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2. PROJECTION OPERATORS

A projection operator allows us to decompose a Banach space X as
well as a commuting bounded operator T on X . In this way, we are
able to concentrate only on a 'part' of X, or of T . These
projection operators will often occur in the spectral theory as well as

in various approximation procedures that we shall study.

A complex Banach space X is said to be decomposed by a pair
(Y.Z) of its closed subspaces if X =Y +Z and YNZ={0} . In
this case, we write

X=Y®7Z.

This happens if and only if every x € X can be written in a
unique way as y +z with YE€Y and z€ Z ; if we let Px =y ,
then P 1is a linear map from X to X and satisfies P2 =P, i.e.,
P 1is a projection. Also, the set {(x.Px) : x € X} is closed in X x
X . This can be seen as follows. Let X X and Pxn -y . Since
Pxn €Y and Y is closed, we see that y € Y . Also, X - Pxn €7
and Z 1is closed, so that x -~y € Z . Since x =y + (x-y) with
vyv€Y and x -y €Z ., we have Px =y . This shows that P is a
closed operator; the closed graph theorem tells us that P 1is, in fact,
continuous ([L], 10.3). This operator P 1is called the projection
from X on Y along Z .

On the other hand, starting with a projection operator P € BL(X)

we obtain a decomposition of X as follows: Let Y = R(P) and

Z = Z(P) . Since P is continuous, Z 1is closed; also, since Y =
Z(1I-P) , where I - P is continuous, we see that Y is closed.
Moreover, for every x € X, we have x = Px + (x-Px} , so that

X=Y+2Z . Clearly, x €YNZ implies x = Px = 0 . Thus,

X = R(P) ® Z(P) .
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It is worthwhile to note that for P € BL(X) , we have

(2.1) either P =0 or 1P 2 1.

This follows easily from I[IPll = HP2H < IIPII2 .

Let X be decomposed by (Y,Z) and consider T € BL{X) . We say

that T 1is decomposed by (Y,Z) if T(Y) CY and T(Z) CZ , i.e.,

if Y and Z are invariant subspaces for T .

In this case, if we let TY =T v : Y=Y and TZ =T 7 VAR WA

then for
x=y+z,vy€Y,z€Z,
we have
Tx = TYy + T,z .

This allows us to write

T=T,®T

We now give a criterion for T to be decomposed by (Y.Z) .

PROPOSITION 2.1 Let X =Y® Z and P be the projection on Y along

Z . Then T € BL(X) is decomposed by (Y.Z) if and only if PT = TP ,

i.e., T and P commute. In this case, we have

T, = PTP‘Y and T

v 2 = (I-P)T(I-P) |,

Proof PT = TP if and only if PTx = TPx for all x € X if and only
if PTy + PTz = TPy + TPz for all y €Y and z€Z , i.e.,

PTly + PTz = Ty for all y €Y and z € Z if and only if PTy =Ty
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and PTz = 0 for all y €Y and z € Z (upon applying P to both
sides). This happens if and only if Ty € Y and Tz € Z for all
vyE€Y and z€Z, i.e., T(Y)CY and T(Z) CZ . The rest is

easy. 7/

Let us now relate the results of this section to the adjoint

considerations of Section 1.

PROFOSITION 2.2 (a) Let X =Y ® Z . Then
X =zle vyl .

If P is the projection on Y along Z , then P* is the projection

on Zl along Yl ;  thus,
(2.2) R(FY) =75 and z(F =Y .
. 1 ¥ .
The linear map F : Z7 =Y given by
3
Fy =Yy Y
is one to one and onto.

T, ® T, . Then

(b) Let TEBL(X) and T=T, 0T,

t .3 t 3 3
T = (T),L 8 (T )yl .

The map (T*)Zl can be identified with (TY)* as a linear map via the

map F , i.e.., the following diagram commutes
y N N
3 %
(T),L 1 l (Ty)

L F %

zZm — Y



20

Proof (a) Since P is a projection, we have

.2 D% 3¢

(F)™ = (F)

1}
g

Also, by 1.3(c),

Y,

7(F%) = r(P):

R(FY) = Z(I-F%) = R(I-P) = 7+ .

Hence P* is a projection from X* on Z'L along Y'L . Thus,
X=ztevl.
Now, let y* € Zl . If Fy* = y* y = 0 , then <y*,x> =0 for

all xe€ZUY , i.e., y* = 0 . This shows that the map F 1is one to

one. Next, for w* ey , define y* € X* by
G =<w.Px>, x€EX.
Then y* € Zl and Fy* = w* . Thus, the map F 1is onto.

{(b) Since T 1is decomposed by (Y,Z) . we see by Proposition

2.1 that TP = PT . Hence

so that T is decomposed by R(PY) = z' and Z(P') = Y' .

Lastly, for y* € Zl and y €Y , we have

3 _ % 3¢
(Ty) Fy Ly> = <Fy ,Tyy>

<y*,Ty>

Ty

(T "y

<F(T*)Zly*,y> )
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This shows that we can identify (T*)Zl with (TY)* via the

map F . /s

The result in part (a) of the above proposition can be illustrated

as follows.

Yl
Z
n Y x*‘P*x*
xX=Px £ Ve X Z \\
e N
s N 3
e
& Y T
{
Px |
{
*
P*x
‘Figure 2.1
So far we have not said anything about the existence of a
decomposition of X . Indeed, given a closed subspace Y of X ,

there may not exist any closed subspace Z of X such that

X=Y®Z . Such is the case if X is the space of all complex-valued
bounded functions on [a,b] and Y = C([a.b]). (See [F].) However, if
Y 1is a finite dimensional subpace of a Banach space X , then there
exist many closed subspaces Z of X such that X =Y @ Z , as we
shall see in the next section. We now show that if X is a Hilbert

space, then every closed subspace Y of X can be 'complemented', and

that too in a canonical manner.

PROPOSITION 2.3 lLet X be a Hilbert space and Y be a closed

subspace of X . Then

X=Y® Yl .
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The projection P on Y along Y"' satisfies
P=0 or IIPI =1, and
Px,x> >0 for all x € X .

In particular, P is self-adjoint. Conversely, if a projection

P € BL(X) is normal, then
r(P)L = 2(P) .
Proof Let x € X and d = dist(x,Y) . Find v, € Y such that
le-—ynll ->d as n-=>,
By the parallelogram law,

2 2 2 2
2lIx: ynll + 2I|x—ymll = Il2x—yn—ymll + Ilyn—ymll .

Now,

2d < 2le—(yn+ym)/2ll = Il2x—yn—ymll < le—ynll + IIx—ymlI ,
which tends to 2d as n,m -» ® . Hence Ilyn--ymll2 -0 as n,m=>®,
i.e., (yn) is a Cauchy sequence in Y . Let A €Y, since Y

is closed. We show that x -y € Y* . Let Yo €Y with liygli =1 .

Since
x -y = [(xy) - &v.ydy5] + V5575, -
the Pythagoras theorem shows that

le—yll2 = li(x~y) - (x—-y,yo>yoll2 + |<x—y,y0>|2 .



x—y—(x—y,yo>yo \\

\

Figure 2.2
On the other hand, since the element y + <x—y,yo>yo belongs to Y .,
lix=yll = d £ li{x~y) - <x—y,yo>you .

Hence (x—y,yo> =0, i.e., x -y is orthogonal to Vo - Since Yo

is an arbitrary element of norm 1 in Y ., we see that x -y € Yl

Thus, x =y + (x~y) with y €Y and x -y € Yl . Since

YNY = {0}, wehave X=Y &Y.

Let P be the projection on Y along Yl . Then for all x € X ,

<Px,x> = <{Px,Px> + <{Px,x-Px>

<Px,Px> 2 0 .

This implies, in particular, that <Px,x> is real for all x € X .
Hence by (1.8)., P is self-adjoint. Also, for x € X , the Pythagoras

theorem shows that

Il = IPx + (x=Px)II> = 1P + lix-Pxli®
since <Px,x-Px> = O . Thus, IPxI® < Ixl® , i.e., IPN <1 . But we
always have P =0 or Pl > 1 for any projection P . Hence in the
present case, P =0 or Pl =1.

Lastly, let P € BL(X) be a normal projection. Then by (1.8),
Z(P) = Z(P¥) . But by Proposition 1.3(c), Z(F*) = R(P) . Hence

7(P) = R(P)" . 7/
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The projection on a closed subspace Y of a Hilbert space X
along its orthogonal complement Y'L is called the orthogonal
projection on Y . Thus, a projection P € BL(X) is orthogonal if and

only if Z(P) = R(P)* .

Before we conclude this section, we introduce the concept of the
gap between two closed subspaces of a Banach space X and relate it to
projections on them.

Let Y and Y be closed subspaces of X . If Y = {0} . let

6(Y,?) = 0 , and otherwise let
6(Y,?) = sup{dist(y,?) Py EY , liyll =1} .
Thus, &(Y.Y) 1is the smallest number & such that
dist(y.Y) < 6liyll for all y €Y .

It is clear that O < &6(Y.Y) <1 and &(Y.Y) = 0 if and only if
YCY . We note that 5(Y.Y) can be zero even when Y # Y , and may
not equal 6(?,Y) . To mend these matters, define the gap between Y

and Y by
(2.3) 5(Y.Y) = mx{s(Y.Y) . &Y.} .

Then &(Y,Y) =0 if and only if Y =Y and &(Y.Y) = 6(Y.Y) .
Let P and P be projections onto Y and ¥ , Tespectively.
Then it follows that

5(Y.Y) < n(p-F)pnn ,
(2.4)

3(Y.Y) < mex{(P-F)Pu , u(F-P)Bu} .

In case X 1is a Hilbert space and P as well as P are

orthogonal projections, then it can be easily seen that



8(Y.Y) = n(p-Fypu

g -
(2.5)
5v.9) = max{u(P—"ﬁ)Pu2 , u(ﬁ—P)ﬁnz} .
In fact, Kato has proved that
(2.6) 5(7.Y) = uP—ﬁu2 < uq—éu2 ,

where Q and Q are any projections on Y and Y respectively ([K].
Problem 6.33, Theorems 6.34 and 6.35). In particular, & is a metric

on the set of all closed subspaces of a Hilbert space.

Y
y
\
\
\
\\ \
~
VS ”
\\ N~ Y
6 y
Figure 2.3

S(Y,?) can be interpreted to be the sine of ‘the acute angle between Y
and Y ' . (See [GV], p.22.)

Problems

2.1 If P is a projection, then I - P is a projection on Z(P)

along R(P) ; if P is orthogonal then so is I - P .

2.2 Let Yl""'Yn be closed subspaces of X . Then X = Y1 + ...+ Y

and Yi n Yj = {0} for i#j (i.e.. X = Y1 & ... 8 Yn } if and only

n

if there are projections Pl""’Pn such that R(Pi) = Yi , Pin =0
if i#3j, and I = P1 + ...+ Pn . Let T € BL{X) . Then
T = TY @ ... 8 TY if and only if TPi = PiT for i=1,....,n .

1 n
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2.3 Let P and Q be projections. (i) P + Q is a projection if and
only if the Jordan product PoQ = (PQ+QP)/2 =0 , and then PQ =0 .
(ii) For P and Q orthogonal, PQ =0 if and only if PoQ = O .

(iii) (P-Q)% + (I-P-Q)2 = I and (P-Q)> commutes with both P and Q

2.4 let X be a Hilbert space and Y a closed subspace of X . If
(ua) is an orthonormal basis of Y , then the orthogonal projection on

Y 1is given by

3

E x,u>u , x€X .
o T«
o

(Cf. 22.6 of [L].) For x € X, Px 1is the best approximation to x

from Y , i.e., lix-Pxll

dist(x,Y) . (Cf. 23.2 of [L].)

2.5 The map F of Proposition 2.2 which sends y* € Z'L to y*lY need

: 3
not be an isometry of Z'L onto Y .

2.6 For YCX , let SY ={y€Y : liyl =1} . Let Y and ¥ be

closed subspaces of X . Define

0 ., if Y = {0}
(2.5) 4(v.Y) = sup{dist(y.S¢) : y €Sy} . if Y # {0} # ¥
2 , if Y#{0o}., Y={0}.

Then d(Y.Z) £ d(Y,?) + d(?,Z) for a closed subspace Z of X . Let
(2.6) aY.¥) = mex{a(y.¥) . a¥.v)} .
Then d 1is a metric on the closed subspaces of a Banach space X .

2.7 Let X =C" and SUEREREL form an orthonormal basis of a closed
subspace Y of X . Let Q denote the n x k matrix whose j-th

column is qj . Then QHQ =1 and the orthogonal projection on Y

k’
. . H
is given by QQ .



