii) detφ′(z) ≡ 1 on C2.

Let u(z) = |φ(z)|2. Then

detH(u)(z) = |detφ′(z)|2 = 1

But u is not a quadratic polynomial. This means that one must assume g
is complete metric or much stronger condition on g so that the solution of
(4.20) can be quadratic. In general, this problem is widely open. Moreover,
Jacobian conjecture is also widely open.

5. Degenerate Monge-Ampère equation/rigidity

Let M be a complex manifold of dimension n. If M is a pseudoconvex
domain given by a C∞ positive defining function τ defined on M , i.e. τ :
M → [0, 1) is onto and τ ∈ C∞(M) is strictly plurisubharmonic in M . The
following surprising result was proved by W. Stoll in [80] and D. Burns in
[3] and P.-M. Wong [87].
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Theorem 29. Let M be a complex manifold of dimension n. Let τ : M →
[0, 1) be a smooth strictly plurisubharmonic onto map. If

(5.1) detH(log τ) = 0, for all z ∈M with τ(z) 6= 0.

Then M is biholomorphic to Bn.

There is another way to write Theorem 5.1 by using the Fefferman oper-
ator and Monge-Ampère operator which was given by the author in [59].

Corollary 30. Let ρ ∈ C∞(M) be a negative finite strictly plurisubhar-
monic defining function for M . If

(5.2)
detH(ρ)

J(ρ)
= constant on M.

Then M is biholomorphic to the ball B(0,m) in Cn, where

(5.3) m = max{−ρ(z) : z ∈M}.

Proof. Since ρ is strictly plurisubharmonic in M , we have J(ρ) > 0 on M .
Let z0 ∈M be such that m = −ρ(z0). Then ∂ρ(z0) = 0 and

(5.4) J(ρ)(z0) = m detH(ρ)(z0).

Let

(5.5) τ(z) = ρ(z) +m.

Then τ : M → [0,m) is smooth, onto and strictly plurisubharmonic. Since

(5.6) |∂τ |2τ =

n∑
i,j=1

τ ijτiτj = |∂ρ|2ρ and detH(ρ) = detH(τ),

we have

(5.7) J [τ ] = −detH(τ)[τ − |∂τ |2τ ] = −mdetH(ρ) + J(ρ).

Notice that

(5.8) J(τ) = −τn+1 detH(log τ),

one has

(5.9) J(τ) = 0 ⇐⇒ detH(log τ) = 0 M \ τ−1(0).

Therefore,

(5.10)
detH(ρ)

J(ρ)
≡ constant on M ⇐⇒ J(τ) ≡ 0 on M.

This completes the proof of the corollary by Theorem 5.1. �

• Based on the related problems in Pseudo-Hermitian CR geometry, one
may ask the following question: Does the condition (5.2) in Corollary 5.2
can be replaced by a weaker condition detH(ρ)/J(ρ) =constant on ∂M ?
The problem has been studied by the author in [59]. The following theorem
was proved there.
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Theorem 31. Let D be a bounded pseudoconvex domain in Cn with a defin-
ing function ρ ∈ C3(D) ∩ C∞(D) such that u(z) = − log(−ρ(z)) is strictly
plurisubharmonic in D. Let g = uijdzi ⊗ dzj be the Kähler metric induced
by u. If the Ricci curvature has the lower bound:

(5.11) Rij ≥ −(n+ 1)gij

and if

(5.12)
detH(ρ)

J(ρ)
≡ constant on ∂D,

then

(5.13)
detH(ρ)

J(ρ)
≡ constant on D.

In particular, combining the above and a theorem in [58], we have the
following corollary.

Corollary 32. Let D be a smoothly bounded strictly pseudoconvex domain
Cn. Let u be the potential function for Kähler-Einstein metric for D and let
ρ(z) = −e−u. If (5.12) holds, then there is a biholomorphic map φ : D → Bn
so that detφ′(z) is constant.

• Remark. The boundary condition in Theorem 5.3 can be connected to
the pseudo scalar curvature when one views (∂D, θ), θ = (∂ρ− ∂ρ)/(2i), as
a pseudo-Hermitian CR manifold (see Theorem 6.11 in the last section of
this article).

Based on the existence and uniqueness of the Kähler-Einstein metric of
Cheng and Yau [15], Theorems 5.1 and 5.2 of Stoll, Burns and Wong and
other motivations in [58], one may naturally ask the following question.

Question: Let u be the potential function for Kahler-Einstein metric for a
smoothly bounded pseudoconvex domain D. What is nice extra condition
on u so that D is biholomorphic to Bn?

In order to study the above question, let us study what can be a necessary
condition first, which may help us to search for a sufficient condition.

Let φ : D → Bn be a biholomorphic map. Let v(z) = − log(1 − |φ|2).
Then

(5.14) detH(v) = | detφ′(z)|2e(n+1)v

and log | detφ′(z)|2 is pluriharmonic in D. Moreover, we let

(5.15) τ(z) = 1− e−v(z) = |φ(z)|2

Then τ : D → [0, 1) is strictly plurisubharmonic and onto. Moreover, log τ
is plurisubharmonic in D and

(5.16) detH(log τ)(z) = 0, if τ(z) 6= 0.

Conversely, we have the following theorem was proved by the author in
[58].
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Theorem 33. Let v be strictly plurisubharmonic in D so that

(5.17) detH(v) = g(z)e(n+1)v in D; v = +∞ on ∂D

with m = min{v(z) : z ∈ D} = 0 and log g(z) is pluriharmonic. If log τ is

plurisubharmonic near ∂D with τ(z) = 1 − e−v(z) then D is biholomorphic
to Bn.

• Remark: In fact, in the above theorem, the condition log g is plurihar-
monic can be reduced to − log g is plurisubharmonic or the Ricci curvature,
associate metric induced by u satisfying: Rij ≥ −(n+ 1)gij .

• Remark. Let D be a smoothly bounded strictly pseudoconvex domain
in Cn. Let f1(z), f2(z) ∈ C∞(D) be positive functions on D. If uj is the
plurisubharmonic solution of

(5.18) detH(u) = fj(z)e
(n+1)u > 0 in D; u = +∞ on ∂D

Let ρj(z) = −e−uj(z). If

(5.19) log f1(z)− log f2(z) = O(δ(z)n+1)

Then ρ1 and ρ2 agree on ∂D up to order n+ 1.

6. Bottom of spectrum of ∆g

In this section, we consider the spectrum of the Laplace-Beltrami operator
on a complete Riemannian manifold (Mn, g). We only describe some works
related to my recent works in this area on the Kähler case.

6.1. Riemannian case. Let (M, g) be an n-dimensional Riemaniann man-
ifold. Let

(6.1) ∆gu = − 1√
det(gij)

∑
j=1

∂

∂xj

(√
det(gij)g

ij ∂u

∂xi

)
be the Laplace-Beltrami operator with respect to the Riemannian metric g.
Let

(6.2) λ1 = inf
{∫

M

n∑
i,j=1

gij
∂u

∂xi

∂u

∂xj
dvg : u ∈ C∞0 (M) and

∫
M
u2dvg = 1

}
.

• When M is compact with boundary and ∆g is uniformly elliptic, one
has that λ1 is the first positive eigenvalue of ∆g with Dirichlet boundary
condition (see [51, 52] and references therein).
•WhenM is a complete, non-compact manifold, λ1 may not be eigenvalue

of ∆g. It is the bottom of the spectrum of ∆g (see, [11], [53, 54], etc.).
• There are many works have been done on the eigenvalues related prob-

lem, I will mention a few of them, which give a direct introduction to some
works of the author [63], a joint works with M-A. Tran [69] and a joint work
with X-D Wang [71].

• On the upper bound estimate of λ1, the following theorem was proved
by S. Y. Cheng in [11].



106 SONG-YING LI

Theorem 34. Suppose that M is an n-dim complete noncompact Rie-
mannian manifold and Ricci curvature of M ≥ −(n − 1)k. Then λ1(M) ≤
(n− 1)2k/4

•On the extremal case λ1 = (n−1)2/4, the following rigidity type theorem
was proved by P. Li and J. Wang in [53, 54]. We will state the results only
for the Kähler case here.

•Conformally compact Einstein manifolds. Let Mn+1 be a compact
manifold with boundary ∂M . Let r be a positive defining function for M
(M = {x ∈ M : r(x) < 0}, ∇r(z) 6= 0 on ∂M . A Riemannian metric g on
M is called conformally compact if g = r2g can extends as a smooth metric
on M for smoothly positive defining function r. g|∂M gives a Riemannian
metric for ∂M . If (M, g) is Einstein (Ric(g)+ng = 0) and g is conformally
compact, we say that (M, g) is a conformally compact Einstein manifold.

• On the lower bound estimate, the following was proved by J. Lee in [44].

Theorem 35. Let (M, g) be a conformally compact Einstein manifold. If
its conformal infinity (∂M, g) has nonnegative Yamabe invariant, then λ1 =
(n− 1)2/4, i.e, the spectrum is [(n− 1)2/4,∞).

6.2. Kähler case. Let (Mn, g) be a Kähler manifold of complex dimension
n. Then the Laplace-Beltrami operator is defined as

(6.4) ∆g = −4

n∑
i,j=1

gij
∂2

∂zi∂zj

and
(6.5)

λ1 =: 4 inf
{∫

M

n∑
i,j=1

gij
∂u

∂zi

∂u

∂zj
dvg : u ∈ C∞0 (M) and

∫
M
u2dvg = 1

}
.

6.2.1. Upper bound estimates for λ1. As a generalization of Cheng’s theo-
rem, Munteanu [73] proved the following upper bound-estimate theorem.

Theorem 36. (O. Munteanu, JDG, 2009) Let Mm, m ≥ 2 be a complete
noncompact Kähler manifold such that the Ricci curvature is bounded from
below by

(6.6) RicM ≥ −2(m+ 1) (means that Rij ≥ −(m+ 1)gij)

Then λ1(M) ≤ m2.

• Remark: In fact, the above theorem was first proved by P. Li and J-P.
Wang [55] under a stronger condition: Holomorphic bisectional curvature
satisfying Kg ≥ −1.

6.2.2. Lower bound estimates for λ1. Question When λ1 = n2?

EXAMPLE 3. When M = Bn is the unit ball in Cn. If g is the Kähler-
Einstein or the Bergman metric on M :

(6.7) g =:
1

(1− |z|2)
(δij +

zizj
1− |z|2

)dzi ⊗ dzj
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then

(6.8) λ1(∆g) = n2.

Here, the Ricci curvature

(6.9) Rij = −(n+ 1)gij ,

and curvature tensor:

(6.10) Rijk` = −(gijgk` + gi`gkj).

In particular, the holomorphic bisectional curvature Kg = −1.

• Constructing examples for exact λ1(∆g). Before our results in [48],
(Bn,∆g) with the Kähler-Einstein metric g is the only known example with
λ1(∆g) = n2. Our work provides a way to construct many examples of the
Kähler metric g on the Kähler manifold D such that λ1(∆g) = n2. In [48],
we proved the following theorem.

Theorem 37. Let D be a strictly pseudoconvex domain in Cn with C2

boundary. Let ρ ∈ C2(D) be any strictly plurisubharmonic defining function
for D. Let

(6.11) u(z) = − log(−ρ(z)), g =:

n∑
i,j=1

∂2u

∂zi∂zj
dzi ⊗ dzj .

Then λ1(∆g) = n2.

6.3. Rigidity type theorems. It is natural to consider the following ques-
tions.

Question 1: Under the assumptions: Holomorphic bisectional curvature
Kg ≥ −1 and λ1(∆g) = n2. What can one say about M?

Question 2: Under the assumptions: Ricci curvature Rij ≥ −(n + 1)gij
and λ1(∆g) = n2. What can one say about M?

Questions 1 and 2 for Riemannian case was studied by P. Li and J. Wang
in [53, 54], they proved a very pretty splitting theorem. In [55, 56], Li
and Wang considered Kähler manifolds and also obtained a similar splitting
theorem. The following theorem is their results for the Kähler case.

Theorem 38. Let (Mn, g) be a complete, non-compact Kähler manifold.
Then

(i) If the Ricci curvature Rij ≥ −(n+ 1)gij and λ1 >
n+1

2 , then M must
have one infinite volume end;

(ii) If the holomorphic bisectional curvature Kg ≥ −1 and λ1 = n2, then
either M has only one end or M = IR×N with N being a compact manifold.
Moreover, the metric on M is of the form

(6.12) ds2
M = dt2 + e4tω2

2 + e2t
2n∑
i=3

ω2
i ,

where {ω2, · · · , ω2n} are orthonormal basis of N with Jdt = ω2.
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In [73], O. Munteanu proved the same result under a weaker condition:
Rij ≥ −(n + 1)gij and λ1 = n2. In [39], Kong, Li and Zhou considered a

complete Quaternonic Kähler manifold (M4n, g) and proved the same the-
orem under the condition: the scalar curvature SM ≥ −16n(n + 2) and
λ1 ≥ (2n+ 1)2.

Once again, if M = Bn is the unit ball in Cn and g is the Kähler-Einstein
metric then

(6.13) λ1(∆g) = n2, Rij = −(n+ 1)gij , Rijk` = −(gijgk` + gkjgi`)

which means that the holomorphic bisectional curvature equals −1. Com-
paring Obata theorem and Cheng theorem for compact Riemannian mani-
folds (see [51, 52]). One may ask the following rigidity question:

Question 3: Assume that D is a smoothly bounded strictly pseudoconvex
domain in Cn with a complete Kähler metric g satisfying either

(6.14) Rij = −(n+ 1)gij or holomorphic bisectional curvature Kg ≥ −1

Assume that λ1(∆g) = n2. Is D biholomorphic to the ball in Cn?
Let

(6.15) D(A) = {z ∈ Cn : ρ(z) =: |z|2 + Re
n∑
j=1

Ajz
2
j − 1 < 0}

Then ∂D(A) is the real ellipsoid when Aj ∈ (−1, 1), which is a strictly
convex domain in Cn. By linearly holomorphic changes of variables, we may
assume that

(6.16) 0 ≤ A1 ≤ A2 ≤ · · · ≤ An < 1.

The following theorem was proved by S. Webster [84].

Theorem 39. D(A) is biholomorphic to the unit ball in Cn if and only if
A = (A1, · · · , An) = 0.

• For Kg ≥ −1, case, the author [63] proved the following theorem.

Theorem 40. For any 0 ≤ A1 ≤ · · · ≤ An < 2/5, there is a Kähler metric
g0 on D(A) with An ≤ 2/5 such that the holomorphic bisectional curvature
Kg0 ≥ −1 and λ1(∆g0) = n2.

By Theorem 6.6, one has that Theorem 6.7 answers Question 3 for the
case Kg ≥ −1 negatively with the counter examples: D(A) with A 6= 0 and
n > 1.

• For Kähler-Einstein metric case, the author [63] proved the following the-
orem.

Theorem 41. Let u be strictly plurisubharmonic, which is the potential
function for Kähler-Einstein metric solving the Monge-Ampère equation:

(6.17) detH(u) = e(n+1)u, z ∈ D(A) and u =∞ on ∂D(A).

Let

(6.18) ρ(z) = − exp(−u(z)), z ∈ D(A).

Then ρ(z) is strictly plurisubharmonic. In particular, λ1(∆g) = n2.
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• This also provides a counter example for Question 3 in the case of the
Kähler-Einstein metric.

6.4. Positive CR-Yamabe Invariant. Consider a compact, integrable
CR manifold (M, θ) of dimension 2n + 1 and CR dimension n with con-
tact form or pseudo-Hermitian form θ (real, one-form on M). Let H(M) be
the holomorphic tangent bundle on M such that

(6.19) θ(X) = 0, X ∈ H(M).

Let H(M)∗ be the holomorphic cotangent bundle on M . We say that M is

strictly pseudoconvex if Lθ = −idθ is positive definite on H(M) ⊕ H(M).
Choosing a local basis {θ1, · · · , θn} for H(M)∗, one can write

(6.20) dθ = i
n∑

α,β=1

hαβθ
αθβ

with [hαβ] is a positive definite n×n matrix on M . It was proved by Webster

[84] that there is a unique way to write

(6.21) dθα =

n∑
γ=1

θγ ∧ ωαγ + θ ∧ τα

where τα is a (0, 1)-form, which is a linear combination of θα, and ωβα is
1-form so that

(6.22) 0 = dhαβ − hγβω
γ
α − hαγω

γ

β
.

Using ωαβ as a connection, Webster [84] introduced the pseudo Ricci curva-

ture Rαβ and pseudo scalar curvature Rθ = hαβRαβ.

• CR-Yamabe invariant is defined as:

(6.23) Y(M) = inf
{
YM (θ)

}
,

where

(6.24) YM (θ) =

∫
M Rθθ ∧ (dθ)n

(
∫
M θ ∧ (dθ)n)2+ 2

n

.

• Question: Let D be a bounded pseudoconvex domain in Cn with C3

boundary. Let ρ be a defining function for D so that u(z) = − log(−ρ(z))
is strictly plurisubharmonic in D with Kähler metric

(6.25) g =
n∑

i,j=1

∂2u

∂zi∂zj
dzi ⊗ dzj .

If M is asymptotic Einstein and Rij ≥ −(n + 1)gij . If Y(M) ≥ 0, can one

conclude that λ1(∆g) = n2?
A joint work with Xiao-Dong Wang [71], we prove the following theorem

Theorem 42. If (D, g) is a Kähler manifold as above. If the Ricci curvature

(6.26) Rij ≥ −(n+ 1)gij
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and scalar curvature R = −n(n + 1) near ∂D. Let θ = 1
2i(∂ρ − ∂ρ) be the

pseudo-Hermitian form for ∂D. If the pseudo-scalar curvature Rθ ≥ 0 on
∂D. Then λ1(D, g) = n2.

• Question: In general, we don’t know how to replace Rθ ≥ 0 by non-
negative Yamabe invariant.

In the theory of Kähler manifold, one knows the Ricci curvature:

Rij = − ∂2

∂zi∂zj
log det[gk`].

However, for the pseudo Hermitian case, the problem becomes very compli-
cated. The following explicit formula for pseudo Ricci curvature Rαβ was

given by Li and Luk in [65]

Theorem 43. Let D be a strictly pseudoconvex domain in Cn+1 with a
defining function ρ ∈ C3(D)∩C∞(D) such that u(z) = − log(−ρ) is strictly
plurisubharmonic in D. Then J(ρ) > 0 in D. Let M = ∂D and let θ =
1
2i(∂ρ− ∂ρ) on M . Then

(6.27) Ric(w, v) = −
n+1∑
k,j=1

∂2 log J(ρ)

∂zk∂zj
wkvj + (n+ 1)

detH(ρ)

J(ρ)
Lθ(w, v),

for all w, v ∈ Hz(M).

When M = S2n+, the unit sphere in Cn+1, if θ = 1
2i(∂ρ − ∂ρ) with

ρ(z) = |z|2 − 1, then Rθ = λ(S2n+1) = n(n+ 1) on M .
With the help of a formula (6.27), Li [59] proved the following theorem:

Theorem 44. Let D be a smoothly strictly pseudoconvex domain in Cn+1

with a defining function ρ such that u = − log(−ρ) is plurisubharmonic in
D. Then

(a) If − log J(ρ) is harmonic in the metric uijdzi ⊗ dzj near ∂D, then

(6.28) Rθ(z) = n(n+ 1)
detH(ρ)(z)

J(ρ)(z)
, z ∈M = ∂D.

(b) If − log J(ρ) is plurisubharmonic in D and it is harmonic in the metric
uijdzi ⊗ dzj near ∂D, and if Rθ = c (a positive constant) on ∂D, then D is
biholomorphic to the unit ball.

(c) In particular, if u the potential function of the Kähler-Einstein metric
for D and Rθ = c > 0 on ∂D, then D is biholomorphic to ball Bn+1.
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