9. LINEAR PPERTURBATION

In this section we study the effect on the spectrum of an operator $T_{0} \in \operatorname{BL}(X)$ when it is subjected to a perturbation $V_{0} \in \operatorname{BL}(X)$. Thus, if we denote the perturbed operator $T_{0}+V_{0}$ by T, we wish to obtain information about $\sigma(\mathrm{T})$ when $\sigma\left(\mathrm{T}_{0}\right)$ is known. In this process we shall attempt to allow as 'large' a perturbation V_{0} as possible.

We start our investigation by considering the invertibility of an operator which is close to an invertible operator.

We first note that if A and B are both invertible operators in $B L(X)$, then

$$
\begin{equation*}
B^{-1}-A^{-1}=B^{-1}(A-B) A^{-1}=A^{-1}(A-B) B^{-1} \tag{9.1}
\end{equation*}
$$

More generally, if $z \in \rho(A) \cap \rho(B)$, then

$$
\begin{align*}
\mathbb{R}(B, z)-\mathbb{R}(A, z) & =\mathbb{R}(B, z)(A-B) R(A, z) \tag{9.2}\\
& =\mathbb{R}(A, z)(A-B) R(B, z) .
\end{align*}
$$

This follows on replacing A by $A-z I$ and B by $B-z I$ in (9.1). The relation (9.2) is known as the second resolvent identity.

THEOREM 9.1 Let $\mathrm{A}, \mathrm{B} \in \mathrm{BL}(\mathrm{X})$ and A be invertible. Let

$$
\begin{equation*}
r_{\sigma}\left((A-B) A^{-1}\right)<1 . \tag{9.3}
\end{equation*}
$$

Then
B is invertible, and

$$
\begin{equation*}
B^{-1}=A^{-1} \sum_{k=0}^{\infty}\left[(A-B) A^{-1}\right]^{k}=\sum_{k=0}^{\infty}\left[A^{-1}(A-B)\right]^{k} A^{-1} \tag{9.4}
\end{equation*}
$$

If , in fact,

$$
\begin{equation*}
\left\|\left[(A-B) A^{-1}\right]^{2}\right\|<1 . \tag{9.5}
\end{equation*}
$$

then

$$
\begin{gather*}
\left\|B^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|\left\|I+(A-B) A^{-1}\right\|}{1-\left\|\left[(A-B) A^{-1}\right]^{2}\right\|}, \tag{9.6}\\
\left\|B^{-1}-A^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|\left\|(A-B) A^{-1}\right\|\left\|I+(A-B) A^{-1}\right\|}{1-\left\|\left[(A-B) A^{-1}\right]^{2}\right\|} . \tag{9.7}
\end{gather*}
$$

Proof Let $C=(A-B) A^{-1}$. Then $r_{\sigma}(C)<1$, and it follows by putting $z=1$ in (5.8) that $I-C=B A^{-1}$ is invertible and

$$
(I-C)^{-1}=\sum_{k=0}^{\infty} c^{k}
$$

We claim that $A^{-1}\left(B A^{-1}\right)^{-1}$ is the inverse of B. For,

$$
\mathrm{B}\left[\mathrm{~A}^{-1}\left(\mathrm{BA}^{-1}\right)^{-1}\right]=\left(\mathrm{BA}^{-1}\right)\left(\mathrm{BA}^{-1}\right)^{-1}=\mathrm{I} .
$$

and since $\left(B A^{-1}\right)^{-1}\left(B A^{-1}\right)=I$, we also have

$$
\begin{aligned}
I & =A^{-1}\left(B A^{-1}\right)^{-1}\left(B A^{-1}\right) A \\
& =\left[A^{-1}\left(B A^{-1}\right)^{-1}\right] B .
\end{aligned}
$$

Thus, B is invertible, and

$$
B^{-1}=A^{-1}(I-C)^{-1}=A^{-1} \sum_{k=0}^{\infty}\left[(A-B) A^{-1}\right]^{k}=\sum_{k=0}^{\infty}\left[A^{-1}(A-B)\right]^{k} A^{-1},
$$

which proves (9.4). Now, let (9.5) hold, i.e., $\left\|C^{2}\right\|<1$. Then $\mathrm{r}_{\sigma}\left(\mathrm{C}^{2}\right)<1,\left(\mathrm{I}-\mathrm{C}^{2}\right)$ is invertible, and since $(\mathrm{I}-\mathrm{C})^{-1}=(\mathrm{I}+\mathrm{C})\left(\mathrm{I}-\mathrm{C}^{2}\right)^{-1}$.

$$
B^{-1}=A^{-1}(I+C)\left(I-C^{2}\right)^{-1}
$$

Also, by (9.1),

$$
B^{-1}-A^{-1}=B^{-1}(A-B) A^{-1}=B^{-1} C=A^{-1}(I+C)\left(I-C^{2}\right)^{-1} C .
$$

The inequalities (9.6) and (9.7) now follow easily since by (5.9), we have $\left\|\left(I-C^{2}\right)^{-1}\right\| \leq 1 /\left(1-\left\|C^{2}\right\|\right)$.

COROLLARY 9.2 Let $A, B \in B L(X)$, A invertible and $\left\|(A-B) A^{-1}\right\|<1$. Then B is invertible, and

$$
\begin{gather*}
\left\|B^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|(A-B) A^{-1}\right\|} \tag{9.8}\\
\left\|B^{-1}-A^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|\left\|(A-B) A^{-1}\right\|}{1-\left\|(A-B) A^{-1}\right\|} . \tag{9.9}
\end{gather*}
$$

Proof Let $C=(A-B) A^{-1}$. Then $\|C\|<1$ implies $\left\|C^{2}\right\|<1$, and

$$
1-\left\|C^{2}\right\| \geq 1-\|C\|^{2}=(1-\|C\|)(1+\|C\|)
$$

Hence the results follow directly from (9.6) and (9.7) //

If we replace A by $A-z I$ and B by $B-z I$ in (9.3) and (9.4), we obtain the following result, known as the second Neumann expansion: If $z \in \rho(A)$ and $r_{\sigma}((A-B) R(A, z))<1$, then $z \in \rho(B)$, and

$$
\begin{equation*}
\mathbb{R}(B, z)=\mathbb{R}(A, z) \sum_{k=0}^{\infty}[(A-B) R(A, z)]^{k} . \tag{9.10}
\end{equation*}
$$

In this case, bounds similar to (9.6), (9.7), (9.8), and (9.9) can be easily written down.

Let, now, E be a closed subset of $\rho(A)$. Since by (5.9), $\|R(A, z)\| \rightarrow 0$ as $z \rightarrow \infty$ and $\|R(A, z)\|$ assumes its maximum when z lies in a compact set, we see that

$$
\alpha=\max _{z \in E}\|R(A, z)\|<\infty .
$$

It follows by (9.10) that if $E \subset \rho(A)$ and $\|A-B\|<1 / \alpha$, then $E \subset$ $\rho(B)$. In other words, if G is an open set in $\mathbb{C}, \sigma(A) \subset G$, and
then $\sigma(B) \subset G$. This property is known as the upper semicontinuity of the spectrum. Let $\in>0$. By letting

$$
G=\{z \in \mathbb{C}: \operatorname{dist}(z, \sigma(A))<\epsilon\}
$$

and δ to be the right hand side of (9.11), we see that whenever $\|A-B\|<\delta$, we have $\operatorname{dist}(\mu, \sigma(A))<\epsilon$ for every $\mu \in \sigma(B)$, i.e., if $\mu \in \sigma(B)$, then there is $\lambda \in \sigma(A)$ with $|\mu-\lambda|<\epsilon$. This says that if the operator A is perturbed to the operator B by the addition of $B-A$ and if $\| B$ - All is small enough, then the spectrum cannot suddenly get enlarged. On the other hand, the spectrum can suddenly shrink, as the following example shows.

Let $X=\ell^{2}(\mathbb{Z})$, the space of all doubly infinite square-summable complex sequences. For $x=[\ldots, x(-2), x(-1), x(0), x(1), x(2), \ldots]^{t} \in X$, consider the left shift operator

$$
A x(i)=\left\{\begin{array}{ll}
x(i+1) & , \text { if } i \neq-1 \\
0 & , \text { if } i=-1
\end{array},\right.
$$

and let

$$
A_{0} x(i)=\left\{\begin{array}{lll}
0 & , & \text { if } \\
i \neq-1 \\
x(0) & , & \text { if } \\
i=-1
\end{array},\right.
$$

Then for $t \in \mathbb{C}$,

$$
\left(A+t A_{0}\right) x(i)=\left\{\begin{array}{ll}
x(i+1), & \text { if } i \neq-1 \\
\operatorname{tx}(0), & \text { if } i=-1
\end{array} .\right.
$$

It can be seen easily that

$$
\mathrm{r}_{\sigma}(\mathrm{A}) \leq\|\mathrm{A}\|=1
$$

and every $\lambda \in \mathbb{C}$ with $|\lambda|<1$ is an eigenvalue of A with $\left[\ldots, 0,0,1, \lambda, \lambda^{2}, \ldots\right]^{t}$ as a corresponding eigenvector. Since $\sigma(A)$ is closed, we have

$$
\sigma(A)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}
$$

On the other hand, if $0<|t| \leq 1$, we show that

$$
\sigma\left(A+t A_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda|=1\}
$$

First note that $r_{\sigma}\left(A+t A_{0}\right) \leq\left\|A+t A_{0}\right\|=1$. Also,

$$
\left(A+t A_{0}\right)^{-1} x=\left[\ldots, x(-3), x(-2), \frac{x(-1)}{t}, x(0), x(1), \ldots\right]^{t}
$$

We can similarly write down $\left[\left(A+t A_{0}\right)^{-1}\right]^{k} x, k=2,3, \ldots$, to find that

$$
\left\|\left[\left(A+t A_{0}\right)^{-1}\right]^{k}\right\|=\frac{1}{|t|}
$$

Hence by the spectral radius formula (5.10),

$$
r_{\sigma}\left(\left(A+t A_{0}\right)^{-1}\right)=\lim _{k \rightarrow \infty}\left[\frac{1}{|t|}\right]^{1 / k}=1,
$$

so that $\{w \in \mathbb{C}:|w|>1\} \subset \rho\left(\left(A+t A_{0}\right)^{-1}\right)$, or $\{z \in \mathbb{C}:|z|<1\}$ is contained in $\rho\left(A+t A_{0}\right)$. It can be seen that if $|\lambda|=1$ and then $A+t A_{0}-\lambda I$ is not onto since the vector y defined by $y(-1)=1$, $y(i)=0$, if i $\neq-1$, is not in its range. Thus, because of the perturbation $t A_{0}$ (which is arbitrarily small when $|t|$ is so), the spectrum of A has shrunk from the closed unit disk to the unit circle. We note that $\left(A+t A_{0}\right)$ has no eigenvalues if $t \neq 0$.

The above example points out the lack of lower semicontinuity of the spectrum, i.e., an open set containing a point of $\sigma(A)$ may not contain a point of $\sigma(B)$ even when $\|B-A\|$ is arbitrarily small. If, however, A commutes with B, or if A and B are self-adjoint, we do have a kind of continuity of the spectrum. See Problem 9.4 and Proposition 13.1.

Let us now consider an (unperturbed) operator T_{0}, a (perturbation) operator V_{0}, and let $\mathrm{T}=\mathrm{T}_{0}+\mathrm{V}_{0}$ be called the perturbed operator.

This kind of situation of ten occurs in quantum mechanics, al though the operators T_{0} and V_{0} are usually unbounded; T_{0} is the Hamiltonian of an unperturbed system and V_{0} is a potential energy operator, so that $T_{0}+V_{0}$ is the Hamiltonian of the perturbed system.

For $t \in \mathbb{C}$, we study the family of operators

$$
\begin{equation*}
T(t)=T_{0}+t V_{0} \tag{9.12}
\end{equation*}
$$

Observe that $T(0)=T_{0}$ and $T(1)=T_{0}+V_{0}$. Since the function $t \mapsto t V_{0}$ is linear in t, we say that $T(t)=T_{0}+t V_{0}$ is obtained from T_{0} by a linear perturbation. One can consider quadratic or higher order perturbations. In fact, a comprehensive treatment of the analytic perturbation theory when

$$
T(t)=T_{0}+t V_{0}+t^{2} V_{1}+\ldots
$$

is an 'analytic family of operators' can be found in [K], Chapters II and VII.

The perturbation analysis given here for a family $T(t)$ of bounded operators can be carried out if T_{0} is a densely defined closed (linear) operator in X (i.e., the domain $D_{T_{0}}$ of T_{0} is a dense subspace of X and the graph $\left\{\left(x, T_{0} x\right): x \in D_{T_{0}}\right\}$ of T_{0} is a closed subset of $X \times X$) and if for all small $|t|, T(t)$ is a closed operator with the same domain as T_{0}. On the other hand, the analysis breaks down if the domains of $T(t)$ are different from $D_{T_{0}}$. For example, let $X=L^{2}(\mathbb{R})$, and

$$
T(t) x(s)=x^{\prime \prime}(s)+s^{2} x(s)+t s^{4} x(s), \quad s \in \mathbb{R}
$$

with

$$
\mathrm{D}_{\mathrm{T}_{0}}=\left\{\mathrm{x} \in \mathrm{X}: \int_{\mathbb{R}} \mathrm{s}^{4}|\mathrm{x}(\mathrm{~s})|^{2} \mathrm{ds}<\infty, \int_{\mathbb{R}} \mathrm{p}^{4}|\hat{\mathrm{x}}(\mathrm{p})|^{2} \mathrm{dp}<\infty\right\}
$$

and for $t \neq 0$.

$$
D_{T(t)}=\left\{x \in X: \int_{\mathbb{R}} s^{8}|x(s)|^{2} d s<\infty, \int_{\mathbb{R}} p^{4}|\hat{x}(p)|^{2} d p<\infty\right\}
$$

where \hat{x} denotes the Fourier transform of x . In this situation, $V_{0} x(s)=s^{4} x(s), s \in \mathbb{R}$, is called a singular perturbation of $T_{0} X(s)=x^{\prime \prime}(s)+s^{2} x(s), s \in \mathbb{R}$. Analytic properties of a singular perturbation are difficult to establish.

For notational ease, we denote $R(T(t), z)$ by $R(t, z)$ when $z \in \rho(T(t))$, and if $t=0$, we denote $R(0, z)$ by $R_{0}(z)$. We now prove that for a fixed z, the map $t \Leftrightarrow R(t, z)$ is analytic.

THEOREX 9.3 Let $t_{0} \in \mathbb{C}$ and fix $z \in \rho\left(T\left(t_{0}\right)\right)$. If

$$
\left|t-t_{0}\right|<1 / r_{\sigma}\left(V_{0} R\left(t_{0}, z\right)\right)
$$

then $z \in \rho(T(t))$ and

$$
\begin{equation*}
R(t, z)=R\left(t_{0}, z\right) \sum_{k=0}^{\infty}\left[-v_{0} R\left(t_{0}, z\right)\right]^{k}\left(t-t_{0}\right)^{k} \tag{9.13}
\end{equation*}
$$

The function $t \Leftrightarrow R(t, z)$ is thus analytic on a neighbourhood of t_{0}, for every fixed $z \in \rho\left(T\left(t_{0}\right)\right)$.

Further, let E be a closed subset of $p\left(T\left(t_{0}\right)\right)$. Then the series (9.13) converges absolutely and uniformly for $z \in E$ and t in any closed subset of the disk

$$
\left\{t \in \mathbb{C}:\left|t-t_{0}\right|<\underset{z \in E}{1 / \max }\left\|V_{0} R\left(t_{0}, z\right)\right\|\right\}
$$

Proof Consider $t \in \mathbb{C}$ such that $\left|t-t_{0}\right|<1 / r_{\sigma}\left(V_{0} R\left(t_{0}, z\right)\right)$. Letting $A=T\left(t_{0}\right)-z I$ and $B=T(t)-z I$, we have $A-B=-\left(t-t_{0}\right) V_{0}$, and

$$
r_{\sigma}\left((A-B) A^{-1}\right)=\left|t-t_{0}\right| r_{\sigma}\left(V_{0} R\left(t_{0}, z\right)\right)<1 .
$$

By Theorem 9.1, B is invertible, i.e., $z \in \rho(T(t))$, and

$$
\begin{aligned}
R(t, z)=B^{-1} & =A^{-1} \sum_{k=0}^{\infty}\left[(A-B) A^{-1}\right]^{k} \\
& =R\left(t_{0}, z\right) \sum_{k=0}^{\infty}\left[-V_{0} R\left(t_{0}, z\right)\right]^{k}\left(t-t_{0}\right)^{k}
\end{aligned}
$$

which proves (9.13), and also shows that the function $t \mapsto R(t, z) \in B L(X)$ is analytic on a neighbourhood of t_{0} by Theorem 4.8.

Next, for a closed subset E of $\rho\left(T\left(t_{0}\right)\right)$, let

$$
\beta=\max _{z \in E}\left\|V_{0} R\left(t_{0}, z\right)\right\|<\infty
$$

If D is any closed subset of the disk

$$
\left\{\mathrm{t} \in \mathbb{C}:\left|\mathrm{t}-\mathrm{t}_{0}\right|<1 / \beta\right\}
$$

then for all $t \in D$, we have $\left|t-t_{0}\right| \leq \delta$ for some $\delta<1 / \beta$. Now, in Proposition 4.6, let $S=E \times D$, and for $(z, t) \in E \times D$, let

$$
c_{k}(z, t)=\left[-V_{0} R\left(t_{0}, z\right)\right]^{k}\left(t-t_{0}\right)^{k}, \quad k=0,1, \ldots
$$

Then

$$
\sup _{(z, t) \in E \times D}\left\|c_{k}(z, t)\right\|^{1 / k} \leq \sup _{(z, t) \in E \times D}\left\|-V_{0} R\left(t_{0}, z\right)\right\|\left|t-t_{0}\right| \leq \beta \delta .
$$

Since $\beta \delta<1$, it follows that the series (9.13) converges absolutely and uniformly for $z \in E$ and $t \in D . / /$

We move on to prove the analyticity of the spectral projection associated with $T(t)$ and a curve Γ in $\rho\left(\mathrm{T}_{0}\right)$. Since Γ is a compact set and the function $z \Leftrightarrow r_{\sigma}\left(V_{0} R_{0}(z)\right)$ is upper semicontinuous for $z \in \Gamma$, we see by Corollary 5.5 that
and that there is $z_{0} \in \Gamma$ such that $r_{\sigma}\left(V_{0} R_{0}\left(z_{0}\right)\right)=\max _{z \in \Gamma} r_{\sigma}\left(V_{0} R_{0}(z)\right)$. The following open disk about 0 in the t-plane, which depends on the curve Γ in the z-plane, will be of special interest to us. It was first studied extensively in [C]. Let

$$
\begin{equation*}
\partial_{\Gamma}=\left\{t \in \mathbb{C}:|t|<1 / \max _{z \in \Gamma} \mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)\right\} \tag{9.14}
\end{equation*}
$$

z-plane

t-plane
/// : spectrum of T_{0}
Figure 9.1

Let us denote the spectral projection $P_{\Gamma}\left(T_{0}\right)$ by P_{0}.

THEOREM 9.4 Let $\Gamma \subset \rho\left(\mathrm{T}_{0}\right)$. For $\mathrm{t} \in \partial_{\Gamma}$, we have $\Gamma \subset \rho(\mathrm{T}(\mathrm{t}))$. The spectral projection $P(t) \in B L(X)$ associated with $T(t)$ and T is an analytic function of t. In fact, for $t \in \partial_{\Gamma}$, we have the Kato-Rellich perturbation series

$$
\begin{equation*}
P(t)=P_{0}+\sum_{k=0}^{\infty} P_{(k)} t^{k} \tag{9.15}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{(k)}=\frac{(-1)^{k+1}}{2 \pi i} \int_{\Gamma} R_{0}(z)\left[V_{0} R_{0}(z)\right]^{k} d z \tag{9.16}
\end{equation*}
$$

Proof Let $z \in \Gamma$, so that $z \in \rho\left(T_{0}\right)$. Letting $t_{0}=0$ in Theorem 9.3, we see that $z \in \rho(T(t))$ for every $t \in \partial_{\Gamma}$, since

$$
|t|<1 / \max r_{\sigma}\left(V_{0} R_{0}(z)\right) \leq 1 / r_{\sigma}\left(V_{0} R_{0}(z)\right)
$$

Thus, $\Gamma \subset \rho(T(t))$ for every $t \in \partial_{\Gamma}$.
Now, fix $t_{0} \in \partial_{\Gamma}$. Letting $E=\Gamma$, in Theorem 9.3, we see that for t in some neighbourhood of t_{0}, the series

$$
R(t, z)=R\left(t_{0}, z\right) \sum_{k=0}^{\infty}\left[-V_{0} R\left(t_{0}, z\right)\right]^{k}\left(t-t_{0}\right)^{k}
$$

converges uniformly for $z \in \Gamma$. This allows us to integrate the series term by term on Γ (cf. (4.8)), and obtain

$$
\begin{aligned}
P(t) & =-\frac{1}{2 \pi i} \int_{\Gamma} R(t, z) d z \\
& =\sum_{k=0}^{\infty}\left[-\frac{1}{2 \pi i} \int_{\Gamma} R\left(t_{0}, z\right)\left[-V_{0} R\left(t_{0}, z\right)\right]^{k} d z\right]\left(t-t_{0}\right)^{k}
\end{aligned}
$$

for t near enough to t_{0}. Thus, $t \mapsto P(t)$ is analytic for t in a neighbourhood of t_{0}. But since t_{0} is an arbitrary point of ∂_{Γ}, we see that $P(t)$ is analytic on ∂_{Γ}. The Taylor expansion of $P(t)$ around $t=0$ is given by the series (9.15). The converse part of Theorem 4.8 shows that this expansion is valid for all t in ∂_{Γ}. //

The analyticity of the spectral projection $P(t)$ implies, in particular, that $P(t)$ depends continuously on t : if t_{1} and t_{2} are close then so are $P\left(t_{1}\right)$ and $P\left(t_{2}\right)$ as elements of $B L(X)$. We wish to show that in this case, the ranks of $P\left(t_{1}\right)$ and $P\left(t_{2}\right)$ are equal. For this purpose, we prove some preliminary results which are important in their own right.

LEMTA 9.5 Let P and Q be projections in $B L(X)$ such that

$$
r_{\sigma}(P(P-Q))<1 .
$$

Then the map $B: P(X) \rightarrow P(X)$ given by $B x=P Q x, x \in P(X)$, is invertible. In particular,
rank $P \leq \operatorname{rank} Q$.

Proof Let $A=\left.I\right|_{P(X)}$, which is invertible in $B L(P(X))$. For $x \in P(X)$,

$$
(A-B) A^{-1} x=(A-B) x=x-P Q x=P(P-Q) x
$$

Thus, $(A-B) A^{-1}=\left.P(P-Q)\right|_{P(X)}$. But

$$
P(P-Q) P=\left.\left.P(P-Q) P\right|_{P(X)} \oplus P(P-Q) P\right|_{(I-P)(X)}
$$

Since $\left.P(P-Q) P\right|_{P(X)}=\left.P(P-Q)\right|_{P(X)}$, and $\left.P(P-Q) P\right|_{(I-P)(X)}=0$, we have by (6.2) and (5.12),

$$
\mathrm{r}_{\sigma}\left((\mathrm{A}-\mathrm{B}) \mathrm{A}^{-1}\right)=\mathrm{r}_{\sigma}(\mathrm{P}(\mathrm{P}-\mathrm{Q}) \mathrm{P})=\mathrm{r}_{\sigma}(\mathrm{P}(\mathrm{P}-\mathrm{Q}))<1
$$

Now Theorem 9.1 shows that $B: P(X) \rightarrow P(X)$ is invertible. In particular, B is onto. Hence

```
rank P = dim B(P(X)) = dim PQ(P(X)) \leq dim P(Q(X)) \leqrank Q . //
```

PROPOSITION 9.6 Let P and Q be projections in $B L(X)$ such that

$$
\begin{equation*}
r_{\sigma}(\mathrm{P}(\mathrm{P}-\mathrm{Q}))<1 \text { and } \mathrm{r}_{\sigma}(\mathrm{Q}(\mathrm{Q}-\mathrm{P}))<1 . \tag{9.17}
\end{equation*}
$$

Then the map $J: P(X) \rightarrow Q(X)$ given by $J x=Q x, x \in P(X)$, is a linear homeomorphism onto. In particular,

These conclusions hold if

$$
\mathrm{r}_{\sigma}(\mathrm{P}-\mathrm{Q})<1 .
$$

Proof The map J is clearly linear and continuous. It is one to one since if $J x=Q x=0$ for some $x \in P(X)$, then $P Q x=0$, and this implies that $\mathrm{x}=0$, as the map $\mathrm{B}: \mathrm{P}(\mathrm{X}) \rightarrow \mathrm{P}(\mathrm{X})$ given by $\mathrm{Bx}=\mathrm{PQx}$ is one to one by Lemma 9.5. Next, we show that J is onto. Let $y \in$ $Q(X)$. Then by interchanging P and Q in Lemma 9.5, we see that the $\operatorname{map} \widetilde{B}: Q(X) \rightarrow Q(X)$ given by $\widetilde{B} x=Q P x, x \in Q(X)$, is onto. Hence there is $x \in Q(X)$ such that $Q P x=y$, i.e., $J(P x)=y$. As $P(X)$ and $Q(X)$ are closed subspaces of X, they are Banach spaces. The open mapping theorem now shows that J^{-1} is continuous, i.e., J is a homeomorphism.

$$
\text { Finally, let } \mathrm{r}_{\sigma}(\mathrm{P}-\mathrm{Q})<1 \text {. Since } \mathrm{P}^{2}=\mathrm{P} \text { and }
$$ $P(P-Q) P=P(P-Q)^{2} P$, we see by (5.12),

$$
r_{\sigma}(P(P-Q))=r_{\sigma}(P(P-Q) P)-r_{\sigma}\left((P-Q)^{2} P\right)
$$

Now, $(P-Q)^{2}$ maps $P(X)$ into $P(X)$. Hence by (6.2) and (5.11),

$$
r_{\sigma}\left((P-Q)^{2} P\right)=r_{\sigma}\left(\left.(P-Q)^{2}\right|_{P(X)}\right) \leq r_{\sigma}\left((P-Q)^{2}\right)=\left[r_{\sigma}(P-Q)\right]^{2}<1 .
$$

But we have seen in the proof of Lemma 9.5 that

$$
\mathrm{r}_{\sigma}\left(\left.\mathrm{P}(\mathrm{P}-\mathrm{Q})\right|_{\mathrm{P}(\mathrm{X})}\right)=\mathrm{r}_{\sigma}(\mathrm{P}(\mathrm{P}-\mathrm{Q}))
$$

Thus, $r_{\sigma}(P(P-Q))<1$. Also, $r_{\sigma}(Q(P-Q))<1$ by interchanging P and Q. Hence the desired conclusions hold if $r_{\sigma}(P-Q)<1$. //

COROLLARY 9.7 Let $\Gamma \subset \rho\left(T_{0}\right)$. Then for every $t \in \partial_{\Gamma}$,

$$
\begin{aligned}
\operatorname{rank} P(t) & =\operatorname{rank} P_{0} \\
\operatorname{rank}[I-P(t)] & =\operatorname{rank}\left[I-P_{0}\right]
\end{aligned}
$$

If $\left\{x_{i}\right\}$ is a basis of $P_{0}(X)$, then $\left\{P(t) x_{i}\right\}$ is a basis of $P(t)(X)$ when $|t|$ is sufficiently small.

Proof By Theorem 9.4, the map $t \Leftrightarrow P(t)$ is analytic on ∂_{Γ}, and hence it is continuous. Thus, for every $t_{0} \in \partial_{\Gamma}$, there is $\epsilon\left(t_{0}\right)>0$ such that $\left|t-t_{0}\right|<\epsilon\left(t_{0}\right)$ implies

$$
\mathrm{r}_{\sigma}\left(\mathrm{P}(\mathrm{t})-\mathrm{P}\left(\mathrm{t}_{0}\right)\right) \leq\left\|\mathrm{P}(\mathrm{t})-\mathrm{P}\left(\mathrm{t}_{0}\right)\right\|<1 .
$$

Hence $\operatorname{rank} \mathbb{P}(t)=$ rank $P\left(t_{0}\right)$, by letting $P=P\left(t_{0}\right)$ and $Q=P(t)$ in Proposition 9.6. Now, the nonempty set

$$
\left\{\mathrm{t} \in \partial_{\Gamma}: \operatorname{dim} \mathrm{P}(\mathrm{t})(\mathrm{X})=\operatorname{dim} \mathrm{P}_{0}(\mathrm{X})\right\}
$$

is open as well as closed in ∂_{Γ}, and as such it coincides with ∂_{Γ} since the disk ∂_{Γ} is connected. Thus, for all $t \in \partial_{\Gamma}$,

$$
\operatorname{rank} P(t)=\operatorname{rank} P_{0}
$$

The statement about $\operatorname{rank}[I-P(t)]$ follows similarly by considering the continuity of the map $t \leftrightarrow I-P(t) \in B L(X)$.

Lastly, let $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ be a basis of $\mathrm{P}_{0}(\mathrm{X})$. For t near 0 , consider the map $J: P_{0}(X) \rightarrow P(t)(X)$, given by

$$
J x=P(t) x, \quad x \in P_{0}(X)
$$

By Proposition 9.6, J is linear, one to one and onto, and hence sends a basis of $P_{0}(X)$ to a basis of $P(t)(X)$, showing that $\left\{P(t) x_{i}\right\}$ is a basis of $P(t)(X)$. //

Theorem 9.4 and Corollary 9.7 point out the following interesting facts. If $\Gamma \subset \rho\left(\mathrm{T}_{0}\right)$ and the operator T_{0} is perturbed to $T(t)=T_{0}+t V_{0}$, then as long as $t \in \partial_{\Gamma}$, the curve Γ continues to lie in $p(T(t))$ and the spectral projection $P(t)$ associated with
$\mathrm{T}(\mathrm{t})$ and Γ changes analytically with t ; more importantly, the dimension of $P(t)$ equals the dimension of $P_{0}=P(0)$ for all $t \in \partial_{\Gamma}$. Since the spectrum of $T(t)$ lying inside Γ is the spectrum of $\left.T(t)\right|_{P(t)(X)}$, we may expect the spectral values of $T(t)$ inside Γ to depend analytically on t. However, this is not the case for individual spectral values. As an example, let $X=\mathbb{C}^{2}$, and

$$
\mathrm{T}_{0}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \mathrm{V}_{0}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Let Γ denote the unit circle, which encloses the double eigenvalue $\lambda_{0}=0$ of T_{0}. For $z \neq 0$,

$$
R_{0}(z)=-\left[\begin{array}{cc}
1 / z & 1 / z^{2} \\
0 & 1 / z
\end{array}\right] \text {, and } \quad V_{0} R_{0}(z)=-\left[\begin{array}{cc}
0 & 0 \\
1 / z & 1 / z^{2}
\end{array}\right] \text {. }
$$

Hence

$$
\begin{gathered}
\sigma\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)=\left\{0,-1 / \mathrm{z}^{2}\right\} \\
\mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)=1 /|z|^{2}, \max _{\mathrm{z} \in \Gamma} \mathrm{r}_{\sigma}\left(\mathrm{V}_{0} \mathrm{R}_{0}(\mathrm{z})\right)=1 \\
\partial_{\Gamma}=\{\mathrm{t} \in \mathbb{C}:|\mathrm{t}|<1\} .
\end{gathered}
$$

Now, $T(t)=\left[\begin{array}{ll}0 & 1 \\ t & 0\end{array}\right]$, and for $t \in \partial_{\Gamma}$, the spectral values of $T(t)$ lying inside Γ are $\pm \sqrt{t}$. However, there is no analytic function $t \mapsto \lambda(t) \in \sigma(T(t)) \cap \operatorname{Int} \Gamma=\{ \pm \sqrt{t}\}$ for $t \in \partial_{\Gamma}$.

All the same, we prove that if P_{0} is of finite rank, then the arithmetic mean of the spectral points of $T(t)$ inside Γ is indeed an analytic function of $t \in \partial_{\Gamma}$.

THEOREM 9.8 Let rank $P_{0}=m, 1 \leq m<\infty$. Then for every $t \in \partial_{\Gamma}$, the only spectral points of $T(t)$ inside Γ are m eigenvalues, say, $\lambda_{1}(t), \ldots, \lambda_{m}(t)$, counted according to their algebraic multiplicities. The function $\hat{\lambda}$ is analytic on ∂_{Γ}, where

$$
\begin{equation*}
\hat{\lambda}(t)=\frac{1}{m}\left[\lambda_{1}(t)+\ldots+\lambda_{m}(t)\right]=\operatorname{tr}(T(t) P(t)) \tag{9.18}
\end{equation*}
$$

Let $x_{i} \in X$ and $x_{j}^{*} \in X^{*}$ be such that the matrix $\left[\left\langle P_{0} X_{i}, X_{j}^{*}\right\rangle\right]$, $1 \leq i, j \leq m$ is invertible, and for $t \in \partial_{\Gamma}$, let $a_{i, j}(t)=\left\langle P(t) x_{i}, x_{j}^{*}\right\rangle, 1 \leq i, j \leq m$. If $A(t)$ denotes the matrix $\left[a_{i, j}(t)\right]$, then for $|t|$ sufficiently small, $A(t)$ is invertible; if $[A(t)]^{-1}=\left[b_{i, j}(t)\right], c_{i, j}(t)=\left\langle T(t) P(t) x_{i}, x_{j}^{*}\right\rangle, i, j=1, \ldots, m$, then

$$
\begin{equation*}
\hat{\lambda}(t)=\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i, j}(t) c_{j, i}(t) \tag{9.19}
\end{equation*}
$$

Proof By Corollary 9.7, rank $P(t)=m<\infty$ for all $t \in \partial_{\Gamma}$. Hence by Theorem 7.9, the spectrum of $T(t)$ inside Γ consists of a finite number of eigenvalues with finite algebraic multiplicities.

Since $T(t)$ and $P(t)$ commute, we have

$$
R(T(t) P(t)) \subset R(P(t))
$$

which is of dimension m. Thus, the operator $T(t) P(t)$ is of finite rank and Proposition 3.6 shows that

$$
\begin{aligned}
\operatorname{tr}(T(t) P(t))= & \operatorname{tr}\left(\left.T(t) P(t)\right|_{P(t)(X)}\right) \\
= & \operatorname{tr}\left(\left.T(t)\right|_{P(t)(X)}\right) \\
= & \text { the sum of the eigenvalues } \\
& \text { of }\left.T(t)\right|_{P(t)(X)} \text {, by (7.18) } \\
= & \lambda_{1}(t)+\ldots+\lambda_{m}(t) \\
= & m \hat{\lambda}(t) .
\end{aligned}
$$

This proves (9.18).
For $t \in \partial_{\Gamma}$, let

$$
x_{i}(t)=P(t) x_{i}, \quad 1 \leq i \leq m
$$

Then $A(t)=\left[\left\langle x_{i}(t), x_{j}^{*}\right\rangle\right], 1 \leq i, j \leq m$. Since $A(0)=\left[\left\langle P_{0} x_{i}, x_{j}^{*}\right\rangle\right]$ is invertible and the function $t \mapsto x_{i}(t)=P(t) x_{i} \in X$ is analytic (and hence continuous) for each $i=1, \ldots, m$, we see by Theorem 9.1 that $A(t)$ is invertible if $|t|$ is small enough.

It follows by Remark 3.4 that the set $\left\{\mathrm{x}_{1}(\mathrm{t}), \ldots, \mathrm{x}_{\mathrm{m}}(\mathrm{t})\right\}$ is linearly independent and forms a basis of $P(t)(X)$. Also, if we let

$$
y_{j}^{*}(t)=\sum_{k=1}^{m}{\overline{b_{k, j}}(t) x_{k}^{*}}^{*}, j=1, \ldots, m,
$$

then

$$
\left\langle x_{i}(t), y_{j}^{*}(t)\right\rangle=\delta_{i, j}, i, j=1, \ldots, m
$$

(cf. (3.6).) Now, Proposition 3.6 shows that for $|t|$ small enough,

$$
\begin{aligned}
m \hat{\lambda}(t) & =\operatorname{tr}(T(t) P(t)) \\
& =\sum_{j=1}^{m}\left\langle T(t) P(t) x_{j}(t), y_{j}^{*}(t)\right\rangle \\
& =\sum_{j=1}^{m}\left\langle T(t) P(t) x_{j} \sum_{i=1}^{m} \overline{\left.b_{i, j}(t) x_{i}^{*}\right\rangle}\right. \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m} b_{i, j}(t) c_{j, i}(t) .
\end{aligned}
$$

Since the functions $t \mapsto T(t) \in B L(X)$ and $t \mapsto P(t) x_{j} \in X$ are analytic, we see that the functions $t \mapsto b_{i, j}(t) \in \mathbb{C}$ and $t \mapsto c_{i, j}(t) \in \mathbb{C}$ are analytic. (See Problem 4.1.) We conclude that the function $t \leftrightarrow \hat{\lambda}(t)$ is analytic on a neighbourhood of 0 . A very similar argument establishes the analyticity of this function in a neighbourhood of an arbitrary point $t_{0} \in \partial_{\Gamma}$. //

Let the spectrum of T_{0} inside Γ consist of a single eigenvalue λ_{0} of finite algebraic multiplicity. Then by (7.8),

$$
R_{0}(z)=\sum_{k=0}^{\infty} S_{0}^{k+1}\left(z-\lambda_{0}\right)^{k}-\frac{P_{0}}{z-\lambda_{0}}-\sum_{k=1}^{\ell-1} \frac{D_{0}^{k}}{\left(z-\lambda_{0}\right)^{k+1}} .
$$

We can use this Laurent expansion of $R_{0}(z)$ to calculate the coefficients

$$
P_{(k)}=\frac{(-1)^{k+1}}{2 \pi i} \int_{\Gamma} R_{0}(z)\left[V_{0} R_{0}(z)\right]^{k} d z
$$

in the perturbation series (9.15) for $P(t)$ in terms of P_{0}, S_{0}, D_{0} and V_{0}. These can then be used to obtain a series expansion of the arithmetic mean $\hat{\lambda}(t)=\operatorname{tr}(T(t) P(t))$ of the eigenvalues of $T(t)$ inside Γ. These series are considered in [K], p. 76 and p.379. We shall not pursue their study here because the coefficients of these series cannot be calculated in an iterative manner. Let λ_{0} be a simple eigenvalue of T_{0}. In the next section, we shall consider series expansions for the simple eigenvalue $\lambda(t)$ of $T(t)$ and for a suitably normalized eigenvector of $T(t)$ corresponding to $\lambda(t)$ which can be calculated in an iterative manner. With this in view, let us study the important special case of a simple eigenvalue.

COROLLARY 9.9 Let the only spectral value of T_{0} inside Γ be a simple eigenvalue λ_{0}. Then for every $t \in \partial_{\Gamma}, \Gamma$ encloses only one spectral value $\lambda(t)$ of $T(t)$ and it is also a simple eigenvalue. The function $t \mapsto \lambda(t)$ is analytic on ∂_{Γ}.

Let $x_{0} \in X$ and $x_{0}^{*} \in X^{*}$ be such that $\left\langle P_{0} x_{0}, x_{0}^{*}\right\rangle \neq 0$. If $|t|$ is small enough, we have

$$
\begin{equation*}
\lambda(t)=\frac{\left\langle T(t) P(t) x_{0}, x_{0}^{*}\right\rangle}{\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle} ; \tag{9.20}
\end{equation*}
$$

also,

$$
\begin{equation*}
x(t)=\frac{P(t) x_{0}}{\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle} \tag{9.21}
\end{equation*}
$$

$\left\langle x(t), x_{0}^{*}\right\rangle=1 ; x(t)$ is an analytic function of t in a neighbourhood of 0 .

Proof We have $m=\operatorname{dim} P_{0}(X)=1$. Hence by Theorem 9.8, $t \leftrightarrow \hat{\lambda}(t)=\lambda(t)$ is analytic on ∂_{Γ}. Also, let $x_{1}=x_{0}$ and $x_{1}^{*}=x_{0}^{*}$. Then for $|t|$ small, we have

$$
\begin{aligned}
& \mathrm{a}_{1,1}(\mathrm{t})=\left\langle\mathrm{P}(\mathrm{t}) \mathrm{x}_{0}, \mathrm{x}_{0}^{*}\right\rangle, \\
& \mathrm{b}_{1,1}(\mathrm{t})=1 /\left\langle\mathrm{P}(\mathrm{t}) \mathrm{x}_{0}, \mathrm{x}_{0}^{*}\right\rangle, \\
& \mathrm{c}_{1,1}(\mathrm{t})=\left\langle\mathrm{T}(\mathrm{t}) \mathrm{P}(\mathrm{t}) \mathrm{x}_{0}, \mathrm{x}_{0}^{*}\right\rangle .
\end{aligned}
$$

Thus, (9.20) follows directly from (9.19). Also, since $\left\langle P(0) x_{0}, X_{0}^{*}\right\rangle=\left\langle P_{0} x_{0}, x_{0}^{*}\right\rangle \neq 0$, we see that for $|t|$ small, $\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle \neq 0$, so that $P(t) x_{0} \neq 0$. Now, since $\lambda(t)$ is simple, we have $P(t) x_{0} \in P(t)(X)=Z(T(t)-\lambda(t) I)$. This shows that $x(t)$ is an eigenvector of $T(t)$ corresponding to $\lambda(t)$. The relation $\left\langle x(t), x_{0}^{*}\right\rangle=1$ is immediate. Since both the numerator and the denominator of $x(t)$ are analytic and the denominator does not vanish, we see that $x(t)$ is analytic on a neighbourhood of 0 .//

One can give a direct proof of the analyticity of the function $t \mapsto \lambda(t)$ of Corollary 9.9 without invoking Theorem 9.8. Since $\lambda(t)$ is a simple eigenvalue of $T(t)$ for $t \in \partial_{\Gamma}$, we have $T(t) P(t)=$ $\lambda(t) P(t)$, so that

$$
\left\langle T(t) P(t) x_{0}, x^{*}\right\rangle=\lambda(t)\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle
$$

As $\left\langle P(0) x_{0}, x_{0}^{*}\right\rangle=\left\langle P_{0} x_{0}, x_{0}^{*}\right\rangle \neq 0$, we see that $\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle \neq 0$ if $|t|$ is sufficiently small. Hence the relation (9.20) holds. In particular, $t \mapsto \lambda(t)$ is an analytic function on a neighbourhood of 0 .

Problems

9.1 Let $A \in B L(X)$ be invertible and $B \in B L(X)$ satisfy $\left\|A^{-1}(A-B)\right\|<1$. If $A x=a$ and $B y=b$, then

$$
\|y-x\| \leq \frac{\left\|A^{-1}(b-a)\right\|+\left\|A^{-1}(A-B)\right\|\|x\|}{1-\left\|A^{-1}(A-B)\right\|}
$$

(Hint: (9.4))
9.2 (Iterative refinement of the solution of an operator equation) Let $A \in B L(X)$ and $y \in X$. Consider an invertible $A_{0} \in B L(X)$ such that $r_{\sigma}\left(\left(A-A_{0}\right) A_{0}^{-1}\right)<1$ and $A_{0} x_{0}=y$. For $j=1,2, \ldots$, let

$$
r_{j-1}=y-A x_{j-1}, \quad A_{0} u_{j}=r_{j-1}, \quad x_{j+1}=x_{j}+u_{j}
$$

Then A is invertible and $\left(x_{j}\right)$ converges to the unique $x \in X$ such that $A x=y$.
9.3 (General Neumann expansion) Let $z \in \rho(A)$. If

$$
r_{\sigma}([(w-z) I+(A-B)] R(A, z))<1
$$

then $w \in \rho(B)$ and

$$
R(B, w)=R(A, z) \sum_{k=0}^{\infty}[[(w-z) I+(A-B)] R(A, z)]^{k}
$$

$(A=B$ gives (5.7) and $w=z$ gives (9.10).) In particular, if $\epsilon_{1}+\epsilon_{2} \leq\|R(A, z)\|^{-1}, \quad|w-z|<\epsilon_{1}$ and $\|A-B\|<\epsilon_{2}$, then $w \in \rho(B)$,

$$
\|R(B, w)\| \leq\|R(A, x)\| /(1-r)
$$

$$
\|\mathbb{R}(\mathbb{B}, w)-\mathbb{R}(\mathbb{A}, z)\| \leq r\|R(A, z)\| /(1-r)
$$

where $r=(|w-z|+\|A-B\|)\|R(A, z)\|$. The function $(A, z) \mapsto R(A, z) \in B L(X)$ is jointly continuous on $\{(A, z): A \in B L(X), z \in \rho(A)\} \subset B L(X) \times \mathbb{C}$.
9.4 Let $A, B \in B L(X)$. Assume either that A and B commute, or that A and B are self-adjoint. Then

$$
\max \left\{\max _{\lambda \in \sigma(A)} \operatorname{dist}(\lambda, \sigma(B)), \max _{\lambda \in \sigma(B)} \operatorname{dist}(\lambda, \sigma(A))\right\} \leq r_{\sigma}(A-B) \leq\|A-B\|
$$

9.5 Let Γ and $\tilde{\Gamma}$ be simple closed curves in $\rho\left(\mathrm{T}_{0}\right)$ such that $\Gamma \subset$ Int $\tilde{\Gamma}$. Assume that $P_{\Gamma}\left(\mathrm{T}_{0}\right)$ is of finite rank and that T_{0} has no spectral values between Γ and $\widetilde{\Gamma}$. Then for all $\mathrm{t} \in \partial_{\Gamma} \cap \partial_{\Gamma}, \mathrm{T}(\mathrm{t})$ has no spectral values between Γ and $\widetilde{\Gamma}$.
9.6 Let P and Q be projections such that $\mathrm{r}_{\sigma}(\mathrm{P}-\mathrm{Q})<1$. Then the operator $Q P+(I-Q)(I-P)$ is invertible. It maps $R(P)$ onto $R(Q)$ and $Z(P)$ onto $Z(Q)$. Hence rank $P=$ rank Q.
9.7 Let D be a connected metric space and for $s \in D$, let $Q(s)$ be a projection in $B L(X)$. If $s \mapsto Q(s)$ is continuous, then the rank of $Q(s)$ is constant (finite or infinite) for $s \in D$.
9.8 Let $m=2$ in Theorem 9.8. Then for $|t|$ small enough,

$$
\hat{\lambda}(t)=\frac{\left(a_{2,2} c_{1,1}-a_{1,2^{c}} c_{2,1}-a_{2,1} c_{1,2}+a_{1,1} c_{2,2}\right)(t)}{2\left(a_{1,1} a_{2,2}-a_{1,2} a_{2,1}\right)(t)} .
$$

9.9 Under the hypothesis of Corollary 9.9, let for $|t|<r$, with r small enough,

$$
y(t)=\frac{P(t) x_{0}}{\sqrt{\left\langle P(t) x_{0}, x_{0}^{*}\right\rangle}}, y^{*}(t)=\frac{[P(t)]^{*} x_{0}^{*}}{\sqrt{\left\langle[P(t)]^{*} x_{0}^{*}, x_{0}\right\rangle}},
$$

where $\sqrt{ }$ denotes the principal branch of the square root. Then the function $t \mapsto y(t) \in X$ is analytic, the function $t \mapsto y^{*}(t)$ is antianalytic (i.e., $t \nrightarrow y^{*}(\bar{t})$ is analytic) and $\left\langle y(t), y^{*}(t)\right\rangle=1$. In particular, if T_{0} and V_{0} are self-adjoint operators on a Hilbert space $X, \quad t$ is real, and we choose $x_{0}^{*}=x_{0}$, then $\|y(t)\|=1$.

