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result of Atiyah [1] that ker (A,) is a Hilbert #/(7) module of finite w-dimension. Define
blyy (M) = 7(kerA;)

Let K be a triangulation of M and M be the induced triangulation of M. Let C(z)(K )
denote the space of j- cochains which are L? i.e. C’(z)(K ) is the Hilbert space completion

of
(feCiK): 3 |f(o)f <oo).

o=j simplex
The coboundary operator dg on C7(K) is easily seen to induce a bounded operator
(also denoted by dx)

(K) — CiF(K)

(2)
which satisfies dﬁj’ to d{,‘ =01ie. C(Q)((R’ ),drk) is a complex of Hilbert U(7) modules.

Define as in Dodzuik [7], the L2- cohomology of this complex to be
H (jz)(fé ) = kerd], /range dJ; "

which is also a Hilbert #/(7) complex by Dodzuiks theorem [7], ker (A;) is isomorphic

to HY

(2)(K) as Hilbert ¢/(7) modules, i.e.

bl (M) = 7(H{,, (K)) = bl (K) (%)

and b{z)(]\} ) are homotopy invariants of M.
We define an L2-acyclic manifold to be a closed, connected oriented manifold A
such that bfz)(M) =0forall j > 0.

The condition that M is an L%-acyclic manifold is easily seen to be equivalent via

() to the condition that
di +dj f’zd)d(I«.) - Ci(K)

is a weak isomorphism i.e. ker(dx + d}) = 0 and range (dx + d}) is dense. Here dj;
is the L? adjoint of dg.

It follows that we can construct a U(7) module isomorphism of C dd(I\) with

even

C) (Ix) using the obvious bases of these free Hilbert #/(7) modules. The operator
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dx + d% may be regarded then as an element of (7)) ® M, (L) where n is the rank
of C’z’f)d. Now this latter algebra is also a finite von Neumann algebra (as /() is anti-
isomorphic to its commutant 2/(7)' which is generated by the right regular representation

acting on £2(w)). We shall continue to abuse the notation and denote by 7 the trace on

U(r) ® Mn(L). Finally we may now define the L? RF-torsion by
T(2)(M) = |Det-|(dx + di)

THEOREM [2]: T(5)(M) is independent of the choice of the C' iriangulations K of
M, i.e. Tia)(M) is differential invariant of M.
The proof is in the spirit of that of ordinary torsion, but with new technical diffi-

culties arising from the fact that dx + d}, is only a weak isomorphism.

3. L:-ACYCLIC MANIFOLDS

We now show that there are many L2-acyclic manifolds, and also that the class of
L?-acyclic manifolds is closed under certain simple geometric extensions.

Recall that an A-foliated manifold is closed connected oriented manifold with a
nowhere zero, closed 1-form.
EXAMPLE: Any manifold M which fibres over the circle.
THEOREM: [2] If M is an A-foliated manifold, then M is an L%-acyclic manifold.

This theorem is proved essentially by supersymmetry ideas using a Witten type
argument [15], and some L? estimates.

We digress at this point to recall some definitions (cf [13]). First we note that a
Riemannian metric on a connected closed manifold M is said to be locally homogeneous
if given any two points p and ¢ in M there are open neighbourhoods of U and V of

p and ¢ respectively and an isometry (U,p) — (V,¢). A closed manifold admits a

~

geometric structure if M admits a locally homogeneous Riemannian metric on X =M
has a group of isometries G which acts transitively on X with a compact isotropy group.
We then say (following Thurston) that M admits a geometric structure modelled on
(X, @). Thurston [14]has classified all the three dimensional geometries; there are eight

of them:
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(i) Euclidean three space.
(ii) Hyperbolic three space.
(iii) % x R.
(iv) The product of hyperbolic 2 space with IR.
(v) The universal cover of SL(2, R).
(vi) The three dimensional Hiesenberg group.
(vil) The three dimensional solvable Lie group.
(viii) S3.
In each case G is the group of isometries of the space.
Finally we recall that a countably generated discrete group = is said to be amenable
if there is a finitely additive, left invariant measure on .
THEOREM: [2] Let M be a closed, connected, oriented three dimensional manifold
with infinite fundamental group. Assume either that
1. w1 (M) is amenable.
2. M admits a geometric structure.
Then M is an L?-acyclic manifold.
Proof:
1. is proved via a result of Cheeger and Gromov and L? Poincaré duality.
2. is proved via a case by case study.
This made us conjecture in [2] that any closed connected oriented 3-manifold, with
infinite fundamental group, is an L2-acyclic manifold.
A fibre bundle FF — M — B is said to be special if in the long exact sequence in
homotopy
— m3(B) 2wy (F)Smy (M) — m1(B) —

we have ker ¢ = range 0 = 0. This implies that there is a fibre bundle of universal covers
F— M- B

EXAMPLES: If ny(B) =0, or M is a flat bundle i.e. M=3B X, F where p : m1(B) —

Diff (F') is a representation, then M is special.
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THEOREM [2] Let FF — M — B be a special fibre bundle of closed, connected oriented
manifolds. If F' is an L?-acyclic manifold, then so is M.
This theorem is proved using quasi-isometry invariance and also long exact se-

quences of L?-cohomology.

4. SOME NEW RESULTS
In this section we extend the analysis of [2] by proving a number of results which
enable us to compute the L? RF-torsion of manifolds of the form M x S'. The main
results are 4.2 and 4.9. For the algebraic ideas we refer to [16].
LEMMA 4.1: Let G be an element of U ® My, which has the form (relative to some
basis) 4P where A € U @ M, and C € U ® M, are invertible and B € U @ My,

B C
Deld®Myxr. Then G 1s also the product

1 DC™? A-DC'B 0 1 0
W) U070 (eey) @

where the first and last operators are commutators.

Proof: The result follows by multiplying out the product (*) and observing that

2= L ) 6 )
b) =16 5) )

where [a, ] = afa~1B71 is the group commutator. We recall some of the continuity
properties of the Fuglede Kadison determinant (see [10]):
1. |Det,|(A) = lime_o|Det,|(|4] + €)
2. |Det(Hy) > |Det,|(Hz) if Hi > Hy >0
3. limp—oo|Detr|(An) < |Det,|(A), where A, tends uniformly to A.
4. limy—oo|Det|(Hy) if Hy, > H > 0 and H, tends to H uniformly.
Before we can introduce our results we need some notation and definitions from [2].

Let

C:0- %0t s . 4o
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be a complex over & where each C7 is a free finitely generated Hilbert 2/(7) module and
d is a bounded U(7) module map. We call (C,d) a Hilbert U(n) complex. We write
6 for the adjoint of d. We note that the commutant of () acting on this complex
is isomorphic to U(7) @ Mn(L') so we may identify both d and § as elements of this
algebra. We may choose a set e = (e1,e2,...,e,) of generators for (C, d) as a free U(m)
module which are pairwise orthogonal and with respect to which d and hence § may be
represented by an explicit matrix over /'. In this case we refer to the triple (C,d, ) as
an L2-RF complex. We write m(d, e) or m(4,e) to denote this matrix. Such a complex
is said to be L%-acyclic if all its L?>-cohomology groups vanish. In that case d + § is
injective but not necessarily invertible.

THEOREM 4.2: Let 0 — (C',d',¢') — (C,d,e) — (C",d",e") — 0 be a short ezact

sequence of L?-acyclic U-RF complezes. Then
T(z)(C’, d, e) . T(2)(Cl, dl, e')T(z)(C", d", e" .

Proof: Let H* be the orthogonal complement of C'*, in C*, with a basis ey chosen to
g
satisfy the following conditions
(1) that it extend the basis €’ of C' to a basis of C which is U related to the basis e of
C, and hence
(2) that ey projects onto the basis ¢’ of C".
The differential
d: Codd — (even

has a matrix relative to this basis of the form
d 0
d=
pd du
Here p : C®Ve" — ("' is the orthogonal projection. As d? = 0, we see that d% = 0

and hence (H,dg,en) is a Hilbert Y/-RF complex. The following diagram of U/-RF

complexes is commutative.

0 - ¢ - C - C" = 0

I I !
0 - ¢ - C - H — 0
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It follows that there is a natural isomorphism taking bases to bases of (H,dpy,en)

and (C",d",e'). We see similarly that the adjoint map
S Codd — (even
& 0
6=
pb g
as C' is a subcomplex of C. It follows that

m(d + 6 ¢ 0 ) "
m(p(d+6),e) m(dm + 6m,en)

can be decomposed as

m(d+8,e) = (

We now prove a lemma which will enable us to complete the proof of the theorem

LEMMA 4.3: If
A 0
B C

is a matriz of the sort considered in (x), then

|Det-|(G) = |Det-|(A)|Det-|(C)

Proof: We recall that [Det,|(G)? = |Det(G*G)| = limc—o|Det|(G*G + €) by property
(1) above of the Fuglede-Kadison determinant, i.e.
A*A4+ B*B + ¢ B*C
G'G+e=
C*B C*C+e
Applying the lemma 4.1, this equals
A*A 4+ B*B +e— B*C(C*C +¢)"'C*B 0
0 C*C+e

modulo commutators.

Hence
|Det,|(G*G + ¢) = |Det,|(A*A+ B*B + ¢ — B*C(C*C + €)' C*B)|Det . |(C*C +¢)

Since C(C*C) = (CC*)C it follows that C(C*C + €) = (CC* + €)C and hence that
(CC*+e)"tC=C(C*C+ )7L,
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So we see that B*C(C*C +¢)"1C*B = B*(CC* +¢)"*CC*B < B*B since by the
spectral theorem we have (CC* +¢)"'CC* < 1.

It follows that
A*A+ B*B+e— B*C(C*C +¢)"'C*B > A*A

and so

A*A+ B*B+e—~ B*C(C*C+¢)"'C*B

converges uniformly to A*A. Now by property 4 above of the Fuglede-Kadison deter-

minant, we have
lim|Det |(A*A + B*B + ¢ — B*C(C*C + )7 C*B) = |Det,|(4*A) = |Det.|(4)*
Also by property 1 above of the determinant, we see that
1i_)rrélDetf|(C*C + €) = |Det,|(C)?
We now apply lemma 4.3 to deduce that
|Det,|(m(d + 6,¢,¢e)) = |Det-|(m(d' + &', ¢'))|Det,|(m(du + 6u,en))

which suffices to prove the theorem.

Our next result needs some preliminary discussion. We refer to bounded & module
cochain maps f between U-RF complexes (C,d, e) and (C’',d', ¢') as simply maps. Then
two such maps f and ¢ are said to be L? homotopic if there is a sequence of maps
D € L(CY,C"1) such that d}_le + Ditld; = f; — g; for all j. If there is a map
h from (C',d',e') to (C,d,e) such that both fo h and ho f are L? homotopic to the
identity map then f is called an L? homotopy equivalence. Finally we may define the

mapping cone (Cy,dys,ef) of a map f as follows:
Ci=CleC’,

(dg); = (dj + (f; = dj-1))
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(ep)j =ejUejy

From Lemma 1.30 of [2] we know that if f is an L? homotopy equivalence of Z/-RF
complexes then the mapping cone complex is also an L2?-acyclic Z/-RF complex and
hence it has an L?-RF torsion which we denote T{5)(f, e, ¢'). We now note the following
fact:

COROLLARY 4.4: Let f: (C,d,e) — (C',d',€') be an L% homotopy equivalence of
L%-acyclic U-RF complexes. Then Tipy(C',d',e') = T(5)(f, e, e )T(2)(C, d,e).

It follows that if an L? homotopy equivalence f satisfies T(5)(f,e,€') = 1 then the

L2-RF torsions of the complexes (C,d,e) and (C',d',e') are equal.

Our next result begins with a simple observation. Let 7 = 7y X mp. Hence
(m) 2 0 (m) @ ()

naturally as Hilbert spaces.

LEMMA 4.5: If M is a free Hilbert U(m1)-module of rank m, and N is a free Hilbert
U(mz) module of rank n, then M ®g¢ N is in a natural way a free Hilbert U(m) module
of rank mn.

Proof: It is enough to show that (€*(m1))™ ® (¢€2(m3))" has a natural Hilbert U(r)

module structure. But
(2(m1))™ @ (£*(m2))"™ = (£%(m))™"

naturally as Hilbert spaces. Hence we can naturally endow the tensor product with a
free Hilbert 2/(7) module structure of rank mn.

REMARK: If (V,d) is a free Hilbert ¢(n) complex and M is a free Hilbert ¢(m)
module then lemma 4.5 and induction proves that M ®MN is a free Hilbert /() complex.
LEMMA 4.6: Let M and N be as in the lemma above. If f € L(M, M) and g €
LN,N) then f®@g € LM @c N, Mg N) is in ¢ natural way o Hilbert U(w) module
homomorphism.

Proof: It is enough to consider M = (€3(m))™ and N = (£%*(m3))". Let ¢ denote

the natural isomorphism between (¢2(7))™" and (£2(m1))™ @ (£%(m2))™ described in the
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previous lemma. Then
$pof®go¢™" € L((£3(m))™", (€2 (m))™")

We will denote this map by just f ® g.

COROLLARY 4.7: If M; is o Hilbert U(n;)-module (j = 1,2) then My ®@¢ Ms s
in a natural way o Hilbert U(n) module.

Proof: By definition M is finitely generated and projective. Let F; be a free Hilbert
U(rj) module and p; € L(Fj, F;) be self adjoint projections such that range p; = M.
By the lemma above p; ® p2 is naturally a Hilbert 2/(7) module homomorphism. Hence
range (p1 ® p2) = M1 ®c My) is in a natural way a Hilbert 2/(7) module.

LEMMA 4.8: Let 0 — N' 5 N B N — 0 be a short ezact sequence of free Hilbert
U(ry) modules and M be a free Hilbert U(wy) module, then

0o M N S MecN'EF MecN" -0

is o short exact sequence of Hilbert U(n) modules.

Proof: We will check injectivity of 1@i. f m @ n € ker(1 ® i) then m ® i(n) = 0 is

equivalent to m = 0 or n = 0. Surjectivity of 1 ® p is obvious. Also by the above lemmas

all maps and modules can be considered to be Hilbert #/(n) modules or homomorphisms.

PROPOSITION 4.9: Let (C,d,e) be an L%-acyclic U(r1)-RF complez and (C',d',¢")

be o U(my)-RF complex. Then

(1) (C®C,dR1+1®d,e®¢) is an L2-acyclic U(r)-RF complez.

(2) Ty(C®C,d@1+1®d,e®¢€') = T(2(C,d,e)X(C)

Proof: (1) By our previous lemmas it is clear that (C ® C',d®1+ 1@ d,e®¢€')is a

U(r)-RF complex. We will prove that it is acyclic by induction on the length of C".
IfC': 0 — C'° — 0 has length one, then

H(jz)(c ®C') = H(jz)(c) ®C° =0

since C'° is a free Hilbert module. Assume that C ®v C' is L?*-acyclic for all U'-RF

complexes C' of length < n.
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fc:0— 0% % o' 0 is such that (C',d',€e') is a U(m3)-RF complex of

length equal to n + 1, we define the complexes
B:0—>C°=0
B:0-Cct4e?s ... somso0

Then B and B’ are U(m2)-RF complexes of length < n. Also we have the short exact

sequence of U'-RF complexes
0—-B—-C"-B -0

Tensoring over £ with the complex C; and by an extension of lemma 4.8, we obtain a

short exact sequence of U(7)-RF complexes
0-C®B—-CRC' -C®B -0 ()

which gives rise to a long exact sequence in L2-cohomology by Cheeger and Gromov [4].

By our induction hypotheses
0= H(Jz)(C ® B) = H(Jz)(C ® B')

for all 7 > 0. Hence from the long exact sequence we see that H, 52)(0 ® C') = 0 for all
j=0.

(2) Let F(ms) denote the semigroup of all U(m2)-RF complexes. We will define
functions f; : F(m2)) — IR by

A, d,)=Ty(CeC,del+1ed,eqe)

F2C',d' ") = Tay(C, d, )X

We shall prove that f; = f> by induction on the length of C'.
IfC':0— C'°— 0is of length one, f; = fp trivially. So assume that f; = f, for

all U (72)-RF complexes of length < n. If

c0=C% . S0
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is a U(m2)-RF complex of length n + 1, we define the U(72)-RF complexes B and B’
as in (1) above and we get the short exact sequence of L%-acyclic U(m1) @ U(m)-RF

complexes as in (*) above
0-C@B—-CQC'-C®B —0
Hence by theorem 4.2
T(2)(C ® C') = T(2)(C ® B)T(2)(C @ B')
By our induction hypothesis this equals
- T(2>(C)X(B)T(2)(C)X(B')
— T(Z)(C)X(B)-I-X(B')

- T@)(C’)X(C’)

COROLLARY 4.10: Let M be an L*-acyclic manifold and N a closed, connected
oriented manifold. We know by preceding results that M x N is L? -acyclic. Then we
have that

Tiay(M x N) = Ty (MXD

Proof: Let K and L be triangulations if M and N respectively. Then C(g)(K’—;L) =
C'(z)(IN\") ® C(z)(lN}) where we use the Hilbert tensor product. We can now apply the

preceding theorem to see that
T(z)(]\'f x N) = T(2)(_]\/[)X(C(2)(L)

Now by theorem 1 in Cohen [4] we see that X(C(z)(z)) = x(L)

COROLLARY 4.11: Let M be a closed, connected, oriented manifold. Then by
preceding results M x S* is an L?-acyclic manifold. Also T(g)(M x S') =1.
COROLLARY 4.12: T(5)(T*) = 1 when k > 0.
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