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5. RESOLVERT OPERATORS

In this section we define the spectrum and the resolvent set of
T € BL(X) . The analyticity and the power series expansion of the
resolvent operator are the main considerations. We also obtain the
spectral radius formula. This section lays the basis of the spectral
theory.

Let T € BL(X) . The resolvent set of T is defined and denoted

as follows:
p(T) = {z €C : T~ zI is invertible in BL(X)} .

The spectrum of T is the complement of p(T) in € , and is denoted
by o(T) . It follows by the open mapping theorem ([L], 11.1) that A\ €
o(T) if and only if either T — AI 1is not one to one, or it is not onto

X . For z € p(T) , the operator
-1
R(T.z) = (T-zI)

is called the resolvent operator of T at z . When there is no

confusion possible, we shall denote it simply by R(z) .

It can be observed immediately that for any z, €cC,

a(T+zoI) ={A+z,: N€o(T)},

0

and if O € o(T) , i.e., if T is invertible, then
o(T 1) = {IA : A €a(T)} .

It then follows that for zy € p(T) .

(5.1) o(R(zy)) = {1/(A2,) : A € o(T)} .

In fact, it can be readily verified that for z € p(T) and z # Zy
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-1
(5.2) [R(zo) - ] = ~(z-2y)1 - (z-2,)°R(z) .

Z—ZO

In general, it is very difficult to find R(z) for z € p(T) .
Only in some specific cases this is possible. For example, if P €

BL(X) 1is a projection, then for all z #0 or 1, z € p(T) , and

P

(5.3) R(Z) = = %— Z_—(ZT]T -

Of course, if P =0, then o(P) = {0} ., while if P =1, then
o(P) = {1} ; in all other cases, o(P) = {0,1} .

If X is finite dimensional, then it is theoretically possible to
describe a construction of the resolvent operators. Let T be
represented by a matrix M ='(ti,j) with respect to some ordered basis.
Then =z € p(T) if and only if the determinant of M - zI is not zero,
and in this case R(z) is represented by the matrix (si’j)/det(M—zI) .
where S4 j is the co—factor of the element t. i in M. These

s s

results are proved in the first course on linear algebra.

Let us now consider some properties of the resolvent operators. We
have the important relation

(5.4) TR(z) = I + zR(z) = R(z2)T , z € p(T) .

Also, for z,w € p(T) , the first resolvent identity

(5.5) R(z) - R(w) = (z-w)R{z)R(w)

follows by noting that (z-w)I = (T-wI) - (T-zI) and applying R(z) on
the left and R(w) on the right. From (5.4) and (5.5) it follows that

R(z) commutes with T and with R(w) .

The concept of the spectral radius of an operator plays an
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important role in spectral theory. The spectral radius of T is

defined by
ra(T)'= sup{IA] : A € o(T)} .

We shall see that ra(T) is finite and the supremum is attained at some
A € o(T) . We shall also give an expression for ra(T) in terms of the
norms of the operators Tk ., k=1,2,... . For the present, we note

that if z € p(T) , then by (5.1),

r (R(z)) = sup{IAl : X € o(R(2))}

sup{1/In-z| : A € o(T)} .

[0}

(5.6)

1/dist(z,o(T}) .

We now prove the analyticity of the resolvent operator.

THEOREM 5.1 (First Neumann expansions) Let T € BL(X} . The resolvent
set p(T) 1is open, and the map =z » R(z) € BL(X) is analytic in p(T)
as well as at infinity.

In fact, for z € p(T) and lz—zol < dist(zo,o(T)) , we have

(5.7) R(z) = 3 [R(z)] (z2p)" .
k=0

Also, for |zl > ra(T) ., we have

(5.8) R(z) = - J T¢ 2 (B#1)
k=0
In fact, r (T) = lim i<tk
o ko
If |zl > UTIl , then

(5.9) IR(z)N < ]?F%‘Tx‘r‘u‘ .
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Proof We first note that if for some z € €C , the series on the right
side of either (5.7) or (5.8) converges in BL(X) , then z € p(T) and
the sum of the series is R(z) . To see this, let z, € p(T) and let
the sum of the series on the right side of (5.7) be f(z) . If
n
2 = [R(zo)]k+1 , k=0,1,..., and fn(z) = ) ak(z—zo)k , then
k=0

since a, commutes with (T-zI) ., we have

fn(z)(T—zI) = (T—zI)fn(z)

[(T-zy1)-(z-2,) J£(2)

1

n K n K+
I+ - - -

k§1 ak_l(z zo) kzo ak(z zo)
)n+l )

I- an(z—z0

Since the n—-th term of a convergent series tends to zero as n = ® , we
see that f(z)(T-zl) = (T-zI)f(z) =1, i.e., z € p(T) and f(z) =
R(z) . In an exactly similar manner one proves the result for the

series on the right side of (5.8).



Now, by Theorem 4.8, the series (5.7) converges if

|2yl < 1/ Tim N[R(z,)T< 0%
k=0
= 1/ Tim u[R(zp)T0V*

k=0

so that every such z is in p(T) . Thus, p(T) is open in C and it
follows by Theorem 4.8 that R(z) is an analytic function on p(T) .

" Since o(T) 1is then a closed set and the open disk

(s}
1]

{z © lz-zy| < dist(z,,0(T))}

is clearly contained in p(T) , R(z) is analytic on D and the Taylor
expansion (5.7) of R(z) is valid for z € D .

Next, it follows similarly (cf. (4.14)) that the series (5.8)
converges if

1zl > Tim o 0% - o k% = ¢ | say .
K0 k-

Hence lz| > r implies =z € p(T) , i.e., ra(T) {r . On the other

hand, since R(z) is amalytic on D = {z : lz| > ra(T)} , the Laurent
expansion (5.8) of R(z) is valid in ] (Theorem 4.9). In particular,
the series (5.8) converges if |[z]| > ra(T) . But by Corollary 4.7, it

diverges if |zl < r . This shows that r ¢ rU(T) . Thus,

r (T) = Iim Ttk
g k0
Since for lzl| > rU(T) , and w = 1/z ,

R = - kgo TR

we see that the function g defined by g(w) = R(1/w) for
0 < lwl < 1/r (T) and g(0) =0 ., is analytic at 0, i.e.., R(z) is

analytic at z = ® .



Finally, if [zl > UTW , then by (5.8),

©0
1 [tk 1
IR(z)N < kgo TzT TZT] =z - mn -

This proves (5.9). 7/

THEOREM 5.2 (Spectral radius formula) Let X # {0} . The spectrum
o(T) of T € BL(X) 1is a nonempty compact subset of € and

(5.10) £ (T) = Lim 0iTNM% < anepurn® s k212,
ko

Proof Since p(T) 1is open (Theorem 5.1), its complement o(T) is
closed in € . Also, it is bounded since by Theorem 5.1,

r (T) = Tim 1m0 % < umn .
o -

Thus, o(T) 1is a compact subset of C . If o(T) =9 , then R(z)
would be analytic for all z in € . Also, by (5.9) we see that

R{(z) >0 as z - . Thus, R(z) would be a bounded function on C ,
and by Liouville’s theorem (Proposition 4.1(a)) it would reduce to a
constant function, the constant being zero. This is clearly impossible,
since the inverse of an operator on X cannot be zero unless X = {0} .
Thus, o(T) # @ .

To prove (5.10), we note that if A € o(T) . then Ak € U(Tk) for

k=1,2,..., sothat INE1 <1, or IAl < 0TS1YY | Thus, by
Theorem 5.1,
r (1) ¢ anfwrn% ¢ nm e E ¢ T oerSn e - e (1)
k=1,2,.. s T ke .

Hence the limit exists and equals the infimum. //
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COROLLARY 5.3 Let T € BL(X), and let Y be a closed subspace of X

with R(T) CY . Then

(5.11) r (Ty) < r (T) .
Proof By (5.10),

r (Ty) = Lim 0(T)S1Y% = Lim 0T 0% ¢ timt M 2w 1y .
g k- k-0 ko o

We remark, however, that U(TY) and o(T) wmay not be comparable,
as the following examples show.
Let X =€, Tx(1).x(2)1° = [x(1).2x(2)]° and

Y = {[x(1),0]% : x(1) € €} . Then
o(T) = {1.2} and a(TY) = {1} .

Thus, a(TY) is a proper subset of o(T) . Let X = 82(2) , the set
of all doubly infinite square-summable sequences of complex numbers.

Consider the right shift operator
Tx(i) = x(i-1) , i =0,41,#2,..., x € X .
and let
¥ = {x€X:x(n) =0 forall n=0,-1,-2,...} .

Then o(T) = {z € C : |z| = 1} since ra(T) <=1,

ra(f_l) < =1 and if |zl =1, then T - zI is not onto (the
vector y defined by y(0) =1, y(i) =0 for i # O is not in its
range). But U(??) ={z€C: |z| <1} (cf. [L], 12.6). Thus, o(T)

is properly contained in U(T?) . Finally, let X# =x0¥X, T# =T®

T and Y# =Y®Y . Then

@rcomcpuizec: Izl =1}, ofTh) ={zecC Izl <1} .
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Thus, neither U(T#) nor U(Ttﬂ) is contained in the other.

COROLLARY 5.4 Let T, ., T, € BL(X) . Then
(5.12) r (T,T,) = r (T,T,) -
Proof Since for k = 1,2,...

k k-1 k k-1
(T Tg)" = T (T,T) Ty and (T,T))° = To(T T)" T, .

the desired result follows from the spectral radius formula (5.10). Vo

COROLLARY 5.5 Let U be an open subset of € and f : U - BL(X) be
a continuous function. Then the real-valued function z » ra(f(z)) is
upper semicontinuous on U , and as such it is bounded above and

attains its maximum on each compact subset of U .
Proof For k =1,2,..., the function
h(2) = W[£(z)T0"/%

is upper semicontinuous (in fact, continuous) for =z € U . Now, by the

spectral radius formula (5.10),
ra(f(z)) = inf{hk(z) tk=1,2,...}, z€U.
Let zZ, €U and € > O . Then there exists an integer k such that
hk(zo) < ro(f(zo)) + e/2 .

Since hk is upper semicontinuous at zg - there is & > O such that

|z—zOI < 6 implies hk(z) < hk(zo) + e/2 , so that

ra(f(z)) < hk(z) < ra(f(zo)) +e .
Thus, the function z » ra(f(z)) is upper semicontinuous. The

remaining part is easy. 7/
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The above result will be useful when we consider a perturbation VO

of a given operator TO and let f(z) = VORO(Z) , where

Ry(z) = (Ty-z)”' for z € p(T (See (9.14).)

O) :
Before we end this section, we consider operators whose spectra
reduce to a single point; by means of a translation, we can take this
_ point to be O .
An operator T € BL(X) 1is said to be guasi-nilpotent if
o(T) = {0} . The spectral radius formula shows that T is
quasi-nilpotent if and only if HTkHI/k‘% 0 as k=2, In
particular, if ™" = 0 for some nonnegative integer m , then this

condition is satisfied; such operators are called nilpotent.

PROPOSITION 5.6 Let T € BL(X) be quasi-nilpotent. If T 1is of

finite rank m , then Tln+1 =0, so that T 1is nilpotent. In

particular, if X is of dimension m , then ™=0.

Proof For k=1.2,.... let Y, =R(TY) . Then T(Y,) CY, . and
(5.13) Y1 ) Y2 3 ...

If T is of rank m , then dim Y1 =m ; since each Yk- is then

finite dimensional, it is closed in X (Proposition 3.1). Also. by

Corollary 5.3
ra(TYk) < ra(T) =0,

so that r (T, ) =0 . Since o(T, ) # @ by Theorem 5.2, we see that
g Yk Yk

U(TY }) ={0} . As Y, is finite dimensional, TY cannot be onto .
k

k

Thus, the inclusions in the descending chain (5.13) are proper at each

k.

stage. Hence dim Yk <{m- (k-1) .
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In particular,
. Tm+1 .
dim R( ) = dim Ym+l =0,

i.e., Tm+1 =0 .
If X 1is of dimension m , then T : X X is not onto since

0 € o(T) . Hence the rank of T is at most m- 1, so that ™ =0

by what we have already proved. V4
As an example, let X = €, and for x = [x(l),...,x(n)]t e,
Tx = [x(2),....%x(k).0,...,0]"

for some 2 { k { n . The matrix representing T with respect to the

standard basis is

where the 1°s occur k times consecutively. Then we see that
™ 20, but %0, 1<k<n1.

In fact, if T 1is a nilpotent operator on an m dimensional space
X, and if & 1is the smallest positive integer with Te =0, then T
can be represented, with respect to a suitable basis of X , in the

Jordan canonical form as follows. (See [K], p.22.)
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The integers Pj.---.Py satisfy

1<py € v $pp s
(5.14)

p1+ ,+pe—m,

each submatrix or block Jk is of the form

0 1
0 1
0 .
1
0
and for each k satisfying Py + 1 <k < Piyq i=0,...,8-1

(pO = 0) , the size of Jk is 2 -1i . It follows by (5.14) that

(5.15) 2-1+p,<{m<ep,.

Note that the total number of blocks of the form Jk is Py > and the

size of the largest such block is £ .
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Problems

5.1 For A, B € BL(X) , o(AB) \ {0} = o(BA) \ {0} . In fact, if

0%z€p(AB) , then z € p(BA) and (BA-zI) ! = [B(AB-zI) A - I1/z .
5.2 The map z » rU(R(z)) is continuous for z € p(T) .

is

5.3 For z, € p(T) ., the k-th derivative of R(z)} at z,

KI[R(z) T . k= 1.2,

5.4 The radius of convergence of the power series (5.7) is
dist(zo,a(T)) , so that p(T) is the natural domain of analyticity of
R(z) . i.e., for every zZ, € p(T) . the radius of convergence of the

Taylor expansion of R(z) at 2z, equals dist(zo,C\p(T)) . The series

0]
(5.8) diverges if |z]| < ra(T) .
5.5 The sequence (HTkﬂllk

(Let X =€ and T[x(1).x(2)]° = [a2x(2).b%x(1)]° . where a >b >0 .

) is not always monotonically decreasing.

Then T2 = (ab)21 . T - (@0)®T for n=1.2..... so that
||T2n||;/2n =ab ., ITI, = a2 , HT2n+1H;/(2n+l) = ab(asb)/(Z*1) 5 oy

5.6 Let ra(T) <1, and y € X . Define Xg =V # 0, and for
n=12,... , let X =y + Txn_1 . Then (xn) converges to the
unique solution x of (I-T)x =y . Let e > O be such that

ra(T) + e <1 . Then there is n, such that for n =0,1,... ,

lIx_-xll k
__%§ﬁ_ < max {__HI_H____} [rU(T)+e]n+1 .

k
k=0,...,n, [rU(T)+e]
_xll Tt
If ITh <1, then for n=20,1,... , Ty < TR

00
5.7 Let T € BL(X) . The series ) Tk converges in BL(X) if and
. k=0
k

only if IITIl < 1 for some positive integer k .



