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SOME PROBLEMS OF SPECTRAL THEORY 

Igor Kluvanek 

An operator T, in a finite-dimensional space, is of scalar type - its 

matrix is diagonal in suitable coordinates - if and only if there exist 

numbers A. and pairwise disjoint projections P. such that 
J J 

(1) T I A .P 0. 

j J J 

Also compact operators of scalar type in any Banach can be so expressed, 

provided, the sum (1) is allowed to be countably infinite. 

It is perhaps less often noted that any operator of scalar type can 

be expressed in the form (1), with the index j running over all positive 

integers. But, in general, the projections P. cannot be chosen pair-wise 
J 

disjoint, that is, the product of any distinct pair of them might not be 

equal to the zero-operator. 

In fact, an operator T in a space E is of scalar type if and only if, 

there exists an abstract space ~' a a-algebra S of its subsets, a cr-addi-

tive and multiplicative measure P S -+ L(E) such that P(~) = I, the iden-

tity operator, and a P-integrable function f such that 

(2) T = JfdP. 

It is then easy to see that there exist sets X. E Sand numbers A. such 
J J 

that (1) holds with P. 
J 

P(X.), j = 1,2, .... 
J 

Now, it might very well happen that an operator T can be expressed 

in the form (1) but it is not possible to guarantee that the projections 

Pj are values of a spectral measure P such that (2) holds. To be sure, 

the expression (1) is of little value if nothing is known about the op-

erators P. save that they are projections; some additional structure 
J 
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underneath is necessary. For example, one should expect at least that the 

operators Pj commute. 

The following situation occurs quite often. A projection operator 

P (X) can be constructed for every se·t X belonging to a semiring Q. gener

ating the a-algebra S. Furthermore, the context might suggest that if the 

set function P : Q -+L(E) could be extended to become an L(E)-valued cr

addi·tive measure on the whole of S, then this measure would be multi

plicative and the equality (2) would hold. However, as it not infrequently 

turns out, P may not be a-additive on Q.. Modulo some kind of completeness 

of ·the space E, this is the same as saying that, for every vector x E E, 

there exists a linear functional x' E E' such that the set function 

(3) X 1-+ (P(X)x,x'), X E Q, 

is not a-additive. 

If there exists a separating family r of linear functionals x' E E', 

invariant with respect to the adjoint operator T', such tha·t the scalar set 

function ( 3) is cr-addi ti ve for every x E E and x' E r, ·then ·the pr·ocedure 

described by Werner Ricker can save the situation. For, ·there exists then 

a space F, continuously containing a copy of t.he space E, and a cr-addi·tive 

and mul tiplica ti ve measure P : S --+ :L (F) , extending in an obvious sense the 

set function P: Q-+ L(E), such that (2) holds for some P-integrable 

function f. I would refer to Werner Ricker"s talk and his papers [6] and 

[7] for further details. 

However, if the set of linear functionals x' E E', such that the set 

function (3) is a-additive for every x E E, is not separating, ·then the 

situation cannot be saved by weakening the topology of the space E and by 

its subsequent extension. In that case, the set function P : Q.--'-+L(E) 

quite radically fails to be a-additive. Nevertheless, the operator T can 
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still have many properties in common with scalar operators. Indeed, it can 

have all the properties which do rna tter from some point of view. Actually 

some authors study quite intensively certain classes of opera·tors \vhich can 

be expressed in the form (2), using some variants of the Rieman- Stieltjes 

in·teg-ral, where P is an L(E)-valued se'c function on a se:miring, such as the 

semirings of intervals on the real-line. For ·the present purpose, a refer-

ence to the book [1] of lLR. Dm·mon would perhaps suffice. 

Now I am coming to the main point I wish to make. A.n additive set 

function can fail to be a-additive for two very different reasons. These 

are illus·trated by the follm'ling examples in cvhich rl = (0, 1] and Q is the 

semiring of intervals (u,v] such that 0 :5 u :5 v :5 L 

Example A. Let P(X) = 1 for every set X E Q such that there exists a 

8 > 0 with (0,6] C X, and let P(X) 0 for every other set X E Q. 

Example B. Let \h (t) 
. -1 

= t Sll1 t F if t ~ 0, and ¢(0) = 0. Let 

P((u,v]) = liJ(v)- ¢(u) fo:c any u and v such that 0:5 u :5 v ~ l. 

In Exawple A., ·the sequence {P } 
00 is SUI!ll11a.ble for a.ny pair-wise 
n=l 

disjoin·t se·ts X11 E Q, n 1,2,.."' whose union is a. set X E Q. So, P fails 

to be a-additive because, for some such sets, the sum of the sequence 

{P }~=l is not equal 'co P(X). We can say that P, or, rather, the space 

r2c is deficien~c in some tr1ay, This deficiency can be removed by adding some 

ext::. a poin.ts to "che space o In this case r a single point, 0, ·would do, 

By contras·t, the set function P of Example B fails to be c-additive 

because th.ere are pair-,Nise disj oiD.t sets E Q.r n = li/2, .. ~.,., whose unior1 

belongs ·to Q such that t:he sequence of valu.es {P(X ) }00 
__ , is either not 

n n-1 

st:tl11m3.ble at all or it is only conditionally sunnnable so that its surcunabil-

ity and Slll'tl depend on the order of its ·terms .. In this case, a-additivity 
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cannot be gained by adding extra points ton. There is nothing deficient 

about Porn. we· can think of a real-valued function of this kind as des-

cribing a distribution of signed mass (such as electric charge) in the 

spacen. Thereis an infinite amount of positive and also an infinite 

amount of negative mass present buttheyare distributed so that the net 

difference in any set from Q is finite. 

The theory, including integration, of a set function failing to be a-

additive solely for the first reason can be based on its a-additive ex-

tension on the completed space - a suitable compactification, say. Suo.h an 

approach seems to have been originated by E. Hewitt and K. Yosida [8]. 

However, if P fails to be a-additive due to the second cause, this possib-

ility does not arise; the theory of integration with respect to set 

functions of this type apparently has to be developed from the beginning. 

Nevertheless, the existing literature seems to avoid it to the extent of 

discouraging any attempts. (See, for example, the discussion in Section 28 

of [2].) 

Let us call set functions which possibly fail to be a-additive, but 

solely for the reason illustrated by Example B, indeficient. Integration 

with respect to an indeficient set function can be introduced by a method 

closely resembling the Archimedes method of exhaution. This method has 

been discussed by J.L. Kelley and T.P. Srinivasan [3]. It was used by 

J. Mikusinski for the definition and study of the Bochner integral. Susumu 

Okada has used the same method for the construction (of a concrete repres-

entation) of the completion of the space of Pettis integrable functions [5]. 

Specifically, if P is an indeficient additive set function on a semi-

ring Q of subsets of a space n, a real or complex valued function f is said 

to be (Archimedes) integrable with respect to P, if there exist numbers A· 
J 

and sets Xj € Q, with characteristic functions fj' j = 1,2, ••• , such that 
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the sequence {/c.P(Y.)}~ is su.mmable for any choice of sets Y. E Q, 
J J J=l J 

Yj c xj' j = 1,2, ... , and 

for every w E It for which 

L A. f. (w) 
j=l J J 

L[A.[f.(w)< 
j=l J J 

The integral of the function f is then defined by the formula 

L A .P (X.). 
j=l J J 

The indeficiency of P is formally defined as precisely that property which 

guarantees that the so defined integral is independent of any particular 

choice of such numbers A. and sets X., j 
J J 

By (a vector version of) ·the Beppo I,evi theorem, if Q. is a a-algebra 

(in fact, just a a-ring), then a a-additive set function on Q. is indef-

icient. Hence, operators T having a representa·tion on (2), where f is a 

scalar valued function integrable with respec·t ·to an indeficien·t addi·tive 

and mul tiplica·tive set func'cion P : Q. -+ L (E) , are natural generalisa'cions 

of. scalar type operators. Actually, the theory of scalar operators gener-

alized in this way seems morepromising that the ·theory of opera'cors •.¥hose 

resolu·tion of iden·tity is a spectral dis·tribution rather than a spectral 

measure. 
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