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Because a standard argument (cf. Wilkinson [21]) yields a bound 

for �~�c� - x in terms of �o�~� and oA, it follows that, if a definition of 

stability is required, it must assert the boundedness of �l�I�~�c� xii in 

terms of �l�I�o�~�1�1� and lIeA!I. This is the essence of the definition of 

stability introduced by Mikhlin [14]). 

Corresponding to the exact Ritz-Galer-kin process 

(22) R .e(n) '" I(n) , 
n 

n=1,2,3,. •• , 

one considers the perturbed Ritz-Galer-kin process 

(23) n = 1,2,3,. . ., 

which defines the exact Ritz-Galerkin process for the non-exact Ritz

Galerkin solu"cion b (nl . 

Definition 3. L The Ritz-Galerkin process is said -to be stable, if 

there exist constants p, q and r independent of n such that, for 

II r nil :<; r and arbitrary 0 (n), the matrix Rn + r n is non-singular and the 

following inequality holds 

(24) 

The relationship between this and other �f�o�~�~�s� of stability are 

discussed and examined in Linz [12] (§4.3) and Omodei [15]. 

The result of Mikhlin [14 J, which we use to characterize the 

numerical performance of spectral methods, is contained in his stability 

theorems. For the Ritz-Galerkin and Bubnov-Galerkin methods introduced 

in §l, we have: 

Theorem 3.1. A necessary a:n.d sufficient condition for the stability 

of the Ritz-Galerkin process is that its generating system 

�{�¢�j�}�~� be strongZy minimal in �~�A�'� 

Theorem 3.2. SUfficient conditions for the stability of the Bubnov-
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Galerkin process are that f'u ~ f has only one solution and that Us 
00 

generating system {<jJj}l is strongly min'l-mal in any !;!A for 

which I, A + B with 
-1 

A 13eonrpaai;o 

Thus, the task of guaranteeing the stability of the Ritz-Galerkin 

and Bubnov~Galerkin processes reduces to identifying the properties of 

00 00 

{¢'}l in H which imply 'che strong minimali'i::y of {¢'}l in In 
J =' , J 

particular, the nQmerical performa..ce of spectral methods can be 

choice of an o:cthonormal syst,em in H to guarantee strong minimality in 

In fact, from the resul-ts of §Z, we obtain 

jj system {d? j}~ 7J)hich lies in both g and ~h . which is 

orthonormal in g and which spans gl', , is strongly minimal in ~A 

Proof, On the st.rength of Theorem 2.1, H is imbedded in 
""b 

However, 

when 1! cannot be imbedded in Theorem 2.5 ca.nnot be applied. 

Thus, only the strong minimality of an orthonormal system in H is 

preserved in ~A as shown by Theorem 2.4. # 

The proviso of Proposition 3.1, that the orthonormal system be 

located in both BA and ~, is needed so tha-t the il'nbedding assumptions 

of Theorem 2.4 and 2.5 hold, and is guaranteed by the global-~(~) 

and global-!;!A conditions on -the system {¢j}~ which ensure convergence. 

§4. LIMITATIONS ON THE UTILIty OF THE SPECTRAL METHOD 

The proposition derived in §3 yields direct verification of the 

utility of spectral methods. It shows that convergent and stable 
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approximations of the form (2) can be constructed using arbitrary 

orthonormal systems in g, when the procedures used to determine the 

unknowns a~n), j = 1,2, ••• ,n, n = 1,2, .•• , correspond to one of the 
J 

standard methodologies such as Ritz-Ga1erkin, Bubnov-Ga1erkin or 

Least Squares. 

There are however limitations on the utility of taking arbitrary 

orthonormal systems in H to construct approximations of the form (2) 

for (1). The example of Anderssen and Omodei [1] shows that the 

use of orthonormal systems cannot undo the damage being done by a poor 

methodology for the construction of the approximations (2). In 

addition, even using the standard methodologies, an arbitrary choice 

is unable to guarantee all the desirable numerical properties, such as 

the existence of a bounded condition number for the Ritz matric.es 

Rn' n = 1,2, •.. , and the convergence of the residuals A un-f and L un-f. 

It is this aspect which we pursue here using the backwards error analysis 

for matrix equations developed in §3. 

One interpretation of the backwards error analysis representation 

(21) for the computed solution ~c of A ~ = ~ is that, except for the 

errors oA and oE which were introduced during the construction of (20) 

to yield (21), the matrix equation is solved exactly (without error). 

Clearly, in this interpretation, the effect of rounding errors is 

ignored. Even if (21) is interpreted as accounting for the errors 

arising during both the construction of (20) and the subsequent 

approximate solution of the matrix equation, the present stability 

analysis has one crucial defect. It is limited to an analysis of 

absolute errors. 

As the standard texts in numerical analysis indicate, relative 

errors are usually more appropriate in assessing the effect of 

rounding errors than absolute. Thus, a definition of stability based 
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on relative errors (i.e. a relative error stabiZity) must assert the 

boundedness of lIl,{c -l,{II/IIl,{1I in terms of lIopll/lipli and IIOAIi/nAIi. However, 

we know from Wilkinson [21] tha'c 

(25) 
II>: - xII 
~c -

1Il,{1I 
K(A) {1I0AiI ~opllJ 

s l-l{(A) IloAIi/IiAIi . II All + IIpllJ P 

where KIA) denotes the condition number of the matrix A 

(26) K(A) '" IiAIl IIA 

Usually, resul"ts like ·this are used to emphasise the importance of 

the concept of condition number in·the analysis of rounding error (eL 

Atkinson [2], Forsythe and Moler [6]). In the present context, 

it shows immedia.tely that demons·tration of stability for relative errors 

reduces immedia'cely ·to proving the boundedness of K (1',) independent of n. 

Recalling the definition of almost orthonorma1ity, we obtain 

Proposition 4.1: For the matrix spectral norm, a sufficient condition for 

the relative err02° stabiUty of the Ritz-C~lerkin process is that its 

generating system f¢j}~ be aZmost orthonormaZ in l;!Ao 

Proof. since the spectral norm of a general matrix A corresponds to 

the positive square root of the larges·t eigenvalue of A TA , i1: follows 

immediately that the spectral condition number of Rn' Ks(Rn), is given 

by 

(27) ff () 'n(n) 1'1(11) _ "s Rn = /\ /\ • 

If {¢j}~ is almost orthonormal in ~A' then there exist constants AO 

and Ao such that 

(28) o < A ~ A (nl A < o m ~ 0 00, m = 1,2, ... ,n, n = 1,2, .••. 

This proves that Ks(Rn) is bounded independently of n by AO/AO. # 
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In passing, we note that, as a direct conseqdence of the minimax 

properties of the eigenvalues A (n), m = 1,2, ••• ,n, n 
m 

1,2, ••• , it 

follows that Ks(Rn) is an increasing function of n. 

A similar proposition holds for the Bubnov-Ga1erkin process. 

We have already seen in the proof of Proposition 3.1 that, 

when the Hilbert space ~ from which ~~ is formed cannot be imbedded 

in ~~' an orthonormal system in ~ can only be strongly minimal in ~~. 

It follows from Theorem 2.5 that, if the orthonormal system {$j}~ in ~ 

was also orthonormal or almost orthonormal in a Hilbert space ~ such 

that ~ and ~~ could be imbedded in each other, then {$j}~ would be 

almost orthonormal in ~~. Further, it follows from Theorems 2.2 and 

2.3 that a sufficient condition for ~ and ~~ to be imbedded in each 

other is that E correspond to the energy space ~B of an operator ~ 

wich is either similar or semi-similar to~. In fact, we have 

established 

Proposition 4.2. For the spectraZ no~~ a sufficient condition for 

the reZative error stabiZity of the Ritz-GaZerkin spectraZ process is 

that the(orthono~aZ)system {$j}~ in ~ be aZmost orthonormaZ in the 

energy space !!A 

A similar proposition holds for the Bubnov-Galerkin process. 

If ~ and ~ are unbounded operators, then it is well-known that, 

for the approximations un generated by some of the standard 

variational methods such as the Ritz-Galerkin and Bubnov-Galerkin (but 

excluding least squares), there is no guarantee that the residuals 

~ un-f and ~ un-f will converge. As for stability, this difficulty can 

be circumvented by imposing additional conditions on the choice of the 
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In fact, the basic result is g-iven by (cf. Mikhlin [14], §22) 

Theorem 4.1. Let ~ and!? be simUar posi.tive definite operaturB wUh 

domains contained in the separable HUbert space ~ and £I have a 

discrete spectrwn. If the coordinate system {cpo 
J 

consists of the 

normalized eigenfunctions of ~. then the residual A 

zero when the appJf'oX1~mations are construatedusing the Ritz-

GaZerkin process. 

Proof (Vainikko [20J). The key step is t.O convert ~ un -f to a form 

which allows the properties of the {qJj}~ to be exploited; namely, 

B qJ 0 = V 0 cp 0' where the V 0 denote the eigenvalues of B corresponding to 
- J J J J . - -

the eigenfunctions {qJj}~' We assume tha-t ur(the solution of Au=f) -takes 

-the fol."lll co 

(29) 

and, with respect to the metric of define En to be the following 

orthogonal projection 

(30) p 
-n 

We write p(n) = I _ P 
-n 

The proof first exploits a consequence of Theorem 2.2, the 

boundedness of A B-1 and A-I B: 

(31) 

The importance of this step is that it brings ~ into direct relation-

ship with the Ritz-Galerkin approximation un constructed from the 

{qJ j }~. In addition, 
(n) 

0, it follows that because E U n 

(32) ~ (ur - un ) '" B(P +p(n» (u _ = B P (u - + B P u f - -n - f -n f 

Appropriate estimates for the terms on the right hand side of 

(32) are derived from the following consequences of the definitions of 
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·the {cjJj}~ and l'(nJ : !}a, 0 < a < 1, and En commute; and 

(33) 

In fact, using (29), it follows that 

pen) 1If;(nl 
co 

(34) II~ ufl! B 2.: c j cjJ j II = II 2.: 
j=l j=n+l 

as n -+ co" In addition, using (33) and the best 

properties of u in ~A' it can be shown that 
n 

(35) 

-a 
lln+l 

CjlljcjJjll -+ 0 

approximation 

The convergence of the residual A un-f now follows from Theorem 2.2, 

(31), (32), (34) and (35). 

This proof depends crucially on the In. being eigenfunctions of a 
- 7) 

positive definite operator ~ \l1hich is similar to !'; and has a discrete 

spectrum. However, it does no·t rule out the possibili'cy that some 

subclass of the almost orthonormal systems in ~B might also guarantee 

convergence of the residual ~ un-f. Nevertheless, it clearly 

illustrates a further limitation on the numerical performance of 

spectral methods when the orthonormal system is chosen arbitrarily 

from H. 

35. CONCLUDING REMARKS 

As explained in the Introduction, the aim of this paper was to 

show how theory developed by Mikhlin [14] for studying the n1LTtlerical 
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performance of variational methods could be adapted for an examination 

of the numerical performance of spectral methods. For this reason, 

attention has been limited to stationary problems. In particular, it 

has been shown that the construction of spectral methods, using 

arbitrary orthonormal systems in ~, is sufficient to guarantee 
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absolute error stability, but not relative e~ror stability nor 

convergence of the residual of an unbounded operator. In addition, the 

properties which orthonormal systems in g must satisfy to guarantee 

relative error stability and convergence of the residual are discussed. 

The basic characterization developed here extends naturally to 

the study of the numerical performance of spectral methods for time 

dependent problems, and eigenvalue problems. However, a discussion is 

beyond the scope of this paper. Appropriate results for eigenvalue 

problems can be found in Mikhll.n [14'] and Chatel:ii'l [3]. In addit'ion, 

deeper results than those derived here would be obtained if a more 

specific exploitation of the theory of variational methods was 

applied to the study of spectral methods. Source references for 

such material are Kreiss and Oliger [10],Gottlieb and Orszag [8], 

Voigt et al [19] and Hussaini et al [9]. 

The material of Mikhlin [14] has been motivated by the need to 

have, for specific problems, reliable choices for the coordinate 

systems. For spectral methods, on.e needs· the converse: for specific 

orthonormal systems, a catalogue is required which lists the numerical 

properties they guarantee for various classes of ordinary and partial 

differential equations as well as integral equations. Such 

information is contained in references like Gottlieb and Orszag [8], 

Orszag [16], and Delves and Freeman [4]. 

The sufficient conditions for relative error stability of §4 were 

derived using the spectral norm for matrices. Because the spectral 

condition number of a matrix is always bounded above by the maximum 

norm condition number, it follows that the Ritz-Galerkin process could 

yield an approximation which exhibits relative error stability in the 

~2-norm but not relative error stability in the maximum norm. This is 

not surprising since it is well known how to construct n-component 

vectors which, as a function of n, are arbitrarily large in maximum 

norm and bounded in ~2. Clearly, to prove the Proposition 4.1 for 

the maximum norm would automatically guarantee its validity for the 
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spectral norm. However, in terms of the properties of strongly 

minimal and almost orthonormal systems, the natural setting for 

Proposition 4.1 is the spectral norm. 
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