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In this section we define the spectrum and the resolvent set of 

T E BL(X) The analyticity and the power series e:!...rpansion of the 

resolvent operator are the rrain considerations. We also obtain the 

spectral radius formula. This section lays the basis of the spectral 

theory. 

Let T E BL(X} The resolvent set of T is defined and denoted 

as follows: 

p(T) == {z € !C T ~ zi is invertible in BL(X)} . 

The spectrum of T is the complement of in !C , and is denoted 

by o(T) . It follows by the open mapping theorem ([L], 11.1) that A. E 

a(T) if and only if either T - A.I is not one to one, or it is not onto 

X . For z E p(T) , the operator 

R(T,z) -1 
(T-zi} 

is called the resolvent operator of T at z . When there is no 

confusion possible, we shall denote it simply by R{z) 

It can be observed immed:i.ately that for any z0 € [; , 

+ z0 : A € o(T)} , 

and if 0 t a(T) , i.e., if T is invertible, then 

-1 a(T ) 

It then follows that for z0 € p(T) , 

(5.1) 

")., E a(T)} . 

In fact, it can be readi verified that for z E p(T) and z tJ. z0 , 
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(5. [R(z ) - --1--]-1 = -(z-z )I - (z-z )~(z) 0 z-z0 0 o 

In general, it is very difficult to find R(z) for z € p(T) . 

Only in some specific cases this is possible. Fo:r example, if P E 

BL(X) is a projection, then for all z ¢ 0 o:r 1 , z E p(T} , and 

(5.3) R(z) 
I p 
z z(z-1} 

Of course, if P = 0 then a(P) = {0} while if P I , then 

a(P) = {1} in all other cases, a{P) ~ 1} 0 

If X is finite dimensional, then it is theoretically possible to 

describe a construction of the resolvent operators. Let T be 

:represented by a matrix M = (t .. } 
l.,J 

with respect to some ordered basis. 

Then z € p(T) if and only if the determinant of M - zi is not zero, 

and in this case is represented by the matrix (s .. )/det(M-zi) 
l,J 

where s .. is the co-factor of the element t .. in M 
1,J J,l. 

These 

results are proved in the first course on linear algebra. 

Let us now consider some properties of the resolvent operators. We 

have the import&Tlt relation 

(5.4) TR(z) = I + zR(z) = R(z)T , z E p(T) . 

Also, for z,w € p(T) , the first resolvent identity 

(5.5) R(z) - R(w) (z-w)R(z)R(w) 

follows by noting that (z-w)I = (T-wi) - (T-zi} and applying R(z) on 

the left and R(w) on the right. From (5.4) and (5.5) it follows that 

R(z) commutes with T and with R(w) 

The concept of the spectral radius of an operator plays an 
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important role in spectral theory. The spectral radius of T is 

defined by 

r {T} = sup{ lA I : A € a{T}} . a 

We shall see that r (T} is finite and the supremum is attained at some 
a 

A € a(T} We shall also give an expression for r {T} a in terms of the 

norms of the operators Tk, k = 1,2, ... For the present, we note 

that if z € p(T) • then by (5.1}. 

(5.6} 

r (R(z}} = sup{IAI : A € a(R(z}}} a 

= sup{1/ IA-z I : A € a{T}} , 

= 1/dist(z,a(T}} . 

We now prove the analyticity of the resolvent operator. 

THEOREM 5.1 {First Neumann expansions} Let T € BL(X} . The resolvent 

set p(T) is open, and the map z ~ R(z} € BL{X} is analytic in p(T) 

as well as at infinity. 

(5.7) 

(5.8} 

In fact, for z0 € p{T} and lz-z0 1 < dist(z0 ,a(T}) • we have 

Also, for 

(X) 

~ k+1 k R(z) = L [R{z0)] (z-z0 ) . 
k=O 

lzl ) r {T) , we have a 

(X) 

R(z} =- I Tk z-{k+1} 
k=O 

In fact, - _k 1/k 
r (T} = lim llrll 
a k~ 

(5.9} 

If lzl ) IITII , then 

1 
IIR{z}ll ~ lz I IITII · 
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Figure 5.1 

/// a(T) 

the expansion (5.7) holds here 

the expansion (5.8) holds here 

Proof We first note that if for some z € ~ , the series on the right 

side of either (5.7) or (5.8) converges in BL(X) • then z € p(T) and 

the sum of the series is R(z) . To see this, let z0 € p(T) and let 

the sum of the series on the right side of (5.7) be f(z) . If 

k+1 
~ = [R(z0)] • k = 0.1 ..... 

n k 
and f (z) = I a (z-z0 ) • 

n k=O K 
then 

since ~ commutes with (T-zi) we have 

(T-zi)f (z) 
n 

= [(T-z0I)-(z-z0)]fn(z) 

n k n k+1 
I+ I ~-1 (z-z0) - I ~(z-z0) 

k=1 k=O 
n+1 

= I - an(z-z0) . 

Since the n-th term of a convergent series tends to zero as n ~ 00 , we 

see that f(z)(T-zi) = (T-zi)f(z) =I , i.e., z € p(T) and f(z) 

R(z) . In an exactly similar manner one proves the result for the 

series on the right side of (5.8). 
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Now, by Theorem 4,8, the series (5.7) converges if 

lz-z0 I < 1 / lim II[R(z0}]k+l!ll.l'k 
k-l'l' 

1 / lim II[R(z0 )]ki!l/k 
k-!00 

so that every such z is in p(T) Thus, p(T) is open in ~ and it 

follows by Theorem 4.S that R(z) is an analytic function on p(T) , 

Since a(T) is then a closed set and the open disk 

is clearly contained in p(T) , R(z) is analytic on D and the Taylor 

expansion (5.7) of R(z) is valid for zED . 

Next, it follows similarly {cf. (4. ) that the series (5. 

converges if 

I z I > lim il~-l !I l/k = lim IITklll/k = r , sa:y . 

Hence lzl ) r implies z € i.e,, r (T) ::;; r . On the other 
0" 

hand, since R(z) is analytic on D = {z : lz! > r (T}} a the Laurent 

expansion (5. of R(z) is valid in D (TI1eorem 4. In particular, 

the series (5.8) converges if lz I > r (T) a 

diverges if lz I 

Since for lzl ) r (T) , and w == 1/'z a 

But by Corollary 4.7, it 

Thus, 

we see that the function g defined by g(w} = R(l/w) for 

0 < lw I < 1/ra(T) and g(O) = 0 , is analytic at 0 , i.e., R(z) is 

analytic at z = ro . 
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Finally, if lz i > IITII , then by o8), 

This proves (5o9)o // 

~ 5.2 (Spectral radius formula) Let X ;1. {0} The spectrum 

cr(T) of T € is a nonempty compact subset of !C and 

r 0 {T} = Hm i!Tklll/k = inf {!Hk!!l/k : k "" 1 ,2, 0. 0} 0 
k<40 

Proof Since p(T) is open (Theorem 501), its complement cr(T) is 

closed in ~ . Also, it is bounded since by Theorem 5.1, 

1r (T) = lim li~ill/k S, !IT!! o 

a 

Thus, cr(T) is a compact subset of ~ 0 If a(T) = 0 , then R(z) 

would be analytic for all z in ~ Also, by (5. we see that 

R(z) ~ 0 as z ~ 00 • Thus, R(z) would be a bounded function on ~ 

and by Liouville's theorem (Proposition 4.1(a)) it would reduce to a 

constant function, the constant being zero. This is clearly impossible, 

since the inverse of an operator on X cannot be zero unless X = {0} 0 

Thus, a(T) ;1. 0 0 

To prove (5.10), we note that if A € a(T) 

k = 1,2, .. 0' so that or Thus, by 

Theorem 5.1, 

Hence the limit exists and equals the infimum. // 
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COROU..ARY 5.3 Let T € BL(X), and let Y be a closed subspace of X 

with R(T) c Y . Then 

{5.11} :;; r (T) . a 

II 

We remark, however, that a(Ty) zmd a(T) may not be comparable, 

as the following examples show. 

y { 1), t 

t T[x( 1) ,x(2}] 

x(l) E ~} . Then 

[x(l),2x(2)]t and 

o'(T) {1,2} and a(Ty) = {1} 

Thus, a(Ty) is a proper subset of 
') 

Let X = !!"'"(if.) , the set 

of all infinite square-summable sequences of complex numbers. 

Consider the right shift operator 

i} = x(i-1) , i = 0,±1.±2, ... , x EX 

and let 

Y EX: x(n) = 0 for all n = 0,-1,-2, ... } 

Then a(f} = {z E !C : lzl = 1} since r (r) s liT II 1 a 
rv-1 

~ !1r1 11 1 and if lzl 1 then T zi is (the r (T } = = - not onto 
a 

vector y defined by y(O) = 1 , y(i) = 0 for i # 0 is not in its 

range). But a(Ty) = {z E ~ : lzi :;; 1} (cf. [L], 12.6). TI1us, a(T) 

is properly· contained in a(:r:y} 
# ~ 

Finally, let X =X ffi X 

T and Y# = Y \D Y Then 

:bll. 
{2} c a(T."') c {2} U {z € [: iz! 1} . {z E [: lzl ~ 1} . 
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Thus, neither a(T#) :no:r a(T~#} is contained in the other. 

Proof Since for k 

, T2 € BL(X) . Then 

1,2, ... 

,k T fT T )k-l.T 
} ~ '2' 1 2 1 

:radius formula 10). // 

OOROLl..I!.R'( 5.5 Let U be an open subset of lfC and f : U _, BL(X) be 

a continuous function. Then the real-valued function z 17 r (f 
a ) is 

upper semicontinuous on U , ru1d as such it is bounded above and 

attains its maximum on each compact subset of U . 

Proof For k = 1,2, ... , the function 

is upper semicontinuous (in fact, <Continuous) for z € U . Now, by the 

spectral radius formula (5. 

z E U . 

Let z0 € U and e. ) 0 . Then there exists an integer k such that 

Since ~ is upper semicontinuous at z0 there is o > 0 such that 

Thus, the function z ~ r (f a· 

remaining part :i.s easy. // 

+ ~S/2 , so that 

) is upper semicontinuous" The 
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The above result will be useful when we consider a perturbation 

(See (9.14).} 

Before we end this section, we consider operators whose spectra 

reduce to a single point; by means of a translation, we can take this 

point to be 0 . 

An operator T E BL(X) is said to be quasi-nilpotent if 

a(T) = {0} . The spectral radius formula shows that T is 

quasi-nilpotent as In 

particular, if Tm = 0 for some nm1negative integer m then this 

condition is satisfied; such operators are called nilpotent. 

JF'OOPOSITION 5.6 Let T E BL(X} be quasi-nilpotent. If T is of 

finite rank m then T"'1+ 1 "' 0 so that T is nilpotent. In 

particular, if X is of dimension m 

Proof For k 

(5.13) 

If T is of rank m , then m; 

Then T(Yk) C Y, , and 
K 

since each y 
k 

is then 

finite dimensional, his closed in X (Proposition 3.1). Also, by 

Corollary 5.3 

v 
0 

so that r (Ty ) = 0 . 
a k 

Since a(Ty } # 0 by Theorem 5.2, we see that 
k 

a(Tv } = {0} . 
'k 

As y 
k 

is finite dimensional, cannot be onto . 

Thus, the :inclusions i:n the descending chain (5.13) are proper at each 

stage. Hence dim ~ IT! - (k-1) . 
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In particular, 

dim R(fD+1) = dim Ym+1 = 0 . 

i.e., ·yn+1 = 0. 

If X is of dimension m, then T: X ~x is not onto since 

0 € a(T) Hence the rank of T is at most m - 1 , so that Tm = 0 

by what we have already proved. // 

t Tx = [x(2), ... ,x(k),O, ... ,O] 

for some 2 ~ k ~ n . The matrix representing T with respect to the 

standard basis is 

0 1 0 
0 1 

0 1 
0 0 

0 .. ·o 
0 

where the 1's occur k times consecutively. Then we see that 

Tk+1 = 0 , but Tk ¢ 0 , 1 ~ k ~ n-1 . 

In fact, if T is a nilpotent operator on an m dimensional space 

X , and if E is the smallest positive integer with TE = 0 , then T 

can be represented, with respect to a suitable basis of X , in the 

Jordan canonical form as follows. (See [K], p.22.) 
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-; 

I .... - -..,. - ..... 
I 

(5.14) 

each submatrix or block J is of the form 
k 

1 
0 

J 

and for each k satisfying pi+ 1 s k::; pi+l , i = 0 , ... ,e-1 

the size of Jk is E- i . It follows by (5.14} that 

(5.15) 

Note that the total number of blocks of the form Jk is and the 

size of the largest such block is E 
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Problems 

5.1 For A, B € BL(X) , a(AB) '{0} = a(BA)' {0} . In fact, if 

0 # z € p(AB) , then z € p(BA) and (BA-zl)-1 = [B(AB-zl)-1A - I]/z 

5.2 The map z I') r (R(z)) is continuous for z € p(T) a 

5.3 For z0 € p(T) the k-th derivative of R(z) at z0 is 

k![R(z0)]k+1 . k = 1,2, .... 

5.4 The radius of convergence of the power series (5.7) is 

dist(z0 ,a(T)) 

R(z) , i.e., 

so that 

for every 

p(T) is the natural domain of analyticity of 

z0 E p(T) the radius of convergence of the 

Taylor expansion of R(z) at z0 equals dist(z0 ,1C,p(T)) . The series 

(5.8) diverges if lz I < r (T) a 

5.5 The sequence (11~11 1/k) is not always monotonically decreasing. 

_2 t 2 2 t 
(Let X= c- and T[x(1),x(2)] =[a x(2),b x(1)] , where a> b > 0 

Then T2n = (ab)2nr , ~+1 = (ab)2~ for n = 1,2, ... , so that 

2 IITII2 = a , IIT2n+1 11~/(2n+1) = ab(a/b)1/(2n+1) > ab .) 

5.6 Let ra(T) < 1 , and y € X Define x0 = y # 0 , and for 

Then (x ) converges to the 
n 

n = 1,2, ... , let x = y + Tx 1 n n-

unique solution x of (I-T)x = y Let c > 0 be such that 

ra{T) + c < 1 . Then there is n0 such that for n = 0,1, ... , 

llx -xll { k } _n_ < liT II [ (T) ]n+1 
llxll - max k ra +c 

k=O, ... ,n0 [ra{T)+c] 

llx -xll liT lin+ 1 
If IITII < 1, then for n = 0,1, ... , _n __ < 

llyll - 1 - IITII 

00 

5.7 Let T € BL(X) . The series I ~ converges in BL{X) if and 
k=O· 

only if 11~11 < 1 for some positive integer k . 


