3. FINITE DIMTRSIONALITY

In any numerical approximation process, we deal solely with finite dimensional subspaces and with operators whose ranges are finite dimensional. In this section we study such subspaces and operators.

We start with a result concerning the closedness of the sum of two closed subspaces of a complex Banach space X . In general, such a sum need not be a closed subspace, as can be seen by considering $\mathrm{x}=\ell^{2}$, $F_{1}=$ the closed linear span of $\left\{e_{2 n}: n=1,2, \ldots\right\}$, i.e., $\left\{\sum_{n=1}^{\infty} a_{n} e_{2 n}: a_{n} \in \mathbb{C}, \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$ and $F_{2}=$ the closed linear span of $\left\{e_{2 n}+\frac{1}{n} e_{2 n+1}: n=1,2, \ldots\right\}$, i.e. $\left\{\sum_{n=1}^{\infty} b_{n}\left(e_{2 n}+\frac{1}{n} e_{2 n+1}\right): b_{n} \in \mathbb{C}\right.$, $\left.\sum_{n=1}^{\infty}\left|b_{n}\right|^{2}<\infty\right\}$. Then $\sum_{n=1}^{j} \frac{e_{2 n+1}}{n}$ belongs to $F_{1}+F_{2}$ for each $j=1,2, \ldots$ but $\sum_{n=1}^{\infty} \frac{e_{2 n+1}}{n}$ does not. However, if one of the summands is finite dimensional, we have the following result.

PROPOSITION 3.1 Let Y be a finite dimensional subspace and Z be a closed subspace of X. Then $Y+Z=\{y+z: y \in Y, z \in Z\}$ is a closed subspace of X . In particular, Y itself is closed in X .

Proof Assume first that Y is one dimensional, say $Y=\operatorname{span}\left\{\mathrm{y}_{1}\right\}$. If $y_{1} \in Z$, then $Y+Z=Z$, which is given to be closed. If $\mathrm{y}_{1} \notin \mathrm{Z}, \operatorname{let}$

$$
\mathrm{d}=\operatorname{dist}\left(\mathrm{y}_{1}, \mathrm{z}\right)>0 .
$$

Consider a sequence $\left(\alpha_{n} y_{1}+Z_{n}\right)$ in $Y+Z$, which converges to x in X. Now, for every $z \in \mathbb{Z}$, we have

$$
\begin{equation*}
\left|\alpha_{\mathrm{n}}\right| \mathrm{d} \leq\left\|\alpha_{\mathrm{n}} \mathrm{y}_{1}+\mathrm{z}\right\| \tag{3.1}
\end{equation*}
$$

This is obvious if $\alpha_{n}=0$, and if $\alpha_{n} \neq 0$, then $-\mathrm{z} / \alpha_{\mathrm{n}}$ is in Z so that $d \leq\left\|y_{1}-\left(-z / \alpha_{n}\right)\right\|$. Since $\left(\alpha_{n} y_{1}+z_{n}\right)$ is a Cauchy sequence, it follows from (3.1) that $\left(\alpha_{n}\right)$ is also Cauchy. Let $\alpha_{n} \rightarrow \alpha \in \mathbb{C}$. Then $Z_{n} \rightarrow x-\alpha y_{1}$ which belongs to Z, since Z is closed. Thus,

$$
x=\alpha y_{1}+\left(x-\alpha y_{1}\right) \in Y+Z
$$

showing that $Y+\mathbb{Z}$ is closed.
If Y is of dimension $m<\infty$, and $\left\{y_{1}, \ldots, y_{m}\right\}$ is a basis for Y, then a repeated application of the above result to \mathbb{Z}, $\operatorname{span}\left\{y_{1}, Z\right\}, \ldots, \operatorname{span}\left\{y_{1}, \ldots, y_{m-1}, Z\right\}$ shows that $Y+Z$ is closed.

In particular, if we take $Z=\{0\}$, then we see that $Y+Z=Y$ is closed. //

We are now in a position to prove a result regarding the complementation of finite dimensional subspaces, which was promised in the last section.

THEOREM 3.2 Let Y be an m dimensional subspace of X, and let $x_{1} \ldots, x_{m}$ form an ordered basis for Y.

Then there exist $x_{1}^{*}, \ldots, x_{m}^{*}$ in X^{*} such that

$$
\begin{equation*}
\left\langle\mathrm{x}_{\mathrm{j}}^{*}, \mathrm{x}_{\mathrm{i}}\right\rangle=\delta_{\mathrm{i}, \mathrm{j}}, \mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{~m} \tag{3.2}
\end{equation*}
$$

The map

$$
\begin{equation*}
P x=\sum_{j=1}^{m}\left\langle x, x_{j}^{*}\right\rangle x_{j}, \quad x \in X . \tag{3.3}
\end{equation*}
$$

is a projection on Y along $Z \equiv \bigcap_{j=1}^{m} Z\left(X_{j}^{*}\right)$, so that $X=Y \oplus Z$. Also,

$$
\begin{equation*}
P^{*} x^{*}=\sum_{j=1}^{m}\left\langle x^{*}, x_{j}\right\rangle x_{j}^{*}, \quad x^{*} \in X^{*} . \tag{3.4}
\end{equation*}
$$

If $X=Y \oplus \tilde{Z}$, then there exist unique $\tilde{x}_{1}^{*} \ldots, \tilde{x}_{m}^{*} \in \widetilde{Z}^{\perp}$ which satisfy $\left\langle\tilde{x}_{j}^{*}, x_{i}\right\rangle=\delta_{i, j}, i, j=1, \ldots, m$. They form the ordered basis of \widetilde{z}^{\perp} which is adjoint to the given ordered basis x_{1}, \ldots, x_{m} of Y.

Proof Let $Y_{j}=\operatorname{span}\left\{x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m}\right\}$ for $j=1, \ldots, m$. Then by Proposition 3.1, Y_{j} is a closed subspace of X and $X_{j} \notin Y_{j}$. By Corollary 1.2, there is $X_{j}^{*} \in X^{*}$ such that $X_{j}^{*} \in Y_{j}^{\perp}$ and $\left\langle\mathrm{x}_{j}^{*}, x_{j}\right\rangle=1$ for each $j=1, \ldots, m$. These $x_{1}^{*}, \ldots, x_{m}^{*}$ satisfy (3.2).

The map P given by (3.3) is clearly linear and continuous; it is a. projection since $P x_{j}=x_{j}$ for $j=1, \ldots, m$ by (3.2), so that

$$
P^{2} x=\sum_{j=1}^{m}\left\langle x, x_{j}^{*}\right\rangle P x_{j}=\sum_{j=1}^{m}\left\langle x, x_{j}^{*}\right\rangle x_{j}=P x
$$

Also, $R(P)=\operatorname{span}\left\{x_{1}, \ldots, x_{m}\right\}=Y$, and since x_{1}, \ldots, x_{m} are linearly independent, we have $Z(P)=\bigcap_{j=1}^{m} Z\left(x_{j}^{*}\right)$.

Next, for $\mathrm{X}^{*} \in \mathrm{X}^{*}$ and all $\mathrm{x} \in \mathrm{X}$, we have

$$
\begin{aligned}
\left\langle P^{*} x^{*}, x\right\rangle & =\left\langle x^{*}, P x\right\rangle \\
& =\left\langle x^{*}, \sum_{j=1}^{m}\left\langle x, x_{j}^{*}\right\rangle x_{j}\right\rangle \\
& =\sum_{j=1}^{m}\left\langle x_{j}^{*}, x\right\rangle\left\langle x^{*}, x_{j}\right\rangle \\
& =\left\langle\sum_{j=1}^{m}\left\langle x^{*}, x_{j}\right\rangle x_{j}^{*}, x\right\rangle .
\end{aligned}
$$

Hence we obtain (3.4).
Now, let $X=Y \oplus \widetilde{Z}$ and let \widetilde{P} be the projection on Y along \tilde{Z}. Let $\tilde{x}_{j}^{*}=\tilde{P}^{*} x_{j}^{*}$ for $j=1, \ldots, m$. Then for $i, j=1, \ldots, m$,

$$
\begin{aligned}
& \left\langle x_{i}, \tilde{x}_{j}^{*}\right\rangle=\left\langle\tilde{P} x_{i}, x_{j}^{*}\right\rangle=\left\langle x_{i}, x_{j}^{*}\right\rangle=\delta_{i, j}, \\
& \left\langle y, \tilde{x}_{j}^{*}\right\rangle=\left\langle\widetilde{P} y, x_{j}^{*}\right\rangle=0 \text { for all } y \in Z(\widetilde{P})=\tilde{Z}
\end{aligned}
$$

Thus, $\tilde{x}_{1}^{*}, \ldots, \tilde{x}_{\mathrm{m}}^{*}$ form a linearly independent set in $\tilde{\mathrm{Z}}^{\perp}$. Since $\tilde{\mathrm{Z}}^{\perp}$ is isomorphic to Y^{*} (Proposition 2.2), it has the same dimension as Y, viz., m. This shows that $\tilde{x}_{1}^{*}, \ldots, \tilde{x}_{m}^{*}$ form a basis of \tilde{z}^{\perp}. //

It follows from (3.3) and (3.4) that

$$
\begin{equation*}
\|P\|=\left\|P^{*}\right\| \leq \sum_{j=1}^{m}\left\|x_{j}^{*}\right\|\left\|x_{j}\right\| . \tag{3.5}
\end{equation*}
$$

If $m=1$, then we have

$$
\|P x\|=\left|\left\langle x, x_{1}^{*}\right\rangle\right|\left\|x_{1}\right\| \quad, \quad x \in X,
$$

so that

$$
\begin{aligned}
\|P\| & =\sup \{\|P x\|: x \in X,\|x\| \leq 1\} \\
& =\left\|x_{1}^{*}\right\|\|x\| .
\end{aligned}
$$

If $m>1$, then strict inequality can hold in (3.5). This will be clear from the examples we shall soon give.

Remerk 3.3 Here is a result which is 'dual' to the first part of Theorem 3.2: Let $\left\{\mathrm{x}_{1}^{*}, \ldots, \mathrm{x}_{\mathrm{m}}^{*}\right\}$ be a linearly independent subset of X^{*}. Then there exist x_{1}, \ldots, x_{m} in X such that

$$
\left\langle x_{j}^{*}, x_{i}\right\rangle=\delta_{i, j}, \quad i, j=1, \ldots, m .
$$

This is an immediate consequence of the following: If $y^{*}, y_{1}^{*}, \ldots, y_{n}^{*}$ are in X^{*} and $\mathrm{Z}\left(\mathrm{y}^{*}\right) \supset \bigcap_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{Z}\left(\mathrm{y}_{\mathrm{j}}^{*}\right)$, then $\mathrm{y}^{*} \in \operatorname{span}\left\{\mathrm{y}_{1}^{*}, \ldots, \mathrm{y}_{\mathrm{n}}^{*}\right\}$. In fact, consider the conjugate linear function $F: X \rightarrow \mathbb{C}^{\mathrm{n}}$ given by

$$
\mathrm{Fx}=\left[\left\langle\mathrm{y}_{1}^{*}, \mathrm{x}\right\rangle, \ldots,\left\langle\mathrm{y}_{\mathrm{n}}^{*}, \mathrm{x}\right\rangle\right]^{\mathrm{t}}, \quad \mathrm{x} \in \mathrm{x} .
$$

If $\mathrm{Fx}=\mathrm{FX}$, then $\left\langle\mathrm{y}^{*}, \mathrm{x}\right\rangle=\left\langle\mathrm{y}^{*}, \tilde{\mathrm{x}}\right\rangle$. Hence we see that there is a linear map $A: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that $y^{*}=A F$. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be such that for all $c(1), \ldots, c(n)$ in \mathbb{C},

$$
A[c(1), \ldots, c(n)]^{t}=\alpha_{1} c(1)+\ldots+\alpha_{n} c(n)
$$

Then for every $\mathrm{x} \in \mathrm{X}$,

$$
\begin{aligned}
\left\langle\mathrm{y}^{*}, \mathrm{x}\right\rangle & =\mathrm{A}(\mathrm{Fx}) \\
& =\alpha_{1}\left\langle\mathrm{y}_{1}^{*}, \mathrm{x}\right\rangle+\ldots+\alpha_{\mathrm{n}}\left\langle\mathrm{y}_{\mathrm{n}}^{*}, \mathrm{x}\right\rangle \\
& =\left\langle\sum_{i=1}^{\mathrm{n}} \alpha_{i} \mathrm{y}_{\mathrm{i}}^{*}, \mathrm{x}\right\rangle .
\end{aligned}
$$

Thus, $\mathrm{y}^{*}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{*} \in \operatorname{span}\left\{\mathrm{y}_{1}^{*} \ldots, \mathrm{y}_{\mathrm{n}}^{*}\right\}$.

Remark 3.4 Let x_{1}, \ldots, x_{m} be in X and $x_{1}^{*}, \ldots, x_{m}^{*}$ be in X^{*} such that the matrix

$$
A=\left[a_{i, j}\right], \quad a_{i, j}=\left\langle x_{i}, x_{j}^{*}\right\rangle, \quad i, j=1, \ldots, m
$$

is invertible. Let its inverse be given by $B=\left[b_{i, j}\right]$. Then $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ is a linearly independent set in X and

$$
\begin{equation*}
\mathrm{y}_{\mathrm{j}}^{*}=\sum_{\mathrm{k}=1}^{\mathrm{m}} \bar{b}_{\mathrm{k}, \mathrm{j}} \mathrm{x}_{\mathrm{k}}^{*}, \quad \mathrm{j}=1, \ldots, \mathrm{~m} \tag{3.6}
\end{equation*}
$$

satisfies

$$
\left\langle x_{i}, y_{j}^{*}\right\rangle=\delta_{i, j}, \quad i, j=1, \ldots, m
$$

This can be seen as follows. Let $\alpha_{1} x_{1}+\ldots+\alpha_{m} x_{m}=0$ for some $\alpha_{i} \in \mathbb{C}, i=1, \ldots, m$. Then

$$
\sum_{i=1}^{m} \alpha_{i}\left\langle x_{i}, x_{j}^{*}\right\rangle=0, \quad j=1, \ldots, m
$$

Since the matrix A is invertible, the above system has a unique solution, namely $\alpha_{1}=\ldots=\alpha_{m}=0$. Thus, $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ is linearly independent in X. Again, since $A B$ is the identity matrix, we see that

$$
\sum_{k=1}^{m} a_{i, k} b_{k, j}=\delta_{i, j}
$$

But for $\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{~m}$,

$$
\sum_{k=1}^{m} a_{i, k} b_{k, j}=\sum_{k=1}^{m}\left\langle x_{i}, x_{k}^{*}\right\rangle b_{k, j}=\left\langle x_{i}, \sum_{k=1}^{m} \bar{b}_{k, j} j_{k}^{*}\right\rangle .
$$

Hence the result. Also, it can be similarly seen that the set $\left\{x_{1}^{*}, \ldots, x_{m}^{*}\right\}$ is linearly independent in X^{*}, and since $A^{H} B^{H}$ is the identity matrix, it follows that

$$
\begin{align*}
& \text { (3.7) } \tag{3.7}\\
& \text { satisfies }\left\langle y_{j}, x_{i} \sum_{k=1}^{m} b_{j, k^{x}} x_{k}\right. \\
& \text { s } \delta_{i, j}, \quad i, j=1, \ldots, m
\end{align*}
$$

Examples of projections on finite dimensionall subspaces

(i) Let X be an n-dimesional space and Y be the m-dimensional subspace with an ordered basis $x_{1} \ldots \ldots x_{m}$. Extend this basis to a basis of X by adding the elements x_{m+1}, \ldots, x_{n} to it. Let $Z=\operatorname{span}\left\{x_{m+1}, \ldots, x_{n}\right\}$. Then the projection P on Y along Z is represented by the matrix

$$
\mathrm{m}\left\{\left[\begin{array}{llll}
1 & & 0 & \vdots \\
& \ddots & & \\
0 & & 1 & 0 \\
\cdots & \cdots & \cdots & \ldots
\end{array}\right] \cdot \cdots\right]
$$

with respect to the ordered basis $x_{1}, \ldots x_{n}$. If $x_{j}^{*} \in X^{*}$ with $\left\langle x_{j}^{*}, x_{i}\right\rangle=\delta_{i, j}, i, j=1, \ldots, m$, then P^{*} is also represented by the same matrix with respect to the ordered basis $x_{1}^{*}, \ldots, x_{n}^{*}$.
(ii) Let X be a Hilbert space and Y a subspace with an ordered basis $x_{1}, \ldots x_{m}$. Then $X=Y \oplus Y^{\perp}$, and it follows from Theorem 3.2 that there exist $y_{1} \ldots, y_{m}$ in $\left(Y^{\perp}\right)^{\perp}=Y$ such that

$$
\left\langle y_{j}, x_{i}\right\rangle=\delta_{i, j}, \quad i, j=1, \ldots, m
$$

It is clear that y_{1}, \ldots, y_{m} are linearly independent and hence form a basis of Y. The sets x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} are said to form a biorthogonal family in Y. Given x_{1}, \ldots, x_{m}, the y_{j} 's can be found as follows. Since $y_{j} \in Y$, we have

$$
y_{j}=\alpha_{1, j} x_{1}+\ldots+\alpha_{m, j} x_{m}, \quad \alpha_{1, j}, \ldots, \alpha_{m, j} \text { in } \mathbb{C}
$$

Hence for $i=1, \ldots, m$.

$$
\delta_{i, j}=\left\langle y_{j}, x_{i}\right\rangle=\sum_{k=1}^{m} \alpha_{k, j}\left\langle x_{k}, x_{i}\right\rangle .
$$

Thus, $\alpha_{1, j} \ldots \ldots, \alpha_{m, j}$ can be obtained as the unique solution of the above system of m equations in m unknowns.

Note that the set $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ is orthonormal iff $\mathrm{y}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}}$ for $j=1, \ldots, m$. Often it is convenient to have an orthonormal basis $\left\{u_{1}, \ldots, u_{m}\right\}$ of Y such that $\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ for each $k=1, \ldots, m$. Such a set can be obtained by the famous Gram-Schmidt orthonormalization process ([L], 22.3).

Note that the projection P on Y along Y^{\perp} is given by

$$
P x=\sum_{j=1}^{m}\left\langle x, y_{j}\right\rangle x_{j}, \quad x \in X
$$

Since P is an orthogonal projection and $P \neq 0$, we see by Proposition 2.3 that $P^{*}=P$ and $\|P\|=1$. Since

$$
1=\left|\left\langle x_{j}, y_{j}\right\rangle\right| \leq\left\|x_{j}\right\|\left\|y_{j}\right\|
$$

we see that the upper bound for $\|P\|$ given in (3.5), namely $\sum_{j=1}^{m}\left\|x_{j}\right\|\left\|y_{j}\right\|$, is very rough when m is large.

As a concrete case, consider $X=L^{2}([0,1])$ and $x_{j}(t)=t^{j}$, $0 \leq t \leq 1$, for $j=0, \ldots, m-1$. Then $Y=\operatorname{span}\left\{x_{0}, \ldots, x_{m-1}\right\}$ is the space of all polynomials of degree $\leq m-1$. To find $y_{j} \in Y$ with $\left\langle y_{j}, x_{i}\right\rangle=\delta_{i, j}$, we consider

$$
y_{j}(t)=\alpha_{0, j}+\alpha_{1, j} t+\ldots+\alpha_{m-1, j} t^{m-1}, 0 \leq t \leq 1
$$

Since

$$
\left\langle x_{k}, x_{i}\right\rangle=\int_{0}^{1} t^{k+i} d t=\frac{1}{k+i+1},
$$

we see that $\left[\alpha_{i, j}\right]$ is the inverse of the $m \times n$ Hilbert matrix $\left[\frac{1}{i+j+1}\right], i, j=0, \ldots, m-1$. This matrix is, however, known to be numerically intractable. It is, therefore, advisable to orthonormalize the set $\left\{x_{0}, \ldots, x_{m-1}\right\}$ to obtain the Legendre polynomials and work with them.
(iii) Let $X=C([a, b])$ with the supremum norm. Consider a partition

$$
\mathrm{a}=\mathrm{t}_{0} \leq \mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{m}} \leq \mathrm{t}_{\mathrm{m}+1}=\mathrm{b}
$$

of [a,b]. The points t_{1}, \ldots, t_{m} will be called the nodes. Let

$$
\begin{array}{r}
Y=\left\{x \in X: X \text { is linear on }\left[t_{i-1}, t_{i}\right], i=1, \ldots, m+1,\right. \\
\left.x(a)=x\left(t_{1}\right) \text { and } x\left(t_{m}\right)=x(b)\right\} .
\end{array}
$$

Every element x of Y is piecewise linear; the linearity of x can break down only at the nodes t_{1}, \ldots, t_{m}. Let $e_{i} \in Y$ be such that

$$
e_{i}\left(t_{j}\right)=\delta_{i, j}, \quad i, j=1, \ldots, m
$$

The functions e_{1}, \ldots, e_{m} form a basis of Y; their graphs are shown in Figure 3.1.

Figure 3.1

We give explicit formulae for these piecewise linear hat functions for later computational use:

$$
\begin{aligned}
& e_{1}(t)= \begin{cases}1, & \text { if } a \leq t<t_{1} \\
\left(t_{2}-t\right) /\left(t_{2}-t_{1}\right), & \text { if } t_{1} \leq t<t_{2}, \\
0, & \text { if } t_{2} \leq t \leq b\end{cases} \\
& e_{m}(t)= \begin{cases}0, & \text { if } \quad a \leq t<t_{m-1} \\
\left(t_{m-1}-t\right) /\left(t_{m-1}-t_{m}\right), & \text { if } t_{m-1} \leq t<t_{m}, \\
1, & \text { if } \quad t_{m} \leq t \leq b\end{cases}
\end{aligned}
$$

and for $j=2, \ldots, m-1$.

$$
e_{j}(t)=\left\{\begin{array}{llr}
0 & , & \text { if }
\end{array} \quad a \leq t<t_{j-1} .\right.
$$

It can be easily checked that for $j=1, \ldots, m, e_{j}(t) \geq 0$ for all $t \in[a, b], e_{j}$ vanishes outside $\left[t_{j-1}, t_{j+1}\right]$, at any fixed $t \in[a, b]$ at most two of the functions e_{1}, \ldots, e_{m} are nonzero, and for all t .

$$
e_{1}(t)+\ldots+e_{m}(t)=1
$$

Because of such very nice properties, these so-called hat functions $e_{1} \ldots e_{m}$ prove to be very useful in numerical calculations.

For $j=1, \ldots, m$, define $e_{j}^{*} \in X^{*}$ by

$$
e_{j}^{*}(x)=x\left(t_{j}\right), \quad x \in X
$$

Then $\left\langle e_{j}^{*}, e_{i}\right\rangle=\delta_{i, j}$. Consider for $x \in X$,

$$
P x=\sum_{j=1}^{m} x\left(t_{j}\right) e_{j}
$$

Then P is a projection on Y along

$$
Z=\left\{x \in X: x\left(t_{j}\right)=0 \text { for each } j=1, \ldots, m\right\}
$$

Note that for $t \in[a, b]$,

$$
\begin{aligned}
|P x(t)| & \leq \sum_{j=1}^{m}\left|x\left(t_{j}\right)\right|\left|e_{j}(t)\right| \\
& \leq\|x\|_{\infty} \sum_{j=1}^{m} e_{j}(t)=\|x\|_{\infty} .
\end{aligned}
$$

Hence $\|P\|=1$. Also, it is easy to see that $\left\|e_{j}\right\|=\left\|e_{j}^{*}\right\|=1$ for $j=1, \ldots, m$. Again, we see that the bound for $\|P\|$ given in (3.5) need not be sharp.

Finite rank operators

We now consider operators whose ranges are finite dimensional. An operator $T \in B L(X)$ is said to be of finite rank if the dimension of its range $R(T)$ is finite; this dimension is called the rank of the operator.

Let T be of finite rank. Consider a subspace Y of X containing $R(T)$, and let x_{1}, \ldots, x_{m} be an ordered basis of Y. By Theorem 3.2, find $x_{j}^{*} \in X^{*}, j=1, \ldots, m$ such that $\left\langle x_{j}^{*}, x_{i}\right\rangle=\delta_{i, j}$. For $\mathrm{x} \in \mathrm{X}$, we have

$$
T \mathrm{x}=\alpha_{1} \mathrm{x}_{1}+\ldots+\alpha_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}, \quad \alpha_{\mathrm{j}} \in \mathbb{C}
$$

By applying $\mathrm{x}_{\mathrm{j}}^{*}$ on both sides, we see

$$
\begin{equation*}
T x=\sum_{j=1}^{m}\left\langle T x, x_{j}^{*}\right\rangle x_{j}=\sum_{j=1}^{m}\left\langle x, T^{*} x_{j}^{*}\right\rangle x_{j} . \tag{3.8}
\end{equation*}
$$

Now, T maps Y into Y and $\left.X_{j}^{*}\right|_{Y}, j=1, \ldots, m$ form the ordered basis of Y^{*} which is adjoint to the ordered basis x_{1}, \ldots, X_{m} of Y. Hence T_{Y} is represented by the matrix ($t_{i, j}$) with respect to the basis x_{1}, \ldots, x_{m}, where $t_{i, j}=\left\langle T x_{j}, x_{i}^{*}\right\rangle, i, j=1, \ldots, m$. The operator $\left(T_{Y}\right)^{*}: Y^{*} \rightarrow Y^{*}$ is then represented by the matrix $\left[\bar{t}_{j, i}\right]$ with respect to the basis $\left.X_{1}^{*}\right|_{Y}, \ldots,\left.X_{m}^{*}\right|_{Y}$. See Example (i) at the end of Section 1.

The sum of the diagonal entries $\left\langle\mathrm{Tx}_{j}, \mathrm{x}_{\mathrm{j}}^{*}\right\rangle, j=1, \ldots, \mathrm{~m}$ of the above matrix $\left(t_{i, j}\right)$ is called the trace of the finite rank operator T :

$$
\begin{equation*}
\operatorname{tr}(T)=\sum_{j=1}^{m}\left\langle T x_{j}, x_{j}^{*}\right\rangle \tag{3.9}
\end{equation*}
$$

We now show that the trace of T does not depend on the choice of the finite dimensional subspace Y which contains $R(T)$, or the ordered basis x_{1}, \ldots, x_{m} of Y, or its adjoint basis $x_{1}^{*}, \ldots, x_{m}^{*}$.

PROPOSITION 3.6 Let Y_{0} be a finite dimensional subspace of X containing $R(T), y_{1}, \ldots, y_{n}$ an ordered basis of Y_{0}, and $y_{1}^{*}, \ldots, y_{n}^{*}$ an adjoint basis. Then

$$
\operatorname{tr}(\mathrm{T})=\sum_{j=1}^{\mathrm{n}}\left\langle\mathrm{Ty}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}^{*}\right\rangle
$$

Proof We can assume without loss of generality that Y_{0} contains Y. For, otherwise we can consider the subspace Y_{1} spanned by Y and Y_{0} and argue in a similar manner twice.

Now, if necessary, extend the linearly independent set $\left\{x_{1}, \ldots, x_{m}\right\}$ in Y to an ordered basis x_{1}, \ldots, x_{n} of Y_{0} in such a way that for $i=m+1, \ldots, n$, we have $\left\langle x_{j}^{*}, x_{i}\right\rangle=0, j=1, \ldots, m$. For $j=m+1, \ldots, n$, find $x_{j}^{*} \in X^{*}$ such that

$$
\left\langle x_{j}^{*}, x_{i}\right\rangle=\delta_{i, j}, \quad i=1, \ldots, n .
$$

For $m+1 \leq j \leq n$, we have $T x_{j} \in Y$ so that

$$
\mathrm{Tx}_{\mathrm{j}}=\alpha_{1} \mathrm{x}_{1}+\ldots+\alpha_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}, \quad \alpha_{\mathrm{j}} \in \mathbb{C}
$$

Hence for $j=m+1, \ldots, n$ we have

$$
\left\langle T x_{j}, x_{j}^{*}\right\rangle=\sum_{i=1}^{m} \alpha_{i}\left\langle x_{i}, x_{j}^{*}\right\rangle=0 .
$$

Thus,

$$
\begin{equation*}
\sum_{j=1}^{n}\left\langle T x_{j}, x_{j}^{*}\right\rangle=\sum_{j=1}^{m}\left\langle T x_{j}, x_{j}^{*}\right\rangle=\operatorname{tr}(T) . \tag{3.10}
\end{equation*}
$$

Since $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ is a basis of Y_{0}, we have

$$
y_{i}=\sum_{k=1}^{n} \alpha_{k, i} x_{k}, \quad \alpha_{k, i} \in \mathbb{C}, \quad i=1, \ldots, n
$$

Similarly, since $\left\{\left.\mathrm{x}_{\mathrm{k}}^{*}\right|_{\mathrm{Y}_{0}}: \mathrm{k}=1, \ldots, \mathrm{n}\right\}$ is a basis of Y_{0}^{*}, we have

$$
\left.y_{i}^{*}\right|_{Y_{0}}=\left.\sum_{k=1}^{n} \beta_{k, i} x_{k}^{*}\right|_{Y_{0}}, \quad \beta_{k, i} \in \mathbb{C}, i=1, \ldots, n .
$$

Now,

$$
\begin{aligned}
\delta_{i, j}=\left\langle y_{j}^{*}, y_{i}\right\rangle & =\sum_{k=1}^{n} \beta_{k, j}\left\langle x_{k}^{*} \sum_{p=1}^{n} \alpha_{p, i} x_{p}\right\rangle \\
& =\sum_{k=1}^{n} \beta_{k, j} \bar{\alpha}_{k, i}, \quad i, j=1, \ldots, n .
\end{aligned}
$$

If $A=\left[\alpha_{i, j}\right]$ and $B=\left[\beta_{i, j}\right]$, then we see that $A^{H} B=I$. Hence the matrix A is nonsingular and $A^{-1}=B^{H}$, so that $A B^{H}=I$, i.e.,

$$
\sum_{i=1}^{n} \alpha_{k, i} \bar{\beta}_{j, i}=\delta_{k, j}, k, j=1, \ldots, n
$$

Hence

$$
\begin{aligned}
\sum_{i=1}^{n}\left\langle\mathrm{Ty}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}^{*}\right\rangle & =\sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{k, i}\left\langle T x_{k}, \sum_{j=1}^{n} \beta_{j, i} x_{j}^{*}\right\rangle \\
& =\sum_{k=1}^{n} \sum_{j=1}^{n}\left\langle T x_{k}, x_{j}^{*}\right\rangle \sum_{i=1}^{n} \alpha_{k, i} \bar{\beta}_{j, i} \\
& =\sum_{k=1}^{n}\left\langle T x_{k}, x_{k}^{*}\right\rangle .
\end{aligned}
$$

Now (3.10) shows that $\sum_{i=1}^{n}\left\langle\operatorname{Ty}_{i}, \mathrm{y}_{\mathrm{i}}^{*}\right\rangle=\operatorname{tr}(\mathrm{T})$. //

Let us now consider the adjoint of a finite rank operator.

THEOREM 3.7 If T is of rank $m<\infty$, then so is T^{*}. In fact, if
$x_{1}, \ldots x_{m}$ is an ordered basis of $R(T)$ and $x_{j}^{*} \in X^{*}$ with $\left\langle x_{j}^{*}, X_{i}\right\rangle=\delta_{i, j}$, then $T^{*} X_{1}^{*}, \ldots, T^{*} X_{m}^{*}$ form a basis of $W=R\left(T^{*}\right)$, and $\left(T^{*}\right)_{W}: W \rightarrow W$ is represented by the matrix $\left[\bar{t}_{j, i}\right]$ with respect to this basis, where $t_{i, j}=\left\langle T x_{j}, x_{i}^{*}\right\rangle$. For $x^{*} \in X^{*}$, we have

$$
\begin{equation*}
T^{*} x^{*}=\sum_{j=1}^{m}\left\langle x^{*}, x_{j}\right\rangle T^{*} x_{j}^{*} \tag{3.11}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
R\left(T^{*}\right)=Z(T)^{\perp} \tag{3.12}
\end{equation*}
$$

Proof For $x^{*} \in X^{*}$ and $x \in X$, we have

$$
\begin{aligned}
\left\langle T^{*} x^{*}, x\right\rangle & =\left\langle x^{*}, T x\right\rangle=\left\langle x^{*} ; \sum_{j=1}^{m}\left\langle x, T^{*} x_{j}^{*}\right\rangle x_{j}\right\rangle \\
& =\sum_{j=1}^{m}\left\langle T^{*} x_{j}^{*}, x\right\rangle\left\langle x^{*}, x_{j}\right\rangle \\
& =\left\langle\sum_{j=1}^{m}\left\langle x^{*}, x_{j}\right\rangle T^{*} x_{j}^{*}, x\right\rangle
\end{aligned}
$$

Hence (3.11) follows. This shows that

$$
W=R\left(T^{*}\right)=\operatorname{span}\left\{T^{*} x_{1}^{*}, \ldots, T^{*} x_{m}^{*}\right\}
$$

Since $x_{j} \in R(T)$, let $x_{j}=T u_{j}, u_{j} \in X$ for $j=1, \ldots, m$. Then

$$
\begin{equation*}
\left\langle T^{*} x_{j}^{*}, u_{i}\right\rangle=\left\langle x_{j}^{*}, T u_{i}\right\rangle=\left\langle x_{j}^{*}, x_{i}\right\rangle=\delta_{i, j} \tag{3.13}
\end{equation*}
$$

Hence $T^{*} x_{1}^{*}, \ldots, T^{*} x_{m}^{*}$ are linearly independent as well. Thus, T^{*} has rank m. Let

$$
T^{*}\left(T^{*} x_{j}^{*}\right)=s_{1, j} T^{*} x_{1}^{*}+\ldots+s_{m, j} T^{*} x_{m}^{*}, s_{i, j} \in \mathbb{C}
$$

Then (3.13) shows that

$$
\begin{aligned}
s_{i, j} & =\left\langle T^{*}\left(T^{*} x_{j}^{*}\right), u_{i}\right\rangle=\left\langle T^{*} x_{j}^{*}, T u_{i}\right\rangle \\
& =\left\langle T^{*} x_{j}^{*}, x_{i}\right\rangle=\left\langle x_{j}^{*}, T x_{i}\right\rangle
\end{aligned}
$$

Hence $\left.T^{*}\right|_{W}$ is represented by the matrix $\left(\bar{t}_{j, i}\right)$, where $t_{i, j}=\left\langle\mathrm{Tx}_{j}, \mathrm{x}_{\mathrm{i}}^{*}\right\rangle$.

Finally, it is easy to see that $R\left(T^{*}\right)$ is contained in $Z(T)^{\perp}$. On the other hand, let $y^{*} \in Z(T)^{\perp}$. Since for $x \in X$, we have $T x=\sum_{j=1}^{m}\left\langle T x, x_{j}^{*}\right\rangle x_{j}$ and $x_{j}=T u_{j}$, we see that

$$
x-\sum_{j=1}^{m}\left\langle T x, x_{j}^{*}\right\rangle u_{j} \in Z(T)
$$

Hence

$$
\begin{aligned}
\left\langle y^{*}, x\right\rangle & =\left\langle y^{*}, \sum_{j=1}^{m}\left\langle T x, x_{j}^{*}\right\rangle u_{j}\right\rangle \\
& =\left\langle\sum_{j=1}^{m}\left\langle y^{*}, u_{j}\right\rangle T^{*} x_{j}^{*}, x\right\rangle .
\end{aligned}
$$

This shows that $y^{*}=\sum_{j=1}^{m}\left\langle y^{*}, u_{j}\right\rangle T^{*} x_{j}^{*} \in R\left(T^{*}\right)$, and proves (3.12). //

Before we conclude this longish section, we give a characterization of bounded operators of finite rank.

PROPOSITION $3.8 T \in B L(X)$ is of finite rank if and only if T is compact and $R(T)$ is closed in X.

Proof Let T be a bounded operator of finite rank. If $\left(x_{n}\right)$ is a bounded sequence in X, then $\left(T x_{n}\right)$ is also a bounded sequence in $R(T)$, which is finite dimensional. Hence by the Heine-Borel theorem, ($T x_{n}$) has a convergent subsequence. This shows that T is compact. Also, being finite dimensional, $R(T)$ is closed in X by Proposition 3.1 .

Conversely, let T be compact and $R(T)$ be closed in X. Then $T: X \rightarrow R(T)$ is a continuous map from the Banach space X onto the

Banach space $R(T)$. By the open mapping theorem ([L], 11.1), there is $\delta>0$ such that $\mathrm{y} \in \mathrm{R}(\mathrm{T})$ and $\|\mathrm{y}\| \leq \delta$ imply $\mathrm{y}=\mathrm{Tx}$ for some $\mathrm{x} \in \mathrm{X}$ with $\|x\|<1$, i.e.,

$$
\{y \in \mathbb{R}(T):\|y\| \leq \delta\} \subset\{T x:\|x\|<1\}
$$

Since T is compact, the closure of the set $\{T x:\|x\|<1\}$ is compact. This shows that the closed ball of radius δ in $\mathbb{R}(T)$ is compact. Hence $\mathbb{R}(T)$ is finite dimensional ([L], 6.9). //

COROLLARY 3.9 Let $P \in B L(X)$ be a projection. Then P is of finite rank if and only if P is compact.

Proof Since $R(P)=Z(I-P)$ is closed, the result is immediate from Proposition 3.8. //

Problems

3.1 If Y is an m dimensional subspace of X, then there is a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of Y such that $\left\|y_{j}\right\|=1$ and $\operatorname{dist}\left(y_{j}, \operatorname{span}\left\{y_{1}, \ldots, y_{j-1}\right\}\right)=1$. Can we have, in fact, $\operatorname{dist}\left(y_{j}, \operatorname{span}\left\{y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{m}\right\}\right)=1$?
3.2 Let $X=Y \oplus \mathbb{Z}$, and let $x_{1}, \ldots, x_{m}\left(\right.$ resp. $x_{1}^{*}, \ldots, x_{m}^{*}$) form an ordered basis of Y (resp., Z^{\perp}) such that $\left\langle x_{i}, X_{j}^{*}\right\rangle=\delta_{i, j}$. Then

$$
\left\|x_{j}^{*}\right\|=1 / \operatorname{dist}\left(x_{j}, X_{j}\right)
$$

where $X_{j}=Y_{j} \oplus Z$, with $Y_{j}=\operatorname{span}\left\{x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m}\right\}$.
3.3 Let t_{1}, \ldots, t_{m} be the nodes in [a,b] for the piecewise linear hat functions e_{1}, \ldots, e_{m}. Let $\tilde{X}=\operatorname{NBV}([a, b])$, and for $\tilde{x} \in \tilde{X}$

$$
Q \tilde{x}=\sum_{j=1}^{m}\left[\int_{a}^{b} e_{j}(t) d \tilde{x}(t)\right]_{j}
$$

where f_{j} is the characteristic function of the set $\left[t_{j}, b\right], j=$ $1, \ldots, m$. (In case $t_{1}=a$, we take $f_{1}(a)=0$.) Then Q is the projection on $\operatorname{span}\left\{f_{1}, \ldots, f_{m}\right\}$ along $\left\{\tilde{x} \in \tilde{X}: \int_{a}^{b} e_{j}(t) d \tilde{x}(t)=0, j=\right.$ $1, \ldots, m$ and has norm 1. It can be identified with the adjoint of the projection P of Example (iii).
3.4 $T \in B L(X)$ is of finite rank if and only if there exist x_{1}, \ldots, x_{n} in X and $x_{1}^{*}, \ldots, x_{n}^{*}$ in X^{*} such that

$$
T x=\sum_{j=1}^{n}\left\langle x, x_{j}^{*}\right\rangle x_{j}, \quad x \in X
$$

and in that case,

$$
T^{*} X^{*}=\sum_{j=1}^{n}\left\langle x^{*}, x_{j}\right\rangle x_{j}^{*}, x^{*} \in X^{*}
$$

One may assume without loss of generality that the sets $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{x}_{1}^{*} \ldots, \mathrm{x}_{\mathrm{n}}^{*}\right\}$ are linearly independent.
3.5 If $T \in B L(X)$ is of finite rank and $A \in B L(X)$, then $T A$ and AT are of finite rank, and $\operatorname{tr}(T A)=\operatorname{tr}(A T)$.

