9. LINEAR PERTURBATION

In this section we study the effect on the spectrum of an operator $T_0 \in BL(X)$ when it is subjected to a perturbation $V_0 \in BL(X)$. Thus, if we denote the perturbed operator $T_0 + V_0$ by T, we wish to obtain information about $\sigma(T)$ when $\sigma(T_0)$ is known. In this process we shall attempt to allow as 'large' a perturbation V_0 as possible.

We start our investigation by considering the invertibility of an operator which is close to an invertible operator.

We first note that if A and B are both invertible operators in BL(X), then

(9.1)
$$B^{-1} - A^{-1} = B^{-1}(A-B)A^{-1} = A^{-1}(A-B)B^{-1}$$
.

More generally, if $z \in \rho(A) \cap \rho(B)$, then

(9.2)
$$R(B,z) - R(A,z) = R(B,z)(A-B)R(A,z)$$

= $R(A,z)(A-B)R(B,z)$.

This follows on replacing A by A - zI and B by B - zI in (9.1). The relation (9.2) is known as the <u>second resolvent identity</u>.

THEOREM 9.1 Let A, $B \in BL(X)$ and A be invertible. Let

(9.3)
$$r_{\sigma}((A-B)A^{-1}) < 1$$

Then B is invertible, and

(9.4)
$$B^{-1} = A^{-1} \sum_{k=0}^{\infty} [(A-B)A^{-1}]^k = \sum_{k=0}^{\infty} [A^{-1}(A-B)]^k A^{-1}$$

If , in fact,

(9.5)
$$\|[(A-B)A^{-1}]^2\| < 1$$
,

then

$$(9.6) ||B^{-1}|| \le \frac{||A^{-1}|| |||I+(A-B)A^{-1}||}{1 - ||[(A-B)A^{-1}]^2||} ,$$

$$(9.7) ||B^{-1} - A^{-1}|| \le \frac{||A^{-1}|| ||(A-B)A^{-1}|| ||I| + (A-B)A^{-1}||}{1 - ||[(A-B)A^{-1}]^2||}$$

Proof Let $C = (A-B)A^{-1}$. Then $r_{\sigma}(C) < 1$, and it follows by putting z = 1 in (5.8) that $I - C = BA^{-1}$ is invertible and

$$(I-C)^{-1} = \sum_{k=0}^{\infty} C^{k}$$

We claim that $A^{-1}(BA^{-1})^{-1}$ is the inverse of B . For,

$$B[A^{-1}(BA^{-1})^{-1}] = (BA^{-1})(BA^{-1})^{-1} = I$$

and since $(BA^{-1})^{-1}(BA^{-1}) = I$, we also have

$$I = A^{-1}(BA^{-1})^{-1}(BA^{-1})A$$
$$= [A^{-1}(BA^{-1})^{-1}]B .$$

Thus, B is invertible, and

$$B^{-1} = A^{-1}(I-C)^{-1} = A^{-1}\sum_{k=0}^{\infty} [(A-B)A^{-1}]^{k} = \sum_{k=0}^{\infty} [A^{-1}(A-B)]^{k}A^{-1}$$
,

which proves (9.4). Now, let (9.5) hold, i.e., $||C^2|| < 1$. Then $r_{\sigma}(C^2) < 1$, (I- C^2) is invertible, and since $(I-C)^{-1} = (I+C)(I-C^2)^{-1}$.

$$B^{-1} = A^{-1}(I+C)(I-C^2)^{-1}$$
.

Also, by (9.1),

$$B^{-1} - A^{-1} = B^{-1}(A-B)A^{-1} = B^{-1}C = A^{-1}(I+C)(I-C^2)^{-1}C$$
.

The inequalities (9.6) and (9.7) now follow easily since by (5.9), we have $\|(I-C^2)^{-1}\| \le 1/(1-\|C^2\|)$. //

COROLLARY 9.2 Let A, B \in BL(X) , A invertible and $\|(A-B)A^{-1}\| < 1$. Then B is invertible, and

(9.8)
$$||B^{-1}|| \le \frac{||A^{-1}||}{1 - ||(A-B)A^{-1}||}$$

$$(9.9) ||B^{-1} - A^{-1}|| \le \frac{||A^{-1}|| ||(A-B)A^{-1}||}{1 - ||(A-B)A^{-1}||}$$

Proof Let $C = (A-B)A^{-1}$. Then $||C|| \le 1$ implies $||C^2|| \le 1$, and

$$1 - ||C^2|| \ge 1 - ||C||^2 = (1 - ||C||)(1 + ||C||)$$

Hence the results follow directly from (9.6) and (9.7) //

If we replace A by A - zI and B by B - zI in (9.3) and (9.4), we obtain the following result, known as the <u>second Neumann</u> <u>expansion</u>: If $z \in \rho(A)$ and $r_{\sigma}((A-B)R(A,z)) < 1$, then $z \in \rho(B)$, and

(9.10)
$$R(B,z) = R(A,z) \sum_{k=0}^{\infty} \left[(A-B)R(A,z) \right]^k$$

In this case, bounds similar to (9.6), (9.7), (9.8), and (9.9) can be easily written down.

Let, now, E be a closed subset of $\rho(A)$. Since by (5.9), $||R(A,z)|| \rightarrow 0$ as $z \rightarrow \infty$ and ||R(A,z)|| assumes its maximum when z lies in a compact set, we see that

$$\alpha = \max_{z \in E} \| \mathbb{R}(A, z) \| < \infty .$$

It follows by (9.10) that if $E \subset \rho(A)$ and $||A-B|| < 1/\alpha$, then $E \subset \rho(B)$. In other words, if G is an open set in C, $\sigma(A) \subset G$, and (9.11) $||A-B|| < 1 / \max\{||R(A,z)|| : z \notin G\}$, then $\sigma(B) \subset G$. This property is known as the <u>upper semicontinuity</u> of the spectrum. Let $\epsilon > 0$. By letting

$$G = \{z \in \mathbb{C} : dist(z,\sigma(A)) < \epsilon\}$$

and δ to be the right hand side of (9.11), we see that whenever $\|A-B\| \leq \delta$, we have dist($\mu, \sigma(A)$) $\leq \epsilon$ for every $\mu \in \sigma(B)$, i.e., if $\mu \in \sigma(B)$, then there is $\lambda \in \sigma(A)$ with $|\mu-\lambda| \leq \epsilon$. This says that if the operator A is perturbed to the operator B by the addition of B - A and if $\|B - A\|$ is small enough, then the spectrum cannot suddenly get enlarged. On the other hand, the spectrum can suddenly shrink, as the following example shows.

Let $X = \ell^2(\mathbb{Z})$, the space of all doubly infinite square-summable complex sequences. For $x = [\dots, x(-2), x(-1), x(0), x(1), x(2), \dots]^t \in X$, consider the left shift operator

$$Ax(i) = \begin{cases} x(i+1) , if & i \neq -1 \\ 0 & , if & i = -1 \end{cases}$$

and let

$$A_0 x(i) = \begin{cases} 0 & , \text{ if } i \neq -1 \\ x(0) & , \text{ if } i = -1 \end{cases}$$

Then for $t \in \mathbb{C}$,

$$(A+tA_0)x(i) = \begin{cases} x(i+1) , & \text{if } i \neq -1 \\ tx(0) , & \text{if } i = -1 \end{cases}$$

It can be seen easily that

$$r_{\sigma}(A) \leq ||A|| = 1$$
,

and every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ is an eigenvalue of A with $[\ldots,0,0,1,\lambda,\lambda^2,\ldots]^t$ as a corresponding eigenvector. Since $\sigma(A)$ is closed, we have

$$\sigma(A) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\} .$$

On the other hand, if $0 \leq |t| \leq 1$, we show that

$$\sigma(A+tA_{\Omega}) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$$

First note that $r_{\sigma}(A+tA_{0}) \leq ||A+tA_{0}|| = 1$. Also,

$$(A+tA_0)^{-1}x = [\dots, x(-3), x(-2), \frac{x(-1)}{t}, x(0), x(1), \dots]^t$$

We can similarly write down $[(A+tA_0)^{-1}]^k x$, k = 2, 3, ..., to find that

$$\|[(A+tA_0)^{-1}]^k\| = \frac{1}{|t|}$$

Hence by the spectral radius formula (5.10),

$$r_{\sigma}((A+tA_0)^{-1}) = \lim_{k \to \infty} \left[\frac{1}{|t|}\right]^{1/k} = 1$$
,

so that $\{w \in \mathbb{C} : |w| > 1\} \subset \rho((A+tA_0)^{-1})$, or $\{z \in \mathbb{C} : |z| < 1\}$ is contained in $\rho(A+tA_0)$. It can be seen that if $|\lambda| = 1$ and then $A + tA_0 - \lambda I$ is not onto since the vector y defined by y(-1) = 1, y(i) = 0, if $i \neq -1$, is not in its range. Thus, because of the perturbation tA_0 (which is arbitrarily small when |t| is so), the spectrum of A has shrunk from the closed unit disk to the unit circle. We note that $(A+tA_0)$ has no eigenvalues if $t \neq 0$.

The above example points out the lack of lower semicontinuity of the spectrum, i.e., an open set containing a point of $\sigma(A)$ may not contain a point of $\sigma(B)$ even when ||B - A|| is arbitrarily small. If, however, A commutes with B, or if A and B are self-adjoint, we do have a kind of continuity of the spectrum. See Problem 9.4 and Proposition 13.1. Let us now consider an (unperturbed) operator T_0 , a (perturbation) operator V_0 , and let $T = T_0 + V_0$ be called the perturbed operator.

This kind of situation often occurs in quantum mechanics, although the operators T_0 and V_0 are usually unbounded; T_0 is the Hamiltonian of an unperturbed system and V_0 is a potential energy operator, so that $T_0 + V_0$ is the Hamiltonian of the perturbed system.

For $\ t \in \mathbb{C}$, we study the family of operators

(9.12)
$$T(t) = T_0 + tV_0$$

Observe that $T(0) = T_0$ and $T(1) = T_0 + V_0$. Since the function t $\mapsto tV_0$ is linear in t, we say that $T(t) = T_0 + tV_0$ is obtained from T_0 by a <u>linear perturbation</u>. One can consider quadratic or higher order perturbations. In fact, a comprehensive treatment of the analytic perturbation theory when

$$T(t) = T_0 + tV_0 + t^2V_1 + \dots$$

is an 'analytic family of operators' can be found in [K], Chapters II and VII.

The perturbation analysis given here for a family T(t) of bounded operators can be carried out if T_0 is a densely defined closed (linear) operator in X (i.e., the domain D_{T_0} of T_0 is a dense subspace of X and the graph $\{(x,T_0x) : x \in D_{T_0}\}$ of T_0 is a closed subset of X × X) and if for all small |t|, T(t) is a closed operator with the same domain as T_0 . On the other hand, the analysis breaks down if the domains of T(t) are different from D_{T_0} . For example, let $X = L^2(\mathbb{R})$, and

$$T(t)x(s) = x''(s) + s^2 x(s) + ts^4 x(s)$$
, $s \in \mathbb{R}$,

$$\mathbb{D}_{T_{O}} = \left\{ \mathbf{x} \in \mathbb{X} : \int_{\mathbb{R}} |\mathbf{s}^{4}| \mathbf{x}(\mathbf{s})|^{2} d\mathbf{s} < \infty \right\}, \quad \int_{\mathbb{R}} |\mathbf{p}^{4}| \hat{\mathbf{x}}(\mathbf{p})|^{2} d\mathbf{p} < \infty \right\}$$

and for $t \neq 0$,

$$D_{T(t)} = \left\{ x \in X : \int_{\mathbb{R}} s^{8} |x(s)|^{2} ds < \infty , \int_{\mathbb{R}} p^{4} |\hat{x}(p)|^{2} dp < \infty \right\} ,$$

where \hat{x} denotes the Fourier transform of x. In this situation, $V_0 x(s) = s^4 x(s)$, $s \in \mathbb{R}$, is called a <u>singular perturbation</u> of $T_0 x(s) = x''(s) + s^2 x(s)$, $s \in \mathbb{R}$. Analytic properties of a singular perturbation are difficult to establish.

For notational ease, we denote R(T(t),z) by R(t,z) when $z \in \rho(T(t))$, and if t = 0, we denote R(0,z) by $R_0(z)$. We now prove that for a fixed z, the map $t \mapsto R(t,z)$ is analytic.

THEOREM 9.3 Let $t_0 \in \mathbb{C}$ and fix $z \in \rho(T(t_0))$. If

$$|t-t_0| < 1 / r_{\sigma}(V_0R(t_0,z))$$
,

then $z \in \rho(T(t))$ and

(9.13)
$$R(t,z) = R(t_0,z) \sum_{k=0}^{\infty} [-V_0 R(t_0,z)]^k (t-t_0)^k.$$

The function $t \mapsto R(t,z)$ is thus analytic on a neighbourhood of t_0 , for every fixed $z \in \rho(T(t_0))$.

Further, let E be a closed subset of $\rho(T(t_0))$. Then the series (9.13) converges absolutely and uniformly for $z \in E$ and t in any closed subset of the disk

$$\{ t \in \mathbb{C} : |t-t_0| < 1/\text{max} \|V_0 \mathbb{R}(t_0, z)\| \}$$

Proof Consider $t \in \mathbb{C}$ such that $|t-t_0| < 1/r_{\sigma}(V_0R(t_0,z))$. Letting $A = T(t_0) - zI$ and B = T(t) - zI, we have $A - B = -(t-t_0)V_0$, and

$$r_{\sigma}((A-B)A^{-1}) = |t-t_0|r_{\sigma}(V_0R(t_0,z)) < 1$$
.

136

By Theorem 9.1, B is invertible, i.e., $z \in \rho(T(t))$, and

$$R(t,z) = B^{-1} = A^{-1} \sum_{k=0}^{\infty} [(A-B)A^{-1}]^{k}$$
$$= R(t_{0},z) \sum_{k=0}^{\infty} [-V_{0}R(t_{0},z)]^{k} (t-t_{0})^{k} ,$$

which proves (9.13), and also shows that the function $t \mapsto R(t,z) \in BL(X)$ is analytic on a neighbourhood of t_0 by Theorem 4.8.

Next, for a closed subset E of $\rho(T(t_0))$, let

$$\beta = \max_{z \in E} \| V_0 R(t_0, z) \| < \infty .$$

If D is any closed subset of the disk

$$\{t \in \mathbb{C} : |t-t_0| < 1/\beta\}$$
,

then for all $t \in D$, we have $|t-t_0| \leq \delta$ for some $\delta \leq 1/\beta$. Now, in Proposition 4.6, let $S = E \times D$, and for $(z,t) \in E \times D$, let

$$c_k(z,t) = [-V_0R(t_0,z)]^k(t-t_0)^k$$
, $k = 0,1,...$

Then

$$\sup_{(z,t)\in E\times D} \|c_k(z,t)\|^{1/k} \leq \sup_{(z,t)\in E\times D} \|-V_0R(t_0,z)\| \|t-t_0\| \leq \beta\delta$$

Since $\beta\delta < 1$, it follows that the series (9.13) converges absolutely and uniformly for $z \in E$ and $t \in D$. //

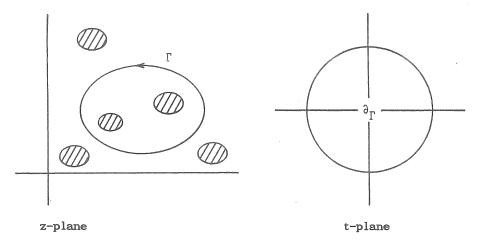
We move on to prove the analyticity of the spectral projection associated with T(t) and a curve Γ in $\rho(T_0)$. Since Γ is a compact set and the function $z \mapsto r_{\sigma}(V_0 R_0(z))$ is upper semicontinuous for $z \in \Gamma$, we see by Corollary 5.5 that

$$\sup_{z\in\Gamma} r_{\sigma}(V_0R_0(z)) < \infty ,$$

and that there is $z_0 \in \Gamma$ such that $r_{\sigma}(V_0R_0(z_0)) = \max_{z \in \Gamma} r_{\sigma}(V_0R_0(z))$.

The following open disk about 0 in the t-plane, which depends on the curve Γ in the z-plane, will be of special interest to us. It was first studied extensively in [C]. Let

(9.14) $\partial_{\Gamma} = \{ t \in \mathbb{C} : |t| < 1/\max_{z \in \Gamma} r_{\sigma}(V_0 R_0(z)) \} .$



/// : spectrum of T₀

Figure 9.1

Let us denote the spectral projection $P_{\Gamma}(T_{\Omega})$ by P_{Ω} .

THEOREM 9.4 Let $\Gamma \subset \rho(T_0)$. For $t \in \partial_{\Gamma}$, we have $\Gamma \subset \rho(T(t))$. The spectral projection $P(t) \in BL(X)$ associated with T(t) and Γ is an analytic function of t. In fact, for $t \in \partial_{\Gamma}$, we have the <u>Kato-Rellich perturbation series</u>

(9.15)
$$P(t) = P_0 + \sum_{k=0}^{\infty} P_{(k)} t^k ,$$

where

(9.16)
$$P_{(k)} = \frac{(-1)^{k+1}}{2\pi i} \int_{\Gamma} R_0(z) [V_0 R_0(z)]^k dz .$$

Proof Let $z \in \Gamma$, so that $z \in \rho(T_0)$. Letting $t_0 = 0$ in Theorem 9.3, we see that $z \in \rho(T(t))$ for every $t \in \partial_{\Gamma}$, since

$$|\mathsf{t}| < \frac{1}{\max} r_{\sigma}(\mathsf{V}_{0}\mathsf{R}_{0}(z)) \leq \frac{1}{r_{\sigma}}(\mathsf{V}_{0}\mathsf{R}_{0}(z))$$

Thus, $\Gamma \subset \rho(T(t))$ for every $t \in \partial_{\Gamma}$.

Now, fix $t_0 \in \partial_{\Gamma}$. Letting $E = \Gamma$, in Theorem 9.3, we see that for t in some neighbourhood of t_0 , the series

$$R(t,z) = R(t_0,z) \sum_{k=0}^{\infty} [-V_0 R(t_0,z)]^k (t-t_0)^k$$

converges uniformly for $z \in \Gamma$. This allows us to integrate the series term by term on Γ (cf. (4.8)), and obtain

$$P(t) = -\frac{1}{2\pi i} \int_{\Gamma} R(t,z) dz$$

=
$$\sum_{k=0}^{\infty} \left[-\frac{1}{2\pi i} \int_{\Gamma} R(t_0,z) \left[-V_0 R(t_0,z) \right]^k dz \right] (t-t_0)^k$$

for t near enough to t_0 . Thus, $t \mapsto P(t)$ is analytic for t in a neighbourhood of t_0 . But since t_0 is an arbitrary point of ∂_{Γ} , we see that P(t) is analytic on ∂_{Γ} . The Taylor expansion of P(t)around t = 0 is given by the series (9.15). The converse part of Theorem 4.8 shows that this expansion is valid for all t in ∂_{Γ} . //

The analyticity of the spectral projection P(t) implies, in particular, that P(t) depends continuously on t: if t_1 and t_2 are close then so are $P(t_1)$ and $P(t_2)$ as elements of BL(X). We wish to show that in this case, the ranks of $P(t_1)$ and $P(t_2)$ are equal. For this purpose, we prove some preliminary results which are important in their own right. LEMMA 9.5 Let P and Q be projections in BL(X) such that

$$r_{\sigma}(P(P-Q)) < 1$$
.

Then the map $B : P(X) \to P(X)$ given by Bx = PQx, $x \in P(X)$, is invertible. In particular,

rank
$$P \leq rank Q$$
.

Proof Let $A = I |_{P(X)}$, which is invertible in BL(P(X)). For $x \in P(X)$,

$$(A-B)A^{-1}x = (A-B)x = x - PQx = P(P-Q)x$$
.

Thus, $(A-B)A^{-1} = P(P-Q)|_{P(X)}$. But

$$P(P-Q)P = P(P-Q)P|_{P(X)} \oplus P(P-Q)P|_{(I-P)(X)} .$$

Since $P(P-Q)P|_{P(X)} = P(P-Q)|_{P(X)}$, and $P(P-Q)P|_{(I-P)(X)} = 0$, we have by (6.2) and (5.12),

$$r_{\sigma}((A-B)A^{-1}) = r_{\sigma}(P(P-Q)P) = r_{\sigma}(P(P-Q)) < 1$$

Now Theorem 9.1 shows that $B : P(X) \rightarrow P(X)$ is invertible. In particular, B is onto. Hence

rank P = dim B(P(X)) = dim PQ(P(X))
$$\leq$$
 dim P(Q(X)) \leq rank Q . //

PROPOSITION 9.6 Let P and Q be projections in BL(X) such that

(9.17)
$$r_{\sigma}(P(P-Q)) < 1 \text{ and } r_{\sigma}(Q(Q-P)) < 1$$
.

Then the map $J : P(X) \to Q(X)$ given by Jx = Qx, $x \in P(X)$, is a linear homeomorphism onto. In particular,

$$rank P = rank Q$$
.

These conclusions hold if

$$r_{\sigma}(P-Q) < 1$$

Proof The map J is clearly linear and continuous. It is one to one since if Jx = Qx = 0 for some $x \in P(X)$, then PQx = 0, and this implies that x = 0, as the map $B : P(X) \rightarrow P(X)$ given by Bx = PQxis one to one by Lemma 9.5. Next, we show that J is onto. Let $y \in$ Q(X). Then by interchanging P and Q in Lemma 9.5, we see that the map $\tilde{B} : Q(X) \rightarrow Q(X)$ given by $\tilde{B}x = QPx$, $x \in Q(X)$, is onto. Hence there is $x \in Q(X)$ such that QPx = y, i.e., J(Px) = y. As P(X)and Q(X) are closed subspaces of X, they are Banach spaces. The *open mapping theorem* now shows that J^{-1} is continuous, i.e., J is a homeomorphism.

Finally, let $r_{\sigma}(P-Q) < 1$. Since $P^2 = P$ and $P(P-Q)P = P(P-Q)^2P$, we see by (5.12),

$$r_{\sigma}(P(P-Q)) = r_{\sigma}(P(P-Q)P) - r_{\sigma}((P-Q)^{2}P)$$

Now, $(P-Q)^2$ maps P(X) into P(X). Hence by (6.2) and (5.11),

$$\mathbf{r}_{\sigma}((\mathbf{P}-\mathbf{Q})^{2}\mathbf{P}) = \mathbf{r}_{\sigma}((\mathbf{P}-\mathbf{Q})^{2}|_{\mathbf{P}(\mathbf{X})}) \leq \mathbf{r}_{\sigma}((\mathbf{P}-\mathbf{Q})^{2}) = [\mathbf{r}_{\sigma}(\mathbf{P}-\mathbf{Q})]^{2} < 1 .$$

But we have seen in the proof of Lemma 9.5 that

$$r_{\sigma}(P(P-Q)|_{P(X)}) = r_{\sigma}(P(P-Q)).$$

Thus, $r_{\sigma}(P(P-Q)) < 1$. Also, $r_{\sigma}(Q(P-Q)) < 1$ by interchanging P and Q. Hence the desired conclusions hold if $r_{\sigma}(P-Q) < 1$. //

COROLLARY 9.7 Let $\Gamma \subset \rho(T_0)$. Then for every $t \in \partial_{\Gamma}$,

rank
$$P(t) = rank P_0$$
,
rank[I-P(t)] = rank[I-P_0].

If $\{x_i\}$ is a basis of $P_O(X)$, then $\{P(t)x_i\}$ is a basis of P(t)(X) when |t| is sufficiently small.

Proof By Theorem 9.4, the map $t \mapsto P(t)$ is analytic on ∂_{Γ} , and hence it is continuous. Thus, for every $t_0 \in \partial_{\Gamma}$, there is $\epsilon(t_0) > 0$ such that $|t-t_0| < \epsilon(t_0)$ implies

$$r_{\sigma}(P(t)-P(t_{0})) \leq ||P(t)-P(t_{0})|| \leq 1$$
.

Hence rank $P(t) = rank P(t_0)$, by letting $P = P(t_0)$ and Q = P(t)in Proposition 9.6. Now, the nonempty set

$$\{t \in \partial_T : \dim P(t)(X) = \dim P_0(X)\}$$

is open as well as closed in ∂_{Γ} , and as such it coincides with ∂_{Γ} since the disk ∂_{Γ} is connected. Thus, for all $t \in \partial_{\Gamma}$,

$$rank P(t) = rank P_0$$

The statement about rank[I-P(t)] follows similarly by considering the continuity of the map $t \mapsto I - P(t) \in BL(X)$.

Lastly, let $\{x_i\}$ be a basis of $P_0(X)$. For t near 0, consider the map $J:P_0(X)\to P(t)(X)$, given by

$$Jx = P(t)x$$
, $x \in P_0(X)$.

By Proposition 9.6, J is linear, one to one and onto, and hence sends a basis of $P_0(X)$ to a basis of P(t)(X), showing that $\{P(t)x_i\}$ is a basis of P(t)(X). //

Theorem 9.4 and Corollary 9.7 point out the following interesting facts. If $\Gamma \subset \rho(T_0)$ and the operator T_0 is perturbed to $T(t) = T_0 + tV_0$, then as long as $t \in \partial_{\Gamma}$, the curve Γ continues to lie in $\rho(T(t))$ and the spectral projection P(t) associated with T(t) and Γ changes analytically with t; more importantly, the dimension of P(t) equals the dimension of P₀ = P(0) for all $t \in \partial_{\Gamma}$.

Since the spectrum of T(t) lying inside Γ is the spectrum of $T(t)|_{P(t)(X)}$, we may expect the spectral values of T(t) inside Γ to depend analytically on t. However, this is not the case for individual spectral values. As an example, let $X = \mathbb{C}^2$, and

$$\mathbf{T}_{\mathbf{O}} = \begin{bmatrix} \mathbf{O} & \mathbf{1} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} , \quad \mathbf{V}_{\mathbf{O}} = \begin{bmatrix} \mathbf{O} & \mathbf{O} \\ \mathbf{1} & \mathbf{O} \end{bmatrix} .$$

Let Γ denote the unit circle, which encloses the double eigenvalue $\lambda_0 = 0 \quad \text{of} \quad T_0 \ . \ \text{For} \ z \neq 0 \ ,$

$$R_{0}(z) = -\begin{bmatrix} 1/z & 1/z^{2} \\ 0 & 1/z \end{bmatrix}, \text{ and } V_{0}R_{0}(z) = -\begin{bmatrix} 0 & 0 \\ 1/z & 1/z^{2} \end{bmatrix}.$$

Hence

$$\begin{split} \sigma(\mathbb{V}_0 \mathbb{R}_0(z)) &= \{0, -1/z^2\} ,\\ \mathbf{r}_{\sigma}(\mathbb{V}_0 \mathbb{R}_0(z)) &= 1/|z|^2 , & \max_{z \in \Gamma} \mathbf{r}_{\sigma}(\mathbb{V}_0 \mathbb{R}_0(z)) = 1 ,\\ \partial_{\Gamma} &= \{\mathbf{t} \in \mathbb{C} : |\mathbf{t}| < 1\} . \end{split}$$

Now, $T(t) = \begin{bmatrix} 0 & 1 \\ t & 0 \end{bmatrix}$, and for $t \in \partial_{\Gamma}$, the spectral values of T(t)lying inside Γ are $\pm \sqrt{t}$. However, there is no analytic function $t \mapsto \lambda(t) \in \sigma(T(t)) \cap Int \Gamma = \{\pm \sqrt{t}\}$ for $t \in \partial_{\Gamma}$.

All the same, we prove that if P_0 is of finite rank, then the arithmetic mean of the spectral points of T(t) inside Γ is indeed an analytic function of $t \in \partial_{\Gamma}$.

THEOREM 9.8 Let rank $P_0 = m$, $1 \le m < \infty$. Then for every $t \in \partial_{\Gamma}$, the only spectral points of T(t) inside Γ are m eigenvalues, say, $\lambda_1(t), \ldots, \lambda_m(t)$, counted according to their algebraic multiplicities. The function $\hat{\lambda}$ is analytic on ∂_{Γ} , where

(9.18)
$$\hat{\lambda}(t) = \frac{1}{m} [\lambda_1(t) + ... + \lambda_m(t)] = tr(T(t)P(t))$$
.

Let $x_i \in X$ and $x_j^* \in X^*$ be such that the matrix $[\langle P_0 x_i, x_j^* \rangle]$, $1 \leq i, j \leq m$ is invertible, and for $t \in \partial_{\Gamma}$, let $a_{i,j}(t) = \langle P(t)x_i, x_j^* \rangle$, $1 \leq i, j \leq m$. If A(t) denotes the matrix $[a_{i,j}(t)]$, then for |t| sufficiently small, A(t) is invertible; if $[A(t)]^{-1} = [b_{i,j}(t)]$, $c_{i,j}(t) = \langle T(t)P(t)x_i, x_j^* \rangle$, i, j = 1, ..., m,

then

(9.19)
$$\hat{\lambda}(t) = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i,j}(t) c_{j,i}(t)$$

Proof By Corollary 9.7, rank $P(t) = m < \infty$ for all $t \in \partial_{\Gamma}$. Hence by Theorem 7.9, the spectrum of T(t) inside Γ consists of a finite number of eigenvalues with finite algebraic multiplicities.

Since T(t) and P(t) commute, we have

$$R(T(t)P(t)) \subset R(P(t))$$
,

which is of dimension m. Thus, the operator T(t)P(t) is of finite rank and Proposition 3.6 shows that

$$tr(T(t)P(t)) = tr(T(t)P(t)|_{P(t)(X)})$$

= tr(T(t)|_{P(t)(X)})
= the sum of the eigenvalues
of T(t)|_{P(t)(X)}, by (7.18)
= $\lambda_1(t) + \ldots + \lambda_m(t)$
= m $\hat{\lambda}(t)$.

This proves (9.18).

For $t \in \partial_{\Gamma}$, let

 $x_i(t) = P(t)x_i$, $1 \le i \le m$.

Then $A(t) = [\langle x_i(t), x_j^* \rangle]$, $1 \leq i, j \leq m$. Since $A(0) = [\langle P_0 x_i, x_j^* \rangle]$ is invertible and the function $t \mapsto x_i(t) = P(t)x_i \in X$ is analytic (and hence continuous) for each $i = 1, \ldots, m$, we see by Theorem 9.1 that A(t) is invertible if |t| is small enough.

It follows by Remark 3.4 that the set $\{x_1(t), \ldots, x_m(t)\}$ is linearly independent and forms a basis of P(t)(X). Also, if we let

$$y_j^{*}(t) = \sum_{k=1}^{m} \overline{b_{k,j}(t)} x_k^{*}$$
, $j = 1, \dots, m$

then

$$\langle x_i(t), y_j^{st}(t) \rangle = \delta_{i,j}$$
, $i, j = 1, \dots, m$

(cf. (3.6).) Now, Proposition 3.6 shows that for |t| small enough,

$$\begin{split} \mathbf{m} \ \ddot{\lambda}(t) &= \mathrm{tr}(\mathbf{T}(t)\mathbf{P}(t)) \\ &= \sum_{j=1}^{m} \langle \mathbf{T}(t)\mathbf{P}(t)\mathbf{x}_{j}(t), \mathbf{y}_{j}^{*}(t) \rangle \\ &= \sum_{j=1}^{m} \langle \mathbf{T}(t)\mathbf{P}(t)\mathbf{x}_{j}, \sum_{i=1}^{m} \overline{\mathbf{b}_{i,j}(t)\mathbf{x}_{i}^{*}} \rangle \\ &= \sum_{i=1}^{m} \sum_{j=1}^{m} \mathbf{b}_{i,j}(t)\mathbf{c}_{j,i}(t) . \end{split}$$

Since the functions $t \mapsto T(t) \in BL(X)$ and $t \mapsto P(t)x_j \in X$ are analytic, we see that the functions $t \mapsto b_{i,j}(t) \in \mathbb{C}$ and $t \mapsto c_{i,j}(t) \in \mathbb{C}$ are analytic. (See Problem 4.1.) We conclude that the function $t \mapsto \hat{\lambda}(t)$ is analytic on a neighbourhood of 0. A very similar argument establishes the analyticity of this function in a neighbourhood of an arbitrary point $t_0 \in \partial_T$. //

Let the spectrum of T_0 inside Γ consist of a single eigenvalue λ_0 of finite algebraic multiplicity. Then by (7.8),

$$\mathbb{R}_{0}(z) = \sum_{k=0}^{\infty} S_{0}^{k+1} (z - \lambda_{0})^{k} - \frac{\mathbb{P}_{0}}{z - \lambda_{0}} - \sum_{k=1}^{\ell-1} \frac{\mathbb{D}_{0}^{k}}{(z - \lambda_{0})^{k+1}} .$$

We can use this Laurent expansion of $R_0(z)$ to calculate the coefficients

$$P_{(k)} = \frac{(-1)^{k+1}}{2\pi i} \int_{\Gamma} R_0(z) [V_0 R_0(z)]^k dz$$

in the perturbation series (9.15) for P(t) in terms of P₀, S₀, D₀ and V₀. These can then be used to obtain a series expansion of the arithmetic mean $\hat{\lambda}(t) = tr(T(t)P(t))$ of the eigenvalues of T(t) inside Γ . These series are considered in [K], p.76 and p.379. We shall not pursue their study here because the coefficients of these series cannot be calculated in an iterative manner. Let λ_0 be a simple eigenvalue of T₀. In the next section, we shall consider series expansions for the simple eigenvalue $\lambda(t)$ of T(t) and for a suitably normalized eigenvector of T(t) corresponding to $\lambda(t)$ which can be calculated in an iterative manner. With this in view, let us study the important special case of a simple eigenvalue.

COROLLARY 9.9 Let the only spectral value of T_0 inside Γ be a simple eigenvalue λ_0 . Then for every $t \in \partial_{\Gamma}$, Γ encloses only one spectral value $\lambda(t)$ of T(t) and it is also a simple eigenvalue. The function $t \mapsto \lambda(t)$ is analytic on ∂_{Γ} .

Let $x_0 \in X$ and $x_0^* \in X^*$ be such that $\langle P_0 x_0, x_0^* \rangle \neq 0$. If |t| is small enough, we have

(9.20)
$$\lambda(t) = \frac{\langle T(t)P(t)x_0, x_0^{*} \rangle}{\langle P(t)x_0, x_0^{*} \rangle}$$

also,

(9.21)
$$x(t) = \frac{P(t)x_0}{\langle P(t)x_0, x_0^{*} \rangle}$$

is an eigenvector of T(t) corresponding to $\lambda(t)$ such that

 $\langle x(t), x_0^{*} \rangle = 1$; x(t) is an analytic function of t in a neighbourhood of 0.

Proof We have $m = \dim P_0(X) = 1$. Hence by Theorem 9.8, t $\mapsto \hat{\lambda}(t) = \lambda(t)$ is analytic on ∂_{Γ} . Also, let $x_1 = x_0$ and $x_1^* = x_0^*$. Then for |t| small, we have

$$\begin{aligned} a_{1,1}(t) &= \langle P(t)x_0, x_0^{*} \rangle , \\ b_{1,1}(t) &= 1 / \langle P(t)x_0, x_0^{*} \rangle , \\ c_{1,1}(t) &= \langle T(t)P(t)x_0, x_0^{*} \rangle . \end{aligned}$$

Thus, (9.20) follows directly from (9.19). Also, since $\langle P(0)x_0, x_0^{\bigstar} \rangle = \langle P_0x_0, x_0^{\bigstar} \rangle \neq 0$, we see that for |t| small, $\langle P(t)x_0, x_0^{\bigstar} \rangle \neq 0$, so that $P(t)x_0 \neq 0$. Now, since $\lambda(t)$ is simple, we have $P(t)x_0 \in P(t)(X) = Z(T(t) - \lambda(t)I)$. This shows that x(t) is an eigenvector of T(t) corresponding to $\lambda(t)$. The relation $\langle x(t), x_0^{\bigstar} \rangle = 1$ is immediate. Since both the numerator and the denominator of x(t) are analytic and the denominator does not vanish, we see that x(t) is analytic on a neighbourhood of 0. //

One can give a direct proof of the analyticity of the function t $\mapsto \lambda(t)$ of Corollary 9.9 without invoking Theorem 9.8. Since $\lambda(t)$ is a simple eigenvalue of T(t) for $t \in \partial_{\Gamma}$, we have T(t)P(t) = $\lambda(t)P(t)$, so that

$$\langle T(t)P(t)x_0, x^* \rangle = \lambda(t) \langle P(t)x_0, x_0^* \rangle$$

As $\langle P(0)x_0, x_0^* \rangle = \langle P_0x_0, x_0^* \rangle \neq 0$, we see that $\langle P(t)x_0, x_0^* \rangle \neq 0$ if |t|is sufficiently small. Hence the relation (9.20) holds. In particular, $t \mapsto \lambda(t)$ is an analytic function on a neighbourhood of 0. Problems

9.1 Let $A\in BL(X)$ be invertible and $B\in BL(X)$ satisfy $\|A^{-1}(A-B)\|<1$. If Ax=a and By=b , then

$$\|y-x\| \leq \frac{\|A^{-1}(b-a)\| + \|A^{-1}(A-B)\| \|x\|}{1 - \|A^{-1}(A-B)\|}$$

(Hint: (9.4))

9.2 (Iterative refinement of the solution of an operator equation) Let $A \in BL(X)$ and $y \in X$. Consider an invertible $A_0 \in BL(X)$ such that $r_{\sigma}((A-A_0)A_0^{-1}) < 1$ and $A_0x_0 = y$. For j = 1, 2, ..., let

$$r_{j-1} = y - Ax_{j-1}$$
, $A_0u_j = r_{j-1}$, $x_{j+1} = x_j + u_j$.

Then A is invertible and (\texttt{x}_j) converges to the unique $\texttt{x} \in \texttt{X}$ such that Ax = y .

9.3 (General Neumann expansion) Let $z \in \rho(A)$. If

$$r_{\sigma}([(w-z)I+(A-B)]R(A,z)) < 1$$
,

then $w \in \rho(B)$ and

$$R(B,w) = R(A,z) \sum_{k=0}^{\infty} \left[\left[(w-z)I + (A-B) \right] R(A,z) \right]^{k}$$

$$\|R(B,w)\| \leq \|R(A,x)\|/(1-r) ,$$

$$\|R(B,w) - R(A,z)\| \leq r\|R(A,z)\|/(1-r)$$

where r = (|w-z|+||A-B||)||R(A,z)||. The function $(A,z) \mapsto R(A,z) \in BL(X)$ is jointly continuous on $\{(A,z) : A \in BL(X) , z \in \rho(A)\} \subset BL(X) \times \mathbb{C}$. 9.4 Let A , $B \in BL(X)$. Assume either that A and B commute, or that A and B are self-adjoint. Then

$$\max \left\{ \max_{\lambda \in \sigma(A)} \operatorname{dist}(\lambda, \sigma(B)) , \max_{\lambda \in \sigma(B)} \operatorname{dist}(\lambda, \sigma(A)) \right\} \leq r_{\sigma}(A-B) \leq ||A-B||$$

9.5 Let Γ and $\widetilde{\Gamma}$ be simple closed curves in $\rho(T_0)$ such that $\Gamma \subset \operatorname{Int} \widetilde{\Gamma}$. Assume that $P_{\Gamma}(T_0)$ is of finite rank and that T_0 has no spectral values between Γ and $\widetilde{\Gamma}$. Then for all $t \in \partial_{\Gamma} \cap \partial_{\widetilde{\Gamma}}$, T(t)has no spectral values between Γ and $\widetilde{\Gamma}$.

9.6 Let P and Q be projections such that $r_{\sigma}(P-Q) < 1$. Then the operator QP + (I-Q)(I-P) is invertible. It maps R(P) onto R(Q) and Z(P) onto Z(Q). Hence rank P = rank Q.

9.7 Let D be a connected metric space and for $s \in D$, let Q(s) be a projection in BL(X). If $s \mapsto Q(s)$ is continuous, then the rank of Q(s) is constant (finite or infinite) for $s \in D$.

9.8 Let m = 2 in Theorem 9.8. Then for |t| small enough,

$$\hat{\lambda}(t) = \frac{(a_{2,2}c_{1,1} - a_{1,2}c_{2,1} - a_{2,1}c_{1,2} + a_{1,1}c_{2,2})(t)}{2(a_{1,1}a_{2,2} - a_{1,2}a_{2,1})(t)}$$

9.9 Under the hypothesis of Corollary 9.9, let for |t| < r, with r small enough,

$$y(t) = \frac{P(t)x_0}{\sqrt{P(t)x_0, x_0^*}}, \quad y^*(t) = \frac{[P(t)]^* x_0^*}{\sqrt{[P(t)]^* x_0, x_0^*}}.$$

where $\sqrt{}$ denotes the principal branch of the square root. Then the function $t \mapsto y(t) \in X$ is analytic, the function $t \mapsto y^{*}(t)$ is antianalytic (i.e., $t \mapsto y^{*}(\bar{t})$ is analytic) and $\langle y(t), y^{*}(t) \rangle = 1$. In particular, if T_0 and V_0 are self-adjoint operators on a Hilbert space X, t is real, and we choose $x_0^{*} = x_0$, then ||y(t)|| = 1.