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Galerkin process are that Lu = £ has only one solution and that its
o
generating system {¢j}1 is strongly minimal in any B, for
which L = A + B with AT B compact. :
Thus, the task of guaranteeing the stability of the Ritz-Galerkin
and Bubnov-Galerkin processes reduces to identifying the properties of

{¢j}? in H which imply the strong minimality of {¢j}? in H,. In

i

particular, the numerical performance of spectral methods can be

characterized in terms of the conditions which must be imposed on the
choice of an orthonormal system in H to guarantee strong minimality in
Eé.

In fact, from the results of §2, we obtain

Proposition 3.1. 4 system {¢j}? which lies in both H and H > which is

orthonormal in H and which spans H, s ig strongly minimal in Hy -

Proof. On the strength of Theorem 2.1, EA is imbedded in H. However,

when H cannot be imbedded in H Theorem 2.5 cannot be applied.

A'
Thus, only the strong minimality of an orthonormal system in H is

preserved in gA as shown by Theorem 2.4. #

~

The proviso of Proposition 3.1, that the orthonormal system be
located in both EA and H, is needed so that the imbedding assumptions
of Theorem 2.4 and 2.5 hold, and is guaranteed by the global-D(A)

- (o]
and global-gA conditions on the system {¢j}1 which ensure convergence.

§4. LIMITATIONS ON THE UTILITY OF THE SPECTRAL METHOD

The proposition derived in 83 yields direct verification of the

utility of spectral methods. It shows that convergent and stable
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approximations of the form (2) can be constructed using arbitrary
orthonormal systems in H, when the procedures used to determine the
unknowns a;n), j=1,2,.e.,n, n=1,2,..., correspond to one of the
standard methodologies such as Ritz-Galerkin, Bubnov-Galerkin or
Least Squares.

There are however limitations on the utility of taking arbitrary
orthonormal systems in H to construct approximations of the form (2)
for (1). The example of Anderssen and Omodei [1] shows that the
use of orthonormal systems cannot undo the damage being done by a poor
methodology for the construction of the approximations (2). 1In
addition, even using the standard methodologies, an arbitrary choice
is unable to guarantee all the desirable numerical properties,such as
the existence of a bounded condition number for the Ritz matrices
Rn, n=1,2,..., and the convergence of the residuals % un—f and % un—f.

It is this aspect which we pursue here using the backwards error analysis

for matrix equations developed in §3.

One interpretation of the backwards error analysis representation
(21) for the computed solution %, of A x = b is that, except for the
errors §A and Sb which were introduced during the construction of (20)
to yield (21), the matrix equation is solved exactly (without error).
Clearly, in this interpfetation, the effect of rounding errors is
ignored. Even if (21) is interpreted as accounting for the errors
arising during both the construction of (20) and the subseguent
approximate solution of the matrix equation, the present stability
analysis has one crucial defect. It is limited to an analysis of
absolute errors.

As the standard texts in numerical analysis indicate, relative
errors are usually more appropriate in assessing the effect of

rounding errors than absolute. Thus, a definition of stability based
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on relative errors (i.e. a relative error stability) must assert the
boundedness of ﬂ§c-§"/H§H in terms of I8bll/lpl and Isal/lal. However,

we know from Wilkinson [21] that

fx -xl
(25) ~c -

. K (2) {"6A“ . I8ply
e~ S T-K@) Ial/Ial | Tal * Tpl| *

where K(A) denotes the condition number of the matrix A

(26) K(a) = hal 1a~h

Usually, results like this are used to emphasise the importance of
the concept of condition number in the analysis of rounding error (cf.
Atkinson [2], Forsythe and Moler [6]). In the present context,
it shows immediately that demonstration of stability for relative errors
reduces immediately to proving the boundedness of K(A) independent of n.

Recalling the definition of almost orthonormality, we obtain

Proposition 4.1. For the matrix spectral norm, a sufficient condition for

the relative error stability of the Ritz-Galerkin process is that its

=A"

generating system £¢j}? be almost orthonormal in H

Efggff Since the spectral norm of a general matrix A corresponds to
the positive square root of the largest eigenvalue of ATA, it follows
immediately that the spectral condition number of Rn, Ks(Rn), is given
by

_ 5 (n) 4 (n)
(27) K (R) = An /Al

If {¢j}: is almost orthonormal in H,, then there exist constants Ao

~

and AO such that

(28) 0 <Ay < A;“) Shy <, m=1,2,00e,0, 0 =1,2,000.

This proves that KS(Rn) is bounded independently of n by AO/XO. #
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In passing, we note that, as a direct consequence of the minimax
properties of the eigenvalues X;n), m=1,2,...,n, n=1,2,..., it
follows that KS(Rn) is an increasing function of n.

A similar proposition holds for the Bubnov-Galerkin process.

We have already seen in the proof of Proposition 3.1 that,

when the Hilbert space H from which = is formed cannot be imbedded

in EA' an orthonormal system in H can only be strongly minimal in H, .
It follows from Theorem 2.5 that, if the orthonormal system {¢j}i in H

was also orthonormal or almost orthonormal in a Hilbert space ﬁ such
that H and H, could be imbedded in each other, then {¢j }?_ would be

almost orthonormal in EA' Further, it follows from Theorems 2.2 and

2.3 that a sufficient condition for

hm>

and EA to be imbedded in each
other is that ﬁ correspond to the energy space 53 of an operator B
wich is either similar or semi-similar to A. In fact, we have

established

Proposition 4.2. For the spectral norm, a sufficient condition for
the relative error stability of the Ritz-Galerkin spectral process is
that the (orthonormal) system {¢j}i in H be almost orthonormal in the

energy space H, -

A similar proposition holds for the Bubnov-Galerkin process.

If A and L are unbounded operators, then it is well-known that,
for the approximations un generated by some of the standard
variational methods such as the Ritz-Galerkin and Bubnov-Galerkin (but
excluding least squares), there is no guarantee that the residuals
A un—f and L un—f will converge. As for stability, this difficulty can
be circumvented by imposing additional conditions on the choice of the

{¢j}°;.
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In fact, the basic result is given by (cf. Mikhlin [14], §22)

Theorem 4.1. ILet A and B be similar positive definite operaters with

domains contained in the separable Hilbert space H and B have a

8 m>

discrete spectrwri. If the coordinate system {¢j} consists of the

1
normalized eigenfunctions of B, then the residual A u -f converges to
zero when the approximations \in are constructed using the Ritz-

Galerkin process.

Proof (vainikko [20]1). The key step is to convert A un-f to a form
which allows the properties of the {¢j}i to be exploited; namely,

B ¢j =uj¢j,(where the Y. denote the eigenvalues of B corresponding to

L}

the eigenfunctions {¢j}f. We assume that uf(the solution of Au=f) takes
the form ®
(29) up = Z oyt

j=1
and, with respect to the metric of g, define gn to be the following

orthogonal projection

(30) P i B> B = span(d,0,e.-00) -

we write 2™ =1 - P .

The proof first exploits a consequence of Theorem 2.2, the

boundedness of A §-1 and g_l B:

1

(31) Iz u -£l = la(e -uldl < 12 B I B -ul .

The importance of this step is that it brings B into direct relation- .

ship with the Ritz-Galerkin approximation u constructed from the

{¢j}?. In addition, because g(n) u

N 0, it follows that

(n) (n)
B gn(uf-un) +BP u..

(32) Blug-u) =B(R +P .

) (uf -un)

Appropriate estimates for the terms on the right hand side of

(32) are derived from the following consequences of the definitions of
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the {¢j}j and g(n) : 8%, 0<a <1, and P commute; and

o _ o -0 _(n), _ -o
(33) IB gnu il iB- 20 = Ui

In fact, using (29), it follows that
o]

c.o.l =11 £ c.u.¢.l >0
33 jen#1 3373

34 s ™ ul=p

(n) 2
: 2z

j=1
as n > . In addition, using (33) and the best approximation
properties of u in gA, it can be shown that

AP T S (n)
(35) s gn(uf-un)ﬂ < la®* B %l I8 2 *l IB P ull .

~ £

The convergence of the residual A un-f now follows from Theorem 2.2,

(31), (32), (34) and (35). : ' , #

This proof depends crucially on the ¢j being eigenfunctions of a
positive definite operator B which is similar to A and has a discrete
spectrum. However, it does not rule out the possibility that some
subclass of the almost orthonormal systems in EB might also guarantee
convergence of the residual A un-f. Nevertheless, it clearly
illustrates a further limitation on the numerical performance of

spectral methods when the orthonormal system is chosen arbitrarily

from H.

§5. CONCLUDING REMARKS

As explained in the Introduction, the aim of this paper was to
show how theory developed by Mikhlin [14] for studying the numerical
performance of variational methods could be adapted for an examination
of the numerical performance of spectral methods. For this reason,‘
attention has been limited to stationary problems. In particular, it
has been shown that the construction of spectral methods, using

arbitrary orthonormal systems in H, is sufficient to guarantee
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absolute error stability, but not relative error stability nor
convergence of the residual of an unbounded operator. In addition, the
properties which orthonormal systems in H must satisfy to guarantee
relative error stability and convergence of the residual are discussed.
The basic characterization developed here extends naturally to
the study of the numerical performance of spectral methods for time
dependent problems , and eigenvalue problems. However, a discussion is
beyond the scope of this paper. Appropriate results for eigenvalue
problems can be found in Mikhlin [14] and Chatelin [3]. In addition,
deeper results than those derived here would be obtained if a more
specific exploitation of the theory of variationél methods was
applied to the study of spectral methods. Source references for
such material are Kreiss and Oliger [10],Gottlieb and Orszag [8],

Voigt et al [19] and Hussaini et al [9].

The material of Mikhlin [14] has been motivated by thevneed to
have, for gpecific problems, reliable choices for the coordinate
systems. For spectral methods, one needs the converse: for specific
orthonormal systems, a catalogue is required which lists the numerical
properties they guarantee for various classes of ordinary and partial
differential equations as well as integral equations. Such
information is contained in references like Gottlieb and Orszag [8],
Orszag [16], and Delves and Freeman [4].

The sufficient conditions for relative error stability of §4 were
derived using the spectral norm for matrices. Because the spectral
condition number of a matrix is always bounded above by the maximumv
norm condition number, it follows that the Ritz-Galerkin process could
yield an approximation which exhibits relative error stability in the
lz—norm but not relative error stability in the maximum norm. This is
not surprising since it is well known how to construct n-component
vectors which, as a function of n, are arbitrarily large in maximum
norm and bounded in 22. Clearly, to prove the Proposition 4.1 for

the maximum norm would automatically guarantee its validity for the
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spectral norm. However, in terms of the properties of strongly
minimal and almost orthonormal systems, the natural setting for

Proposition 4.1 is the spectral norm.
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