CHAPTER 5
HARMONIC MAPS BETWEEN SURFACES

5.1 NONEXISTENCE RESULTS

In this chapter, we want to present the existence theory for harmonic
maps between closed surfaces, possibly with boundary. In the two-dimensional
case, the regularity theory for minimizing maps is very easy, and the local
geometry of the image does not lead to any difficulties in contrast to the
situation we encountered in chapter 4 (cf. the example in section 4.1). This
allows us to investigate in more detail what obstructions for the existence of

harmonic maps are caused by the global topology of the image.

We first want to show some instructive nonexistence results which
illustrate the difficulties we shall encounter later on when we try to prove

existence results by variational methods.
Lemaire [L1] showed

PROPOSITION 5.1.1 There is no nonconstant harmonic map from the wnit disc D

onto  s° mapping 9D onto a single point.

Proof Suppose u : D~ 82 is harmonic with w(3D) = p € 52 . Since the
boundary values of u are constant, u 1s also a critical point with respect
to variations wuey , where Y : D > D is a diffecmorphism, mapping 0D onto

itself, but not necessarily being the identity on 9D .

Thus, one can use a standard argument to show that u 1is a conformal
map (cf. [L1] or [M3], pp.369-372). Since u is constant on 0D one can
extend it by reflection as a conformal map on the whole of IR2. But then

this conformal map is constant on a curve interior to its domain of
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definition, namely 9D , and thus has to be constant itself.

g.e.d.

The same argument was used independently and in a different context by

H. Wente [Wt]l.

One can obtain examples of homotopy classes which do not contain energy
minimizing maps by making use of the following special case of a result of

Morrey [M2].

LEMMA 5.1.1 For every € > O there exists amap %k : D =+ g2 of degree 1,

mapping oD onto somevpoint p € s? and satisfying
(5.1.1) E(k) < Area(s?) + e .
Such a map k 1s called e-conformal.
Proof of Lemma 5.1.1 wWe divide S° into B(p,8) and 32\3(9,6) .

All the maps to follow will be understood to be equivariant w.r.t. the

rotations of D and to those of S2 leaving p fixed.

First of all, for sufficiently small ¢ , we can map {zeaq: $ <z <1}
onto B(p,8) , {|z] = %} going onto 9B{(p,8) and {|z| = 1} going onto p
with energy smaller than € . On the other hand, {zet: |z| < 4} can be

mapped conformally onto SZ\B(p,ﬁ) , {]z] = #} going again onto 9B(p,S) ,
and the energy of this map, since conformal, equals the area of its image and
is hence smaller than the area of 82 . This proves the claim.

g.e.d.

It is guite instructive to look at the second map of the proof mere
closely. If we stereographically project 52 onto & , choosing the

. - . 2 .
antipodal point p of p as the origin, S \B(p,§) is mapped onto
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{]z] £ N} with N+ as § > 0. The conformal map used above is then just
given by =z + 2Nz . Thus; the preimage of {|z| < 1} , which corresponds to
the hemisphere centred at p , under this map is {lz[ < 5%& , i.e. shrinks to
a single point as N + « . In this way, we see how a singularity is created
in the limit of an energy minimizing sequence of degree 1 from D onto 52 '

mapping 0D onto p .

This heuristic reasoning will be made precise in Prop. 5.1.2 below, with

the help of the following easily checked

LEMMA 5.1.2 If £ : Zl > Z2 18 a map between surfaces, then

(5.1.2) Area(f(zl)) < E(£) ,

where the area is counted with appropriate multiplicity. Furthermore,

equality holds in (5.1.2) if and only if £ <s conformal.

As a consequence, we have for example the following result, again due to

Lemaire [L1l].

PROPOSITION 5.1.2 Let o be a homotopy class of maps of degree 1 from a
closed surface L of positive genus onto s? . Then the minimum of energy is

not attained in o .

Proof Let B be any disc in I and let € > 0 . Since B is conformally
equivalent to the unit disc D , Lemmata 5.1.1 and 1.3.2 imply that we can
find amap k : B *> S2 of degree *1 , mapping 0D onto some point p , and
satisfying (5.1.1). If we extend k to all of X by mapping IL\B onto p ,

then k : I > S2 still satisfies (5.1.1) and is of degree *1 .

If there would be an energy minimizing h in o , then h would have to
satisfy consequently

E(h) = Area(Sz)
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by Lemma 5.1.2, and would hence have to be conformal, by Lemma 5.1.2 again.
On the other hand, a conformal map of degree *1 has to be a diffeomorphism
which is not possible since I is by assumption not homeomorphic to 52 .
g.e.d.
The following example where some homotopy classes contain harmonic
representatives, while others do not, is again based on the ide; of Lemaire

{L1].

Let D be the unit disc in the complex plane, and k : D = 52 be a

conformal map mapping D onto the upper hemisphere and 09D onto the equator.
Furthermore, suppose that k is equivariant with respect to the rotations of

D and 82 (the latter onesleaving the north and south pole of S2 fixed).

We choose the orientation on 52 in such a way that the Jacobian of k

is positive.

Let D{0,r) be the plane disc with centre 0 and radius r (i.e.

D =D(0,1)) .

Let hr be a map from D(0,r) onto 52 which maps 0OD(0,r) onto the
north pole, is injective in the interior of D{(0,r) and has a positive
Jacobian therg, and is ¢e-conformal. We introduce polar coordinates (P,¢)
on D and define for 0 < r < 1 the mapping kr by

1 .
k(i-:;p-%—f——,cb] if r £

N
©
IA
=

r=1
kr(pld)) =
h (0, ) if 0

A
o
in
Lt

Using Lemma 5.1.1 it is easy to see that the energy of kr can be made

arbitrarily close to 67 if we choose r > 0 sufficiently small.

On the other hand, 67 is just the area of the image of kr , counted

with multiplicity. Hence, if there is an energy minimizing map homotopic to
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kr , its energy has to be 6T , and it therefore has to be conformal. Since
the boundary values are equivariant, this conformal map itself has to be
equivariant (otherwise there would exist infinitely many homotopic conformal
maps with the same boundary values which is not possible). This, however,
implies that it would have to collapse a circle in D to a point which is
not possible for a conformal map. Hence there is no energy minimizing map

homotopic to kr .

By letting hr cover 82 more than once, we obtain other classes
without energy minimizing maps by a similar argument. If hr . however, has
degree -1 , then kr is homotopic to a map of D onto the lower hemisphere
and hence homotopic to an energy minimizing map. Hence, in this example,
there are precisely two homotopy classes which contain energy minimizing maps,

while all the others do not.

The preceding example is discussed in [BC2] by means of explicit

calculations.

While Prop. 5.1.2 only excluded the existence of an energy minimizing

map, one can even show

PROPOSITION 5.1.3 IF Zl is diffeomorphic to the two-dimensional torus, and

Zz to g° s then there is no harmonic map h : Zl - Zz of degree

d(h) = %1 , for any metrics on Zl and 22 .

This result was obtained by Eells-Wood [EW] as a consequence of their
THEOREM 5.1.1 Suppose that Zl and Zz are closed orientable surfaces,

X(Z) denotes the Euler characteristic of a surface T , and dA($) is the

degree of a map ¢ .

Suppose h : Zl - 22 s harmonic with respect to metrics Y and g on
)
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L., and 22, resp. If
X(Z) + lam | [x@y| > o,

then h <1s holomorphic or antiholomorphic relative to the complex structures

determined by vy and g .

Thm. 5.1.1, together with the existence theorem of Lemaire and Sacks-
Uhlenbeck, to be proved below, also enabled Eeels and Wood to give an

analytic proof of the following topological result of H. Kneser [Kn2]

THEOREM 5.1.2 Suppose again that Zl and L, are closed orientable
surfaces, and furthermore X(Zz) < 0. Then for any continuous map

¢ Zl - 22

(5.1.3) la() | X(Z,) = x(T) .

Proof of Theorem 5.1.2 We introduce some metrics Y and g on Zl and

22 ; resp., and find a harmonic map h homotopic to ¢ by Thm. 5.3.1. By
Thm., 5.1.1, h is (anti) holomorphic in case ld(¢)| X(Z2) < X(Zl) . This,
however, is in contradiction to the Riemann-Hurwitz formula, which says
Id(h)l X(ZZ) = X(Zl) + r , r 2 0 for an (anti) holomorphic map h . There-
fore, (5.1.3) must hold.

q.e.d.
Before proving Thm. 5.1.1, we note another consequence

COROLLARY 5.1.1 If I, is diffeomorphic to S° , then any hammonic map

h s 21 - 22 18 (anti) holomorphic (and therefore constant, if X(Zz) <0) .

This is due to Wood [Wl] and Lemaire [L1].

Cor. 5.1.1 also follows from Lemma 1.3.4, since there are no nonzero

holomorphic quadratic differentials on 32 which easily follows from
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Liouville's theorem.
We need some preparations for the proof of Thm. 5.1.1.

We shall make use of some computations of Schoen and Yau {SY}] in the
sequel. It is convenient to use the complex notation. If pz(z) dzdz and
02(h) dhdh are the metrics w.r.t. to conformal coordinate charts on Zl and
22 , resp., then h as a harmonic map satisfies

20h
(5.1.4) h - + ——h _h-
zZz o zz

=0, cf. (1.3.4) .
LEMMA 5.1.3 At points, where Bdh or 3h , resp., 18 nonsero

(5.1.5) A log|on|?

2 w12
K, - Kz(lahl - |39

(5.1.6) A 1og|3n|?

2 = 12
Kl+K2(lahl - 8|5 ,

where K, denotes the Gauss curvature of Zi s and

2 o2 -
|3n]" = = n_-h-, | 3h

o P

Proof For any positive smooth function £ on Zl B

1 1
(5.1.7) A log £ = F: Af f2 P fzf§ .
Furthermore,
(5.1.8) A lo L = K
1. g p2 o

In order to abbreviate the following calculations, we define D as the

covariant derivative in the bundle h-l Tz

5 ¢ -9
D h =h + ESE hh
3/9z Tz zZ o zz°

(5.1.4) then is expressed as

(5.1.9) DB/BZ hE =0 .
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Since

-1 4
nTE,
2 = _ 1 39 = .
(5.1.10)  Ao“p - = % <Eb/az L h§> , using (5.1.9)
1

5 (Py/23P0 /00,0 B3) + piz Gy D3/35§5>

3 ) - _
= R[h*['ai]' h*{ﬁz"}' by hz} * ;15 (Dy/a2P57 Dy/a30z)

©

where R denotes the curvature tensor of 22

2. 1 -
= -Kzlahl J(h) + —p3 <Da/az S D8/3§h§> .

where J(h) = lBhIZ - |Shlz is the Jacobian of h . Moreover,
(5.1.11) ‘L‘—§"<h h-> ° i <h , h=> = —£'<h h-> <D h , D h—>
T 20z “z' 7z 9% Tz TZ 2 V2" 2 N9/dz 2" ¥/0z 2/ ]

P p

using again (5.1.9), and the fact that the complex dimension of 22 is 1.

(5.1.5) now follows from {(5.1.7), (5.1.8), (5.1.10), and (5.1.11), and
(5.1.6) can either be calculated in the same way or directly deduced from
(5.1.5), since léhlz = |35!2 and complex conjugation on the image can be

considered as a change of orientation.

g.e.d.

LEWMA 5.1.4 If h_(z,) = 0 , then

(5.1.12) lon]? = o |x|? near z = z_ ,

where T 1is a nonvanishing C2 function, and k is holomorphie. A

corresponding result holds for he .
Proof By (5.1.4), £ := hZ satisfies

le-| < o] .
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Therefore, we can apply the similarity principle of Bers and Vekua (cf. [B]
or [Hzl]), to obtain the representation (5.1.12) with HOlder continuous (¢ .
An inspection of the proof of the similarity principle shows that in our case
[ C2 (cf. [Hzl]l, p.210). (We note that a similarity principle can be
derived from Cor. 5.5.2 below which also contains the existence of solutions

of Beltrami equations, cf. [BJS].)

qg.e.d.

Proof of Theorem 5.1.1 Lemma 5.1.4 shows that the zeros z, of |8h|2 are

isolated, unless oh = 0., and that near each zi .

By
)

n,
|3h|2 =alz-z]| "+ ollz - =]
i i i

for some ai > 0 and some ni e N .

By Lemma 5.1.3 and the residue formula, unless dh = O

(5.1.13) f K - f . (|an]|? = |3n|%) = -In, .
1 2 i
z X
1
Similarly, if oh # O ,
2 -2
(5.1.14) f K, + f K, (|3n]“ = |3n]%) = -Im,
5 1 T 2 i
1 2
where m, € IN are now the orders of the zeros of |§h]2 .  Thus, since
|3hl2 - |§h[2 is the Jacobian of h ,
X(Zl) - d(h) X(Zz) <0, unless Jh = 0
and
X(Z;) +dm) x(E,) <0, unless 8h = O ,

and Thm. 5.1.1 follows.
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5.2 SOME LEMMATA

In this section, we want to derive some tools for our existence proofs.

First of all, we note

LEMMA 5.2.1 Suppose B, i8 a geodesic ball with centre p and radius s ,
s < %‘min(i(p), m/2k) , where > is an upper bound for the sécﬁional

curvature of N and 1i(p) <s the injectivity radius of p. If h: Q-+ N
18 energy minimizing among maps which are homotopic to some map g : § -~ By s

and 1f h(3Q) c B then also

0 ?
h(Q) < BO .

(for a suitable representative of h , again).

Proof By assumption, we can introduce geodesic polar coordinates (r,¢) on

B(p,38) (0 = r £ 3s) .

We define a map 7 in the following way:

m(x,$) = (r,$) if r < s
m{r,$) = (3(3s~x),9) if s<r< 3s
m(q) = p if g e N\B(p,3s) .

(Here, we have identified a point in B{p,3s) with its representation in

geodesic polar coordinates.)

Using Lemma 2.2.1, it is easily seen that 7 can be approximated by a
map satisfying the assumptions of Lemma 4.10.1.

g.e.d.

Moreover, we have the following result, based on an idea of Lebesgue and

extensively used by Courant in his study of minimal surfaces {cf. e.g. [Col).
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Suppose §! is an open subset of some two-dimensional Riemannian manifold

~ of class C3 , while S is any Riemannian manifold.

2

LEMMA 5.2.2 Let e Hy(%S) , Ew <D, x, ¢ %, -A* a lower bound for

0

the curvature X of L , § <min(l, 1(2)2, l/kz) . Then there exists some

r e (8,/8) for which u|8B(xO,r) n § is.absolutely continuous and
1 1
d(uxy) s ulx,)) <4mD?*(log 1/6) *

for all X 5 X, € BB(xo,r) n .

2
Proof we introduce polar coordinates on B(xo,r) , i.e.
as? = ar? + c%(z,0) a0® .

Since K = - —éﬁ (cf. [Bl], p.153) and G(0,0) = 0 , we infer

(5.2.1) G(xr,0) < 1/\ sinh Ar .

Now for xl ’ xz € BB(xo,r) and almost all r , since u 1is a Sobolev

function ulBB(xO,r) is absolutely continuous and

A

2T
(5.2.2) dulx)), ulx,)) < IO lug (x) ] a8

am [Jzﬂ luelz d@]%

A

where we assumed w.l.0.g. B(xo,r) <.

The Dirichlet integral of u on B(xo,r) is

1

E(u;B(xo,r))=2

2 1 2
[ (a1 + L lugl?) o s as .
B(xo,r) G

Thus, we can find some r € (5,/3) with

2
2 2D 2D
(5.2.3) [o lug (x,6) [ a0 < . = Tog 1/p
J L a8
s 6.8
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since for r< /8§ < 1/\ , G{(r,0) < 2r by (5.2.1).

The lemma follows from (5.2.2) and (5.2.3).

g.e.d.

Finally, we shall need the two-dimensional version of Theorem 4.10.1.
This also follows from Morrey's work on the minima of two-dimensional
variational problems. We shall present a proof which already illustrates
some of the ideas of the arguments in later sections and is based on Lemmata

4.10.2 and 5.2.2.

LEMMA 5.2.3 Suppose 30 # 9 , B(p,M) <s a disc in some surface T with
radius M < g&-, where K2 > 0 1s an upper bound of the Gauss curvature of
Bip,M) , and g : 00 » B(p,M) <s continuous and admits an extension

56 Hé(Q:B(PrM)) .+

Then there exists a harmonic map h : Q > B(p,M) with boundary values
g, and h minimizes the energy with respect to these boundary values. Vice
versa, each such energy minimizing map is harmonic. The modulus of continuity
of h can be estimated in terms of X , i(Z;) , M, K , and E(g) and the

modulus of continuity of g .

Proof (The idea is taken from the proof of Thm. 4.1 in [HW1l].) As in Lemma
4.10.3, we find a weakly harmonic map which minimizes energy among all maps

into B(p,M) with boundary values g .

By Prop. 2.4.2, every two points in B(p,M) can be joined by a unique
geodesic arc in B(p,M) , and this avxc is free of conjugate points. Suppose

q e Blp,M) , vy and v are unit vectors in TqZ , and ¢ are the

2 1'%

geodesic parametrized by arc length and starting at g with tangent vectors
T . ; 1 . .
Here, we can again define H2(Q,B(p,M)) unambiguously with the help of the

global coordinates on B(p,M) given by expP .



137

v,,v, . By Lemma 2.3.1

1’72

sin (tl
!V - v _1n(|<)

1 2| o S dle (8), e, (k)

as long as cl(t), cz(t) € B(p,M) .

Therefore, on B(p,M)\B(g,c) , with the help of (2.2.4)

.sin(ZMK)] N

d(c (t), c, (1)) = min[d(cl(e), e, (€)), ]vl - v2| amMc )

Consequently, there exists €. > 0 with the property that B_ := B(q,e)

0 0

n B(p,M) and Bl := B(p,M) satisfy the assumptions of Lemma 4.10.2 for

every g € B(p,M) and every € < 80 . Lemma 5.2.2 then implies that for

each x e {0 there exists a sufficiently small p > 0 with the property that
h(B(x,p) n Q) < B(g,€)

for some q € B(p,M) . p depends on € , A, i(f) , the energy of h (which

is bounded by the energy of g ), and the modulus of continuity of g .

Therefore, Lemma 4.10.2 implies the continuity of h . Higher
regularity then follows as in chapter 4.

g.e.d.
5.3 THE EXISTENCE THEOREM OF LEMAIRE AND SACKS-UHLENBECK

We are now in a position to attack the general existence problem for

harmonic maps between surfaces.

For this purpose, let Zl and 22 denote compact surfaces, 322 =,

but Zl possibly having nonempty boundary. Let ¢ : Zl - 22 be a
continuous map with finite energy. We denote by [¢] the class of all

continuous maps which are homotopic to ¢ and coincide with ¢ on 821 , in

case 821 £ 0.
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We choose s = %~min(i(22), T/2K) , where K2 > 0 is an upper

curvature bound on 22 , and i(Zz) is the injectivity radius of 22 .

Let 60 < min(l,i(Zl)z, 1/A2) { —XZ being a lower bound for the

curvature of Zl ) satisfy
3 -1
(5.3.1) 2m * E{()° (log 1/60) 2 <sg/2,

where E(¢) is the energy of ¢ , and

=
(5.3.2) d(xl,xz) < Vdo d(¢(x1), ¢(x2)) < s/2 for Hyo¥, € 821 R
Let 0< 6 < 50 - There exists a finite number of points x, ¢ Zl ,

i=1,...,m=m(8) , for which the discs B(xi,6/2) cover Zl .

We let u, be a continuous energy minimizing sequence in [¢],

E(un) = E($) w.l.0.g. for all n .

Applying Lemma 5.2.2 and using (5.3.1) and (5.3.2), for every n , we

can find ¢ §<x < Y8 , and P, g€ L. with the property that
7

n,1l’ n,1 1 2

(5.3.3) _ un(BB(xl,rn,l)) c B(pn'l,S)
where we defined O0B(x,r) = d(B(x,x) n L) .

We now have two possibilities:
either
1) There exists some ¢ , 0 < § < 60 , with the property that for any
X € Zl , some r (depending on % and n ) with § < r < V8 and with
un(§B(x,r)) c B(p,s) for some p € 22 , and every sufficiently large n ,
unlB(x,r) is homotopic to the solution of the Dirichlet problem
g :B(x,r) +~ B{p,s)

(5.3.4) _ _ harmonic and energy minimizing
g|dB(x,7) = un‘BB(x,r)
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(The existence of g is ensured by Lemma 5.2.3; g is actually unique by
Thm. 4.11.1, but this is not needed in the following constructions.)

or

2) Possibly choosing a subsequence of the u, , we can find a sequence of

. (K > >
points X € Zl , and radii rn o, xn X, € Zl A

r + 0 , with

n

un(BB(xn,rn)) c B(pn,en) for some p e 22 v P > p e 22 v € -+ 0 (using
Lemma 5.2.2), but for which un[B(xn,rn) is not homotopic to the solution

of the Dirichlet problem (5.3.4).
In case 1), we replace un on B(xl,r ) by the solution of the

n,l

Dirichlet problem (5.3.4) for x = x and «r We can assume

1 = Tn,1 0
o1 > rl and, using the interior modulus of continuity estimates
7
for the solution of (5.3.4) (cf. Lemma .5.2.3) that the replaced

maps, denoted by ui B converge uniformly on B(xl,é—n) , for any

0<n<¢&§ . By Lemma 5.2.1
(5.3.5) E(ul) < E(u)
o Jo un = . -

By the same argument as above, we then find radii «r §< r, 2‘< VS , with
7

n,2’

1
un(BB(XZ,rn'Z)) c B(pn'z,s)
for points P4 € 22 .
14

Again, we replace ui on B(x2,rn 2) by the solution of the Dirichlet
14

problem (5.3.4) for x = x and r = oo We denote the new maps by ui .
N s

i ° - - a > .
Again, w.l.0.9., :rn’2 r,

If we take into consideration that, by the first replacement step, ui
in particular converges uniformly on B(xz,rz) n B(xl,ﬁ—n/Z) , if 0<n<§,
we see that the boundary values for our second replacement step converge

uniformly on SB(xz,rn,z) n B(X1,5~ﬂ/2) .
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Using the estimates for the modulus of continuity for the solution of
(5.3.4) at these boundary points (cf. Lemma 5.2.3) we can assume that the maps

ui converge uniformly on B(xl,ﬁ—n) U B(xz,é—n) , if 0<n < § .

Furthermore, by Lemma 5.2.1 again and (5.3.5)
2 1
<
E(un) < E(un) < E(un) .

In this way, we repeat the replacement argument, until we get a segquence

m .
u_ =: v_ , with
n n

(5.3.6) E(Vn) s E(un)

which converges uniformly on all balls B(xi,5/2) , 1i=1,...,m , and hence

on all of Zl ;, since these balls cover Zl .

We denote the limit of the v by u . By uniform convergence, u is

homotopic to ¢ .

Since E(vn) < E(P) by (5.3.86), the Vh converge also weakly in H; to
u , and by lower semicontinuity of the energy w.r.t. weak Hé convergence and

since the v, area minimizing sequence by (5.3.6), u mninimizes energy in

its homotopy class.

In particular, u minimizes energy when restricted to small balls, and
hence it is harmonic and regular by Lemma 5.2.1 and Lemma 5.2.3. Observing
that if ﬂz(Zz) = 0 , any two maps from a disc into 22 are homotopic, we

obtain

THEOREM 5.3.1 Suppose I and L, -are compact surfaces, 3L, =9 , and

ﬂ2(22) =0. If ¢ : Zl - 22 18 a continuous map with finite energy, then
there exists a harmonic map u : Z, I, which is homotopic to ¢ ,
cotneides with ¢ on oL, in case AL, # P and is energy minimizing among

all such maps.
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Theorem 5.3.1 is the fundamental existence theorem due to Lemaire ([L1l],

{L21) and Sacks-Uhlenbeck ([SkUl, in case 821 =0) .

A different proof was given by Schoen-Yau [SY2]. The present proof was

taken from [J6].

In the case of the Dirichlet problem, it is actually not necessary that
22 is compact, but only that it it homogeneously reqular in the sense of

Morrey [M2], cf. [L2], since the boundary values prevent a minimizing

sequence from disappearing at infinity.

Furthermore, the image can be of arbitrary dimension, not necessarily 2,
for Thm. 5.3.1 to hold. This is also easily seen from the present proof.
Finally, if one does not prescribe the homotopy class of u , the existence

of a harmonic map was already proved by Morrey [M2].

5.4 THE DIRICHLET PROBLEM IF THE IMAGE IS HOMEOMORPHIC TO 32 .
TWO SOLUTIONS FOR NONCONSTANT BOUNDARY VALUES

In this section, we want to show the following result of Jost [J7] and

Brezis and Corxcon [BC2] (in the latter paper, only simply connected domains

are treated).

THEOREM 5.4.1 Suppose 21 18 a compact two-dimensional Riemannian manifold

with nonempty boundary 821 s and 22 is a Riemannian manifold homeomorphic

to s (the standard 2-sphere), and VY : 321 - Zz is‘a continuous mop, not

mapping 821 onto a single point and admitting a continuous extension to a

map from Zl to I

5 with finite energy. Then there are at least two

homotopically different harmonic maps u : I, v I, with u]BZl =1 , and

both mappings minimize energy in their respective homotopy classes.

Proof wWe first investigate more closely case 2) of section 5.3. W.l.o0.g.
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E(pn,en) I B(p,2€n) and En < s/2 for all n , and thus the solution g of

(5.3.4) for =x = X oor=r is contained in B(p,ZEn) by Lemma 5.2.1.

Since unIB(xn,rn) is not homotopic to g , it has to cover -
Zz\B(P’ZEn) . If we define
u  on X \B(x_,r )
n 1 n n
g on B(xn,rn)

then we see that

{5.4.1) lim E(un) z lim E(unizl\B(xn,rn)) + lim E(unlB(xn,rn))

v

i a ) o+
lim E(un) Area(Zz) ’
since E{g) +* 0 as n - © , because

21 5
J ]ge(rn,ﬁ)l dae » o
0

as n r o (cf. (5.2.3)).
{Furthermore, by Lemma 5.1.2
E(v;B) = Area(v{(B)) ,
and equality holds if and only if v is conformal.)

We now define

B, = inf{E(v) : v ¢ a}

for a homotopy class o of maps with v]BZl P, and

E := min Eu -
a

We first show the existence of a minimizing harmonic map in any homotopy

class o with

<
{5.4.2) Eu E + Area(Zz) .
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We choose a minimizing sequence u, in o with
< + A .
E(un) E rea(Zz)
Assuming that 2) holds, we define ﬁn as above. Since clearly
Y >
E(un) 2 E ,

this would contradict (5.4.1), however. Therefore, as shown above, we obtain
an energy minimizing harmonic map in o (cf. [BCl] for a similar argument).

Now let O be a homotopy class with

and let W an energy minimizing map in & , i.e. E(1) = E . We want to

construct a map v in some homotopy class O # O with
(5.4.3) E(v) < E(u) + Area(Zz) .

Then the arguments above show that we can find a harmonic map of minimal
energy in @ . In order to complete the proof, it thus only remains to

construct v .

By Thm. 5.5.1 below, the metric on 22 is conformally equivalent to the
standard metric on 82 , and thus, we can use 52 as a parameter domain for
the image. Since Y is not a constant map, also u is not a constant map,
and hence we can find a point %, in the interior of Zl for which
dﬁ(xo) # 0 . Rotating 52 , we can assume that ﬁ(xo) is the south pole Py -
We introduce local coordinates on the image by stereographic projection
T 52 -+ € from the south pole py - dﬂ(po) then is the identity map up to a

conformal factor. By Taylor's theorem, WOGIBB(XO,E) is a linear map up to

an error of order 0(82) ; i.e.

(5.4.4) o) - a(molt) (xy) (x = x,)| = 0(e?)
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for x € SB(XO,Q) .
We now look at conformal maps of the form
w=-az + b/z , a,be T, a=a, + ia_ , b=Db, + ib_. .
The restrictions of such a map to a circle p(cos 6 + i sin 0), in € is
given by
( b b,
= + - + - i
u lalp ) cos B ['p azp} sin 6
b2 bl
v = {azp +,——] cos O + (alp - 75} sin O ,
where w = u + iv .
Therefore, we can choose a and b in such a way that w restricted

to this circle coincides with any prescribed nontrivial linear map. This map

is nonsingular if

2 2
4 Pty
po# 5 5
aZ + a
1 2
W.l.0.9.
4 b§+b§
(5.4.5) P < )
aj + a,

(otherwise we perform an inverxsion at the unit circle).

Hence w can be extended as a conformal map from the interior of the
circle p(cos O + i sin 0) onto the exterior of its image. (If equality
holds in (5.4.5), then this image is a straight line covered twice, and the

exterior is the complement of this line in the complex plane.)
We are now in a position to define v .

On Zl\B(xO,s) we put v = 4 .
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On B(xo,e—ez) we choose a conformalmap w as above which coincides on

~ 1
the boundary with the linear map 'd(ﬂou)(xo), and put v =T “ow .

1-g

On B(xo,e)\B(xo,E-Ez) we interpolate in the following way. We

introduce polar coordinates r,¢ and define

£(¢) = (mol) (g, 9¢)

~ 1 ~
(9 = d(med) (xo) (€,9) = 7oz A(Tod) (x) (e-e%,9)

and

E(r9) = (£(0) - g(@) + S+ T (g(d) - (1-0) £(d) .
€
Thus t(r,¢) coincides with £(¢) and g(¢) , resp. for r = € and
2
r = g-g , resp.

The energy of t(r,¢) on the annulus B(xo,e)\B(xo,€—€2) is given by

€ 2T ~
E(t) = f ) f (-l;; HOEETOI |[i2_ —l—f] £ (4)
r=eg-g~ J¢=0 ‘e r €

r

1 2
+ {E - —3) g' (¢) ] ] rdrdd .
. €
Using (5.4.4) and |£' ()] = 0(e) , |g'(®)| = O(e) , we calculate

3
E(t) = o(e™) ,
and hence also

-1 3
E(T “ot) = 0(e7) ,
-1 2
We put v = T "ot on the annulus B(xo,a)\B(xo,s-e ) . Therefore

E(v)

B (3] 2, \B (g ) + B Tow|Blxg,eme)) + B(1 ot |B(x,,€) \B (xy,e-e))

IA

E() - o(e?) + Area(n,) + o) ,

since E(ﬁlB(xo,E)) = 0(62) , because dﬁ(xo) # 0 , and the energy of ﬂ_low
is the area of its image, as T and w and hence also ﬂ-low are conformal.
Thus, for sufficiently small € > 0 , (5.4.3) is satisfied, and the proof is

complete.
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5.5 CONFORMAL DIFFEOMORPHISMS OF SPHERES. THE RIEMANN MAPPING THEOREM

THEOREM 5.5.1 Suppose I s a compact two-dimensional Riemannian manifold
diffeomorphic to s? . Then there is avconfbrmal (and hence harmonic)

diffeomorphism h : 253,

This is of course well-known. We want to provide a variétional proof of
Theorem 5.5.1, in order to illustrate on one hand how one can overcome the
difficulties arising from the noncompactness of the action of the conformal
group on 82 , and on the other hand the idea to minimize energy in an a

priori suitably restricted subclass of mappings.

Proof of Thm. 5.5.1 We choose three different points Zy v 2y 0 Zg in S2

and three different points pl ‘ p2 . p3 in L . Let D be the class of all

diffeomorphisms v : 52 + L satisfying

(5.5.1) v(zi) =p; (i=1,2,3) ,

and let 5 be the weak H;-closure of D .

1

We now claim that a sequence (v_) in D converging weakly in H2

n'nelN
is equicontinuous.  For each =z € 52 and € > 0 , by Lemma 5.2.2 we can find

§ >0 and for each n e N then some rn € (5,/3) for which
i <
dlam(vn(BB(x,xn)) <€ .

Here, § 1is independent of 2z and n , since the energy of a weakly
convergent sequence is uniformly bounded. We can choose ¢ so small that

B(z,/8) contains at most one of the points =z z, . Now vn(BB(z,rn))

17 %20 %3
divides I into two parts, one of them being vn(B(z,rn)) , since Vi is a

diffeomorphism. If € is chosen small enough, then the smaller part, i.e.

the one having diameter at most € , contains at most one of the points Py v
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b

P and hence has to coincide with vn(B(z,rn)) . In particular,

27 "3

diam(vn(B(z,S)) <€
and the v, ~are equicontinuocus as claimed.

We now choose an energy minimizing sequence in 7 . A subsequence then

converges weakly in H; towards some v € D . Since the energy is lower

semicontinuous with respect to weak Hl

5 convergence, v minimizes energy in

D . We also can find a sequence of diffeomorphisms (vn)nsni in D
converging weakly to v . Since the v, ~are equicontinuous as shown above,
they converge uniformly to v . In particular, v is continuous and
homotopic to the v (We can of course assume that all the v =~ are
homotopic.)

Moreover, if we have a sequence of diffeomorphisms (wn)nEJN from S2

onte I , not necessarily satisfying (5.5.1), and converging uniformly and

weakly in Hl towards some w , then we still have

2

(5.5.2) E(v) < E(w)

since the normalization (5.5.1) can always be achieved by composing W with
a Mobius transformation, i.e. a conformal automorphism of S2 , without

changing E(wn) (cf. Lemma 1.3.3).

Hence, if Gt : 82 hd 82 is a family of diffeomorphisms, depending

smoothly on t , with 00 = id , then

(5.5.3) Ji-E(voot) 0,

at t=0 _

since Voct is the uniform and weak Hl-limit of vnoo

2 t

We introduce local coordinates z = x+iy on 52 by stereographic

projection and put
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2 2
E = IVXl v F= <erV§> v G = ‘Vy|
(E, P, G are defined almost everywhere, since Vv ¢ H; )
Ot = £ + in
aot
a9 —— = + i -
(5.5.4) Btlt=0 v+ iw

Using Lemma 1.3.2, the energy is given by

E(v)=%[ (B + G) dx dy
a

and
1 2 . 2 2 2. -1 . -
E(veg )=3 JE {E(gY + ny) - 2F(gx€y + nxny) +GE + nx)}(axny - zynx) dax dy

Since go(z) =gz and hence for t =0 & =n =1, & =n. =0, (5.5.3)
then implies

! {e - e (v, - wy) + 2}?(\)y + wx)} dx dy = 0 ,
c
Putting ¢ := E = G - 2iF , this becomes
f
Re J OV + iw)i dx dy = 0 .
c

Replacing v + iw by W= iV , we see that the imaginary part likewise

vanishes, and thus
(5.5.5) J d{v + iw)E dx dy = 0 .
T

Given v and @ , we can always find a family of diffeomoxphisms (for small
t ) satisfying (5.5.4), for example

Ot(z) = x + tv(x,y) + i(y + tw(x,y)) .
Hence (5.5.5) implies

(5.5.6) 9= =0,
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i.e. that ¢ is holomorphic.

Since ¢ represents a quadratic differential on S2 , in stereographic

projection we have ¢(»®) = 0 . Hence
b =0

by Liouville's Theorem, i.e. v satisfies the conformality relations
2 _ 2
(5.5.7) v, ™ = v,

<vx,v?> =0

almost everywhere.

. . s . 1.2
For notational convenience, we introduce local coordinates (v ,v') on

L . We want to exploit that v is weakly (anti)conformal and the uniform
limit of diffeomorphisms in order to show that the Jacobian vivi - vivi

v has the same sign almost everywhere in 52 (cf. 9.3.7 [M3]). Here,

of

additional difficulties arise from the fact that v so far is only known to

be of class CO n Hé ;, but these problems can be overcome with the arguments

of Lemmata 9.2.4, 9.2.5 of [M3].

DEFINITION 5.5.1 Suppose G s a plane domain of class cl s ¢ € cl(G,Eg),

z ¢ $(36) .

Then m(z,0(3G)) s defined to be the winding number of the curve ¢{3G)

We Lo To B

If only ¢ ¢ CO(G,IRz), then

m(z,0(39G)) := lim m(z,¢n(8G))

nre

for any sequence ¢n € cl(BG,Eg) which converges uniformly to ¢ on 3G .

That m(z,0(3G)) is well defined, follows from elementary properties of
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winding numbers (cf. e.g. [Fe]).

LEMMA 5.5.1 G a. plane domain, ¢ € & a Hé(G,ﬂRz). Then for every =x. € G,

0
there exists a set Cxy) with Hl(c(xo)) = 0 , where HY is 1-dimensional

Hausdorff measure, such that for all R ¢ Clx,)

J J(P) dx = J m(z,¢(3B(xO,R))'dz
B(x/R) ¢(B(xO,R))
if B(xO,R) cc G
_ .12 1.2
(§(¢) 1= ¢x¢y ¢y<1>x)

Proof we can find a sequence ¢n € Cl(D) ;, D cc G, converging uniformly and

strongly in H;

. 1 B
BB(xo,R) , if R ¢ C(xo) , H (C(xo)) =0 .

to ¢ , so that ¢n + ¢ strongly in H;(BB(XO,R)) on

Since H;(BB(XO,R)) functions are absolutely continuous, and the lengths
of ¢n(3B(x0,R)) and ¢(8B(xO,R)) are uniformly bounded, the two-dimensional
measure of ¢(8B(XO,R)) vanishes ( R ¢ C(xo) ). Consequently,

z & ¢(BB(XO,R)) for almost all =z , and thus

(5.5.8) m(z,¢n(3B(xO,R)) -+ m(z,¢(8B(xO,R)) for these =z .
Now
( .
1im m(z,¢ (BB(xO,R)) dz = lim J J(d ) dx = J J(p) dx
e 1o (B(x ,R)) n v B (x,R) n B(xqR)
Since

N

3
meas I
{——————J length (¢n(3B(xO,R)) ,

JI m(z,¢n(85(x0,a)) dz =

for any measurable set I , we can integrate (5.5.8), and the result follows.

g.e.d.

LEMMA 5.5.2 We suppose that ¢n : 82> 1 are diffeomorphisms, converging

uniformly and weakly in H

> to ¢ .
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Then J(9) has the same sign almost everywhere.

Proof we introduce coordinates on 52 by stereographic projection. Let

B(XO,R) , R & C(xo) satisfy the assumptions of Lemma 5.5.1
g = max |¢n(x) - (x)]

xeaB(xO,R)

Vh T {z - a(z,¢ (9B(x,,R)) > €n} ’

For z € Vn ¥ m(z,¢n(8B(x0,R)) = m(z,¢(8B(xO,R))‘
Lemma 5.5.1 therefore implies

(5.5.9) Llim

f_l J( ) =
e ¢n (Vn)ﬂB(xO,R)

n

J' J(o) .
B(xO,R)

Since we can assume w.l.0.9g., J(¢n) 2 0 in B(xO,R) for all n , and

(5.5.9) holds for almost all discs B(xO,R) ;, the result follows.
g.e.d.

Thus, v 1is a weak solution of the corresponding Cauchy-Riemann

equations, i.e.

‘ 2_ -1, 1 1
0 0 e -+
(5.5.10) Vi = "95p(9p,V, RV V)
2 _ -1 1 1
Vg T 9y, kg v 915Yy)

= - . 3 = + i s
(g gllg22 glz) ;, where k 1 is constant by Lemma 5.5.2. Since

(5.5.10) is a linear first~order elliptic system, v is regular.
LEMMA 5.5.3 v <Zs a homeomorphism.

Proof wWe assume that v is not a homeomorphism. The v is not injective,

i.e. there must exist two points zl B 22 B zl # z2 with v(zl) = v(zz) . We

choose a shortest segment Yn joining vn(zl) and vn(22) .  S8ince v is a
-1

homeomorphism, ?n = v, (Yn) is a curve joining 2z, and Zoys

If P s is a point on BB(zl,d) n ?n , then for n + ® we can find a
’
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subsequence of (pn 6) converging to some point pg on BB(zl,B) . Since
7

the vn converge uniformly to v , we see that v(pé) = v(zl) = v(zz) .

Thus, a whole continuum is mapped onto the single point v(zl) v(zz) by v .

At interior points, we can choose again local coordinates vl ’ v2 .
. 1 2 .
From (5.5.10) we conclude that v and v are harmonic, e.g.

1
b4

(5.5.11) Avl-+F1 (vlv -+vlvl) +2T1 (vlvz-x‘-vlvz)-i-l"1 (v2v2 +v2v2) =0 .
11" "% Yy 127w 'x vy 22 x % Yy

From (5.5.10) and (5.5.11) we obtain

(5.5.12) lvi-] < clv
since v € CZ(B) B

We now use the following result of Hartman-Wintner [HtW] (a proof of the

version presented here can also be found in [J81).

LEMMA 5.5.4 Suppose u ¢ Cl'l(G,IR)J G a plane domain, =z e G , and

0

IA

(5.5.13) lu =] < x(u | + |u]) .
22 z
where K 18 a fixed constant.

If

1

(5.5.14) u(z) = oflz - zoln)

for some n ¢ W in a neighbourhood of Zg then

. -n
lim u, (z ZO)

z>z
0

exists. If (5.5.14) holds for all u ¢ W, then

We continue the proof of Lemma 5.5.3.
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If now vi(zo) = 0 for some zy € 82 , Lemma 5.5.4 gives the asymptotic

representation
(5.5.15) Vsaz-z)%+ olz -z |™
T z 0 0
for some a € €, z # 0 , and some positive integer n , unless vi =0 in a
neighbourhood of zg - The latter is not possible, however, since it implies
1.2 1.2 . . . 2
that the set where vxvy - vyvx = 0 1is nonvoid and open in S~ , and
12 12 _ . 2, © .
therefore vxv - vay =0 in S in contradiction to the fact that v is a
surjective C oo map onto L . We can choose the local coordinates in such a
way that
(5.5.16) gij(v(zo)) = aij .

Using (5.5.16), (5.5.11) and integrating (5.5.15), we infer

) +w o,

ll’l+l
0

w(z) := vl + iv2 = p(z - zo)n+1 +0(z - Eo)n+l + o(]z -z,

where p , 0 € R, {p[ + [O| # 0 , wO = (vl + iv2)(zo) , in a neighbourhood

of zO

Without loss of generality, by performing homeomorphic linear

transformations, we can assume p =1, 0 > O, zo = wO =0, i.e.

n+l -n+1

(5.5.17) wiz) = 2" 4 2™ w0 (2™

This, however, is in contradiction to the consequence we have obtained from
the assumption that v is not injective, namely that a whole continuum of
points is mapped to a single point. This proves the lemma. (The application

of the Hartman-Wintner formula in the above argument is due to E. Heinz [Hz2]).
LEMMA 5.5.5 v <s a diffeomorphism.

Proof we want to show that since v is a homeomorphism by Lemma 5.5.3,

(5.5.17) cannot hold with n 2 1 .
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Assume on the contrary, (5.5.17) holds for n =2 1 . Then

i0 n+l

) = (1L+0) r 1

+
vl(re cos ((n+l)0) + O(rn )
and in particular

1 e1‘rrk/n+l

(5.5.18) v (e ntl k +1

)= (1 +0) 7 1S o™

for k = 0,1,...,2n+l .

For sufficiently small € > 0 and r < € , the sign of the left hand

side of (5.5.18) is therefore (—l)k .

If 2z traverses a Jordan curve in {z : z # 0, iz] < €} , then vl(z)
hence has to change sign at least 2n+2 times. On the other hand, for
sufficiently small § > 0 , since v is a homoemorphism, the preimage of
{|w| = 8§} is such a curve, but here v1 changes sign exactly twice. Hence
n =0 , and the Jacobian of v does not vanish, and the lemma is proved.

g.e.d.

This also finishes the proof of Thm. 5.5.1.

COROLLARY 5.5.1 Let I be a surface homeomorphic to s with metric tensor

given in local coordinates by bounded measurable functions 94 2 satisfying

' 2
(5.5.19) 91192 = 912 Z A >0 almost everywhere .
Then there is a homeomorphism h : 2 -3 satisfying the conformality
relations
i 3 i 3

oh™ 3dh oh™ dh
(5-5.20 93 % ox | %43 By By

on® an) _

915 Tox oy

almost everywhere.

If (gij) ec¥, then n is a diffeomorphism of class cl’a s
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satisfying (5.6.20) everywhere.

Proof we let (gzj) be a sequence of CZ,a metrics converging to (g,.)

i
pointwise almost everywhere. We denote the corresponding surfaces by Zn and

let hn : 82 + 2" be a conformal diffeomorphism constructed in Thm. 5.5.1.

Since the hn satisfy a system of the type of (5.5.10), elliptic

regularity theory implies uniform Ca as well as H; estimates. Hence a

subsequence converges uniformly and weakly in H; towards a weak solution h

of (5.5.10).

Furthermore, since the hn are diffeomorphisms, their inverses satisfy

a system of the same type, namely

g- g7
(5.5.21) v = L2 <" - Al m
v /gn v / gn v
n n
n 922 n 912 n
Y 5 = x - —— X y

where n_ n n _ ( n )2
9 % 9129 7 Y91 -
Therefore, also h;l satisfies a uniform HOlder estimate by elliptic
regularity theory, and thus we see that the limit map h has to be

invertible, i.e. a homeomorphism.

[¢7 . .
In case I € Cl’ ;, the metrics (ggj) can be chosen to converge with

respect to the Cu—norm to (gij). From (5.5.14) we infer that the h;l then
1,0

satisfy wniform C°7 estimates, and consequently the limit map h is a

diffeomorphism.

Thus we have found the desired conformal representation of X , and the
proof of Coxr. 5.5.1 is complete.

g.e.d.
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We can also derive the following version of the Riemann mapping theorem

(cf. e.g. [AB]):

COROLLARY 5.5.2 Let s be a compact surface with boundary, homeomorphic to
the unit dise D , and a metric tensor (gij) satisfying the assumptions of

Cor, 5.5.1.

Then there is a conformal vepresentation h : D~ S , satisfying the

same conelusions as in Cor. §.5.1.

Proof Let &' be an isometric copy of S with opposite orientation; let
i: 8-+ 8' be the isometry. Identifying s with i(s) for s € 9s gives
a surface I to which we can apply Cor. 5.5.1 and find a conformal
homeomorphism h : S2 -+ L . Then ioh is another conformal homeomorphism,
and we can find a conformal automorphism k of S2 satisfying hok = ioh .
{This is clear for smooth metrics on I , since then h-loiOh is a conformal

2 . The general case follows again by‘approximation.)

diffeomorphism of S
The fixed point set of k then is a circle and hence bounds a disc which is
conformally equivalent to S .

g.e.d.

Note that our proof immediately yields the one-to-one-correspondence of

the boundaries, first proved by Osgood and Caratheodory.

We can again normalize the conformal map by e.g. prescribing the images

on 38 of three distinct points on 09D .

The preceding result is due to Lichtenstein [Li] (for Cu—metrics),

Lavrent'ev [Lv] (for continuous metrics), and Morrey [M1l].

In a future publication, I shall demonstrate that the preceding methods

can also yield conformal representations of surfaces of higher genus. This
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approach can considerably simplify a large portion of the uniformization

theory.

5.6 EXISTENCE OF HARMONIC DIFFEOMORPHISMS, IF
THE IMAGE IS CONTAINED IN A CONVEX BALL

THEOREM 5.6.1 Adssume u : D + B(p,M) <8 an injective harmonic map, where D

i8 the unit dise and B(p,M) <8 a disc on seme surface with M < é% s where
«? again is an upper curvature bound. Assume that g := u|3D is a -

diffeomorphism onto g(3p) satisfying

dg (¢)

(5.6.1) 0<b < a

for all ¢ ¢ 9D .

Assume furthermore that g(dD) 1is strictly convex w.r.t. u(D) , the

geodesic curvature Kg satisfying

(5.6.2) 0<a, s Kg(g(BD))(g(¢)) <a, for all ¢ € 3D .
Then the functional determinant J(ulx)) satisfies for all =x € D

(5.6.3) loue) | =2 511 ,

where S, = 61(w,»<.M,a1,a2,bfIglcl,a)

Without assuming (5.6.1) and (5.6.2), on each disec B(0,r) , 0 <r <1,

]J(u(x)l > 6;1 for x e B(0,r)

62 = Gz(w,k,M,r, meas u(D), |g] a) .
or: c

IJ(u(x)[ > 6;1 for x € B(O,r)

where 53 depends on W, K, M, r, meas u(D) , E(u) , and on some kind of
normalization like fizing the images of three boundary points or of one

interior point.
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We omit the proof which can be found in [JK1]. Whereas the boundary
estimate basically follows by applying the maximum principle to
2 . . . . .
d” (u({x), g(@D)) , the interior estimate depends on deep estimates of E. Heinz

([H251).
We can now prove the main result of [J3].

THEOREM 5.6.2 Suppose Q <s a compact domain with c? boundary 92 on some
surface, and that I is another surface. We assume that V¥ : & ~ % maps &
homeomorphically onto its image, that Y(3Q) <s contained in some disc

B(p,M) with radius M < é&- (where k220 is an upper curvature bound on

B(p,M) ) and that the curves Y(30) are of class c? and convexr w.r.t.

() .

' Then there exists a harmonic mapping u : § + B(p,M) with the boundary
values preseribed by U which is a homeomorphism between § and its image,

and a diffeomorphism in the interior.

Moreover, if V|32 is even a cz—dﬁfféomorphism then u s a

diffeomorphism up to the boundary.
Theorems 5.6.2 and 4.11.1 imply

COROLLARY 5.6.1 Under the asswmptions of Thm. 5.6.2, each harmonic map which
solves the Dirichlet problem defined by Y and which maps § into a

geodesic dise B(p,M) with radius M < 5%4, is a diffeomorphism in .

Proof of Theorem 5.6.2 First of all, 30 is connected. Otherwise, Y{of)
would consist of at least two curves, both of them convex w.r.t. Y(Q) .
Therefore, we could find a nontrivial closed geodesic Y in UP(R) < B(p,M)
with an easy Arzela-Ascoli argument. Since a geodesic can be considered as a

. . m .
special case of a harmonic map and M < S Lemmata 1.7.1 and 2.3.2 imply
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that Yy has to be a point, which is a contradiction. Therefore, 03 is
connected, and since ) is homeomorphic to Y(R) , we conclude that  is a

disc, topologically.

Therefore, we have to prove the theorem only for the case where § is
the plane unit disc D , taking the existence (¢f. Cor. 5.5.2) of a conformal

map k : D> @ and the composition property Lemma 1.3.3 into account.

. . . 2
For the rest of this section, we assume that | : oD + Y(3D) is a C -

diffeomorphism between curves of class c2,u , that Y(0Q) is not only

convex, but strictly convex, and that we have the following quantitative

bounds
d2
(5.6.4) -—E-w(¢)l < bl
d¢
and for ¢ € 9D
d -1
(5.6.5) ’575 w<¢)~ 2 b,
and
(5.6.6) 0<a; s Kg(W(BD)) <a, .

These assumptions can be removed later on by approximation arguments which we

shall indicate below.

By virtue of Cor. 5.5.2 again, there is a conformal map k : D = (D) .
By a variation of boundary values, we now want to deform this conformal map

into a harmonic diffeomorphism u .

Without loss of generality, we may assume that the boundary value map
preserves the orientation of 9D . Now let Y be the parametrization of the

boundary curve of Y{(D) by arc length. We set

(5.6.7) w(d,\) = YO () + (1 - VY SW@)) , ¢edd, Ae [0,1] .
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w deforms the boundary values of k into the boundary values prescribed by

(U
2,0

Since we assumed that (5.6.4) and (5.6.5) hold and that Y({9D) € C ’

well-known regularity properties of conformal maps imply that

2
(5.6.8) WOA) @M and 2w
) 302
)
are continuous functions of A ,
(5.6.9) é%—w(¢,k) does not vanish for any ¢ ¢ 9D and X e [0,1] .

Let now uA denote the harmonic map from D to B{(p,M) with boundary
values w{*,\) , (the existence of uk follows from Lemma 5.2.3) and let

An ¢ [0,11 be a sequence converging to some A ¢ [0,17.

By Thm. 4.9.1, the Arzela-Ascoli Theorem and the uniqueness theorem
4,11.1, uy converges to the harmonic map uy in the Cl'B—topology,

n
0< B <ao . In particular,

PO := inf [J(u)) (x|
xeD
depends continuously on A ( J(uA) denotes the Jacobian of uA ). We
define L := {X ¢ [0,1] : p(A) > 0} . By Cor. 5.5.2, 0 e L ( u, is the
conformal map k ), and therefore I 1is not empty. Since we assumed (5.6.5)
and (5.6.6), which implied (5.6.8) and (5.6.9) we can apply Thm. 5.6.1 to the

extent that

(5.6.10) plA) 2 1= >0 for A e L .

Since p(A) depends continuously on A , (5.6.10) implies L = [0,1] . Thus,
uy is a local diffeomorphism and a diffeomorphism between the boundaries of
D and ul(D) , and consequently a global diffeomorphism by the homotopy

lifting theorem.
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Thus, the proof of Thm. 5.6.2 is complete, except for the approximation

arguments.

So far, we have assumed that the boundary of the image is strictly
convex, and, in addition, that the boundary values are a diffeomorphism of
class C2 . We now have to prove the theorem also for the case that the
boundary is only supposed to be convex and that the boundary values are only

supposed to induce a homeomorphism of the boundaries.

We shall present only the first approximation argument. It is a
modification of the corresponding one given by E. Heinz in [Hz4], pp.178-183.
The reasoning for the second case can be taken over from [Hz3], pp.351-352,

in case QJY(D) € C2,a .

Therefore, let us suppose that the boundary of the image (D) is only
convex, while the boundary values Y are still assumed to be a diffeomorphism

of class C2 . Then we argue in the following way:

Given a metric gij on the image with respect to which the boundary of
A := Y(D) 1is convex , there is a sequence {ggj} of metrics on A such
that 0A is even strictly convex with respect to gzj , according to [Hz4],
§4. Moreover, {gzj} can be chosen to converge uniformly to 955 on A
together with their first and second derivatives, as n +~ © . Keeping the
boundary values | fixed, we consider the map un(x) which is harmonic in
the metric gzj and which solves the Dirichlet problem with boundary values
Y . The existence of u, is guaranteed by the arguments given above — at

least for large values of n , when g?j is so close to gij that the

geometric conditions are satisfied.

By virtue of Thm. 5.6.1, on each disc B(0,r) , r < 1 , there is an

a-priori bound of the functional determinant of un(x) from below. Moreover,
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by virtue of Thm. 4.9.1, we can choose a subsequence of the functions un(x)
which converges uniformly on D together With the first derivatives to a map

u(x) . In particular, the u  converge to u strongly in H; .

Therefore,
u is a weakly harmonic map w.r.t. the metric gij , i.e. a weak solution of
the corresponding Euler equations. Since u is also of class Cl , linear
elliptic regularity theory implies that u is a classical sélution, i.e.

harmonic. Moreover, u 1is a local diffeomorphism in the interior, and since

it is the uniform limit of diffeomorphisms, it is a diffeomorphism in the interior.

g.e.d.

Remarks 1) Actually, using a further approximation argument, we do not even
have to assume that the boundary values are homeomorphic. ~We need only that
they are continuous and monotonic, i.e. a uniform limit of homeomorphisms.

The corresponding harmonic solution of the Dirichlet problem still remains a

diffeomorphism in the interior.

2) In the case where both  and U(Q) are bounded simply connected
domains in the plane, the assertion of Thm. 5.6.2 was already obtained by
Radd and Kneser [RdA], [Knl], and Choguet [Cgl. Choquet also showed that the
convexity of the boundary of the image is necessary for Thm. 5.6.2 to hold.
The reason is the following. Suppose the image has the depicted shape. If
the boundary values Y(9Q) are ‘
concentrated near p and ¢ , then by
the mean value property of harmonic
functions, some points of Q will be
mapped onto points between p and g
not belonging to Y(R) .

This is in essential contrast to the case of conformal maps where convexity of

the image is not necessary to guarantee that the solution is a diffeomorphism

(cE. Cor. 5.5.2). ©Note that a conformal map is a solution of a free boundary
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value problem instead of a Dirichlet problem.

5.7 EXISTENCE OF HARMONIC DIFFEOMORPHISMS BETWEEN CLOSED SURFACES

The main result of this section is

THEOREM 5.%.1 Suppose that Zl and L , are compact surfaces without
boundary, and that ¢ :Zl - 22 i8 a diffeomorphism. Then there exists a
harmontie diffeomorphism  u : Zl > Zz homotopic to ¢ . Furthermore, u is

of least energy among all diffeomorphisms homotopic to ¢ .

Thm. 5.7.1 was proved by Jost-Schoen [JS], but it was first claimed by
Shibata [Sh] in 1963. His proof contained several mistakes, however, and was

therefore rejected.

H. Sealey then carefully examined Shibata's paper in his thesis [Sel and
was able to correct some (but not all) of the mistakes. The proof of [JS],
however, proceeds along completely different lines than the Shibata-Sealey

approach and depends in an essential way on Thm. 5.6.2.

Thms. 5.7.1 and 4.11.1 immediately imply the following corollary, proved

by Schoen-Yau [SY1l] and Sampson [Sal.

COROLLARY 5.7.1 If under the assumptions of Thm. 5.7.1, 22 has nonpositive
curvature, then every harmonic map homotopie to a diffeomorphism is itself

diffeomorphic.
Furthermore, we have

COROLLARY 5.7.2 Suppose that z and L, are compact surfaces without
boundary, and that Y : Zl - 22 is a covering map, i.e. a local diffeo-
morphism. Then there exists a harmonic covering map u : Zl + I 5 homotopic
to Y.
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Proof of Corollary 5.7.2 we can pull back the metric as? of 22 via Y to

obtain a surface Zé , diffeomorphic to L. and with metric lj)*ds2 . Then

1

Yo Zé - 22 is a local isometry. By Thm. 5.7.1, there is a harmonic
diffeomorphism u' : Zl > Zé , homotopic to the identity. u := Pou then is

the desired harmonic covering map.

Proof of Theorem 5.7.1 (following [JS]) 1If Zl and ZZ are homeomorphic to

52 , then we can find a conformal (and hence harmonic) diffeomorphism

homotopic to Y by Thm. 5.5.1. The case where Zl and 22 are homeomorphic

to the real projective space is similarly handled by passing to two-sheeted

coverings. Thus we can assume w.l.o0.g. that ﬂz(Zi) =0 (i=1,2) .

We let U Dbe the class of diffecmorphisms from Zl onto 22 homotopic

to ¢ . Since ﬂz(Zz) = 0 a homotopically trivial Jordan curve separates 22

into two topologically different parts, one being a disc and the other one
having higher connectivity. Therefore, the argument in the proof of Thm.
5.5.1 gives equicontinuity of a weakly convergent sequence in 0! even without

a normalization.

We again let 7 be the weak Hl—closure of D , and choose an enargy

2

minimizing sequence in 7. a subsequence then converges weakly in H;

towards some uo el , and uO minimizes energy in [ by lower semi-
continuity again. We also can find a sequence (un)neni in P converging

weakly in H; to uO . Since the u are equicontinuous, they converge
also uniformly to Uy v and hence uo is continuous and homotopic to ¢ .

The u since converging weakly, have uniformly bounded energy,
< .
E(un) X, say

We want to show that Uy is a harmonic diffeomorphism. We consider an

arbitrary point *, € Zl and define
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o
B := B(uO (XO) ,0)
i.e. the open disc in 22 centred at uo(xo) with radius o .

We restrict ourselves in the sequel to values of ¢ which are smaller
. - . 2 .
than the injectivity radius of 22 and smaller than mw/2k , where g again

is an upper bound for the curvature of 22 . We define

Q :=u (B (n € N)

W.l.0.9., we can assume xo € Qn for all n , since the un converge

uniformly to u0 . Let D be the unit disc in the complex plane and

be a conformal mapping which maps 0 to =x_ .

The proof of the existence of Fn is the same as that of Cor. 5.5.2
since instead of fixing three boundary points, we can fix an interxior point
(and ‘a tangent direction at this point, but that is not necessary for the
proof) in order to guarantee the equicontinuity of a minimizing sequence as

in 5.5.

Since Fn = BQn is a Jordan curve of class cl (because u, is a

diffeocmorphism) , Fn is a homeomorphism of D oanto Qn ; and therefore
unaFn maps oD homecmgrphically onto BBO . By Thm. 5.6.2 and Cor. 5.6.1,
there exists a unique harmonic mapping v, D+ BU which assumes the
boundary values prescribed by unan , and vn minimizeé energy in its

homotopy class and is a diffeomorphism.

In particular
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(5.7.1) ED(Vn) < ED(unOFn) = Eﬂn(un) < K

by Lemma 1.3.2 ( Es(f) is the energy of the mapping f over the set S ).

Since the u converge uniformly to u. , we can assume that unan(O) stays

0
in an arbitrarily small neighbourhood of uO(XO) . Therefore, we can again
apply the argument of section 5.5 to show that the maps unan are
egquicontinuous on D . In particular, the boundary values of vn , namely
uhanIBD ;, are equicontinuous. By Thms. 4.9.1 and 4.7.1, we can therefore
assume that the v, ~converge uniformly on D to a map Vo which is

harmonic in the interior of D . Using Thm. 5.6.1, we see furthermore that

Y is a diffeomorphism in the interior of D .

We define now

v oF—l in 0
- n n n
u =
ouy in Zl\Qn .

Clearly, ﬁn is a Lipschitz map and lies in ut

T <
5 and E(un) < K. We can

also assume w.l.o.g. (by approximation) that the u ~are of class Cl’a

Then, for each n , the functional determinant of ﬁn is defined and bounded
from below on Zl\Rn by Thm. 5.6.1. It is easily seen by an approximation

argument that ﬁn e?D .

Using Lemma 5.2.2 as before, we can assume again w.l.o.g. that the Gn

converge on Zl weakly in Hl e P and that the

5 and uniformly to a map d

0

Fn converge uniformly on compact subsets to a conformal map F . Since
ED(Fn) = Area(Qn) < Area(Zl) , F maps B diffeomorphically onto some open set

ek, , and 0 is mapped to x

1 . F is not necessarily smooth on 09D , but

0

that does not affect the following arguments.

uOoF is the uniform limit of unOFn and thus extends continuously to

D . Since unOFn and v coincide on 9D , it follows that also uooF and
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Vo coincide there, and since Vo is harmonic and therefore energy minimizing

(by Theorem 4.11.1) in its homotopy class,

<
ED(VO) < ED(uOoF) .
Since conformal maps preserve energy by Lemma 1.3.2, this implies
a <
(5.7.2) EQ(uO) < EQ(uO) .
We now want to show that

(5.7.3) Ezl\n(uo) = Ezl\Q(uo) .

For this, it is sufficient to show that uo and ﬁo coincide almost every-

where outside Q . We claim that

~1
(5.7.4) Zl\Q <y (ZZ\BU) .
We define
pn(x) 1= d(un(x), uo(xo))
o {(x) := d(uo(x), uo(xo))

for x € Zl . Let x e Zl\Q . If

p.{x) = 1lim p_(x) 2 0 ,
0 o n
then

) =1
x € ug (Zz\BG) .

Since the pn°un°Fn are equicontinuous and equal to ¢ on 0D , po(x) <
implies that

a M), D) 2 6 > 0
for sufficiently large n .

Since on the other hand, the F, converge uniformly to F on compact
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subsets of D , this would imply x ¢ F(D) = Q which contradicts the

assumption x € Zl ~ Q . This proves (S.?.4).

We also have

-1

A -1, .=
ug (22\30) =, (BBG) U u, (Zz\Bc) ’

and since the sets u;l(BBo) cover a neighbourhood of x and are disjoint,

¢]
we- can assume w.l.0.g. that the two-dimensional measure of ugl(BBG) vanishes
for our chosen ¢ . If
-1 -
® € ug (ZZ\BG) ,
then

lim p (%) = p.(x) > 0O
o0 n 0

and because of the eguicontinuity of the functions o, v there exists an open
neighbourhood U of = such that pnlU > ¢ for sufficiently large n .

This implies

4. = 1limu_ = limu = u on U .
0 n n 0
n—-co T-reo
Therefore uo = EO almost everywhere on u;l(Zz\Bg) , and (5.7.3) now

follows from (5.7.4). By the choice of Uy We have on the other hand
E. (u,)) € E. () .
Zl 0 Zl o]
Thus, we conclude from (5.7.2) and (5.7.3) that

EQ(uO) = EQ(uO)
and consequently
ED(VO) = ED(uocF) .
Since Vo and uOoF coincide on oD , we conclude from the uniqueness of

energy minimizing maps (Thms. 4.11.1 and Lemma 5.2.3) that vO and uOoF

coincide on D . Therefore uOoF and consequently also u, is a harmonic
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diffeomorphism, the latter in § , which is a neighbourhood of an arbitrarily
chosen point Xy € Zl . This finishes the proof of Theorem 5.7.1.

g.e.d.
With the same method, we can also improve Thm. 5.6.2.

THEOREM 5.7.2 Let Q c I, be a two-dimensional domain with nonempty
boundary 30 consisting of c? curves, and let Y : § > I, be a homeo-
morphism of § onto its image Y& , and suppose that the curves Y(3Q) are of

class c° and comvex with respect to YQ) .

Then there exists a harmonic diffeomorphism u : Q + Y(Q) which is
homotopic to Y and satisfies u =19 on 3N . Moreover,, u s of least
energy among all diffeomorphisms homotopic to Y and assuming the same

boundary values.

This result is again taken from [JS]. The case of non-positive image

curvature was solved in [SY1].

Proof wWe assume first that 90 and Y(3R) are of class C2+a and that

gives rise to a diffeomorphism between 902 and VY (3R) and that YP(3Q) is

strictly convex with respect to Y(§) .

In this case, the proof proceeds along the lines of the proof of Theorem
5.7.1 with an obvious change of the replacement argument at boundary points
involving the first estimate of Thm. 5.6.1. The general case now follows by
approximation arguments as in 5.6.

g.e.d.

5.8 SOME REMARKS

We want to indicate briefly which of the results of this chapter can be
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generalized to higher dimensions.

Prop. 5.1.1 was extended to arbitrary dimensions by Wood [W2], Karcher-
Wood [KW], and Schoen-Uhlenbeck [SU2]. This result can be used to prove

complete boundary regularity of energy minimizing maps, cf. [SU2] and [JIM].

As was observed by Morrey (cf. [ES]), the minimum of ehergy is attained

. . n . .
in no nontrovial homotopy class for maps from S onto itself, if n = 3 .

It is not known whether Prop. 5.1.3 can be generalized, i.e. whether for
example there is a harmonic map of degree 1 from the three-dimensional torus

onto S3 or not.

As already pointed out the existence question becomes guite different in
higher dimensions, and thus it is not likely that Thm. 5.3.1 can be fully
generalized. For known existence results beyond those of chapters 3 and 4,
see [SUL], [su2l, [El, [J6]. BAn interesting non-existence result was derived

by Baldes [Balj.

Thm., 5.7.1 fails in higher dimensions; even Cor. 5.7.1 does not extend,

as was pointed out by Eells-Lemaire in [EL2], based on a result of Calabi [Ca]l.

There are, however, some interesting results about harmonic diffeo-

morphisms between certain classes of Kahler manifolds, cf. [Si] and [JY].

For a more complete guide to the literature on harmonic maps, we refer to

the excellent survey articles by Eells and Lemaire [EL1-41).



