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NONCONFORMING ELEMENTS, PATCH TESTS AND 

INTER-ELEMENT CONSTRAINTS 

Graham F. 

l. INTRODUCTIOI~ 

For a variational problem requid.ng that the admissible functions have 

partial derivatives of oJL·der m that are square integrable, :i.t is sufficient 

th,at the piece'!tJise polynomials in the fin:!.te element basis have cont:l.mwus 

derivatives up to order ra - l . That is, - l 
h denotes 

the mesh parameter for a finite element discretization of the domain. Hence 

for second order problems (2m "' 2) the basis is c0 (globally continuous) 

(deriva.tives t.o f:Lrst 

order are continuous),. Such finite elem~~nt bases erre said to be confo1.tulng. 

If the basis is said to be nonconforming. 

finite elements we,re first applied finite element calculations of plat,,e 

bendi.ug proble,ms :tn the mid 1960's o These exploratory studh~s produced 

i:::onflJ.cting results ~ in some ::"LnstanceB they led to accurate c:onverging 

sol11tions r,Jhile :fLn other ca,lculations the method failed to comrerge. In 

part:lcl.llar, for certain test problems 1dth noncmoform:l.ng elements it was 

obs,2rved that the method converged falo some ll1'~sh orientations but not for 

others (Bazeley et al. [1965]). 

This sensitivity to mesh m::ientation J_,ed to the propositim1 of a numer-

ical test'' by Irons (see Irons and Ra2;zaque [ 1972]) 0 Tlul essential 

iclea of their patch test \i&S that in the Hcmit as the mesh size approaches 
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zero the appropriate constant strain states should be representable on an 

arbitrary patch of elements adjacent to a given node. A formal mathematical 

statement of a patch test was subsequently developed by Strang [1973], and 

further refined by Stummel [1979]. At the same time, error estimates for 

nonconforming elements were being developed to further explain the perfor-

mance of the method (Lascaux and LeSaint [1975]) and techniques for enforc-

ing the smoothness requirements on the basis as constraints in the variation-

al problem ~.-ere being explored. 

In the following sections 1t1e first summarize the convergence results and 

patch test and then examine the use of multiplier and particularly penalty 

methods for enforcing the smoothness constraints across the interfaces 

between elements" 

2. CONVERGENCE 

Let us consider a variational boundary-value problem of the form: find 

u ~ H such that 

(2.1) a(u, v) f(v) 'ifvE.H 

where a(,, •) and £(•) denote the bilinear and linear functional for the 

variational statement. 

The corresponding (nonconforming) approximate problem is: find 

h h..J . 
uh E H , with H 'if H , such t:hat 

for 

f 

E 
E 

e=l 
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is the functional on element Q and E is the total 
e 

number of elements in the discretization. Note that the effect of interface 

discontinuities between elements is ignored in the problem statement (2, 2) 

and that this is the source of difficulties :i.n nonconforming elements. 

An error analysis of the problem (2, 2) reveals the follov7ing results (see, 

for instance 0 Ciarlet [ 1978] , 

(2.3) llu ~· 
h 

ifCwh) - ah ( u , ,,r1 ) I 1 , 

h 
+ sup . J 

'"hEJ!h llwhllh 

where u is the exact solution, II " llh is the norm associated with 

(•, ') in (2.2) and C is a constant independent of the mesh h 

The first term on the right in (2.3) is the standard term in finite element 

error analysis and can be bounded by the interpolation estimate. The second 

term is an added contribution arising from the nonconformity of the subspace 

Selection of a "good" nonconforming element can then be rephrased as 

th,e problem of shotv:Lng that the sup term in (2,'3) is zero, or at least gees 

to zero with h , for the element in question. For example, in Wilson's 

nonconforming brick element for three-dimensional, second-order problems the 

sup term can be bounded by C1hlulz, \l . 

3. PATCH TEST 

The numerical patch test of Irons led to a mathematical formulation by 

Strang [1973] as follmm: Given a variational boundary-value problem of 

order 2m , let Pm be a polynomial of degree m and let X be a noncon~ 

forming ba:sj_s function. Then to pass the patch test it is required that 

(3.1) a 0 
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For example, in the case of the Laplacian (I'm), m l , 

a + bx + cy and by Gauss theorem 

(lpl 

' x) ¢ X :Jn ds 

where the contour integral is over the exterior boundary and all interior 

element boundaries& Hence, the test in (3.1) implies that the contour 

integral in (3. 2) vanishes. 

We can sometimes shmv constructively that the boundary integral for each 

individual element is zero - for example, integral contributions on opposite 

sides of a particular nonconforming rectangle may cancel. It follows then 

that the contour integral in (3.2) is zero, and we have a viable nonconform-

ing method. In other :!.nstances the contour integral on an element may not 

van:!.sh, but the accumulated contributions of the contour integrals to a patch 

of several elements may vanish in which case the test (3.1) is again passed. 

In fact, it is in tilis form that eve may identify (3.1) as a "patch 

test,"' Stummel [1979] introduced a '\7eak-closedness" argument to extend the 

test to include certain pathological cases. 

4. INTER-ELEMENT CONSTRAINTS 

The origin of the difficulty is the lack of continuity of the basis 

across the interfaces between elementsu This po:Lnt is e-mphasized by our 

observations concerning r:he condition that the line integral ]_r:t (3 ~ 2), 

including all interelement boundaries) should vanish" \rle now consider 

tc2!chniques for enforcing continuity across the interf,ac~e between elements., 

This continuity requirement can be interpreted as a constraint to be 

enforced on each interface r 
s 

(Figure l)o The most direct approach is to 

imbed th(: contirr.uity constraint in. the existing basis 9 thereby modifying t"i1.e 

n.onconf o rming bas is ·::o one that is conforming~ For l:igher~ord~~r prcblen1s 
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this will lead to elements of high degree or composite elements, (Bell 

[1969], Clough and Tocher [1965]). 

Figure L Adjacent elements Q and lvith typical constraints 
e 

[u] = 0 or [~~] 0 on r 
s 

A second approach is to :l:mbed the constraint in the variational state~ 

ment by means of Lagrange multipli•~r teclmiques. The variational 

proble'lll becomes that of finding th,e saddle poiTL1t of the Lagrangian 

l 
E 

" 
e 

2 ,, [ae(nh' 
e=l 

[yu]] ds 

'iilhere ffy(u)] denotes the jump in the boundary trace term y(u) (de Veubeke 

[ Hl68], Harvey and Kelsey [I 971] , Gallaghe:r [ 197 5])" The principal disadvan-

tages of this technique are: (l) the multipliers enter as additional un-

knmms and th·e resulting algebraic system Jl.s correspondingly larger and less 

sparse; (2) the problem is a saddle-point problem on the spaces for appro::ri-

mating u and /, and hence these spaces lll'l.!.st be compatible in the sense 

of satisfying a discrete inf-sup condition if the method is to be stable and 

give convergent results. In fact, the method is equivalent to a hybrid 

method and the :tnf-sup stab:UHy condition implies that the degrees of the 

elem.ent ba.ses for and be consistent; (3) the enforcement 

of interele:ment constraints using multipliers can introduce a subtle linear 
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dependence into the solution (Carey et aL [ 1982]) which may require the use 

of special sparse solvers such as that in Argyris et al [1977], 

Penalty methods provide still another means of imbedding constraints 

in the variational statement. The essential ideas date back to the studies 

by Courant [ 1962] \vho introduced a penalty term to enforce Dirchlet data on 

the boundary in a potential problem, The problem statement for the 

Dirchlet integral becomes 

(4, 2) f (llv) 2 dx + ~.:: 
!6 

where E is the penalty parameter, and g is the Diric.hlet data on the 

boundary 3Q of domain n . As E + 0 the boundary penalty term is more 

strongly enforced and the solution u 
E: 

to (4o2) converges to the solution u 

of the corresponding constrained variational problem" Note that no new 

degrees of freedom are introduced in the associated finite element problemo 

The method has been applied successfully for enforcing :tncompressibility 

constraints in elasticity and viscous flmi' problems (see, for instance, 

Hughes et aL [1976], Sani et al. [1981], and Carey and Krishnan [1982]). 

Here we consider the use of penalty techniques for enforcing interele-

ment continuity of the basis. Let denote the variational 

functional for the nonconforming approximation, 

(4,3) - 2f 

Then the penalized problem has the form 

l 
E 

(4.4.) min (v ) 2 I: a ' 
vhEHh 

h 
e~l 

e 
v"') -

h 

E 
1 Z:: [a 2 e 

e~l 

2f(ve)] 
h' 

s f 
+ l: J s~l r 

s 

where the penalized teJ."m enforces the condition that the jump [y be 

zero across interfaces For example, both the problems of deflection of 
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a clamped plate in bending and the stream function solution of steady viscous 

flo\J are fourth order and governed by the biharmonic equation, The penalized 

approximate problem using nonconfonning elements with interface 

constraints on y is 

(l,,s) min 
E 

1 rJ{ :< 2fv~}dx] 2 L: -
e=l 

Q e 

and taking variations, this implies the weak statement 

(4. 6) 
E 

J 
e 

l: 1\uh 
e=l 

rl 
e 

s 
e 

Llvhdx + L: 
s=l E J 

r 
s 

s 
+ s~l 

r s 

<lvh 
2 

I [ an] ds 

In the follm,dng numerical studies vJe shall see, however, that this approach 

fails to produce results that converge as the mesh size h is refined, and 

that the constraint condition is too strongly enforced in the discrete 

problem (4 o 6) o Hotivated by the suceess of approximate integration 

strategies for relaxing the penalty constraint. in other finite element 

applications, we introduce the reduced integration penalty problem for (4.6): 

find u~ f such that 

E 

f 
s 

1 
au av 

(4, 7) l: f:,u; llvedx + l: I f[~~]) 
e=l L1 h s=l € s ' :Jn 3n -· 

Q 
e 

E 

J 
e. 

l: fvhdx 
e=l 

Q 
e 

where I 8 (·) denotes a Gauss quadrature formula for integrating the penalty 

term approximately. IIl matrix form, the penalty problem (4. 7) reduces to 

finding the nodal solut:i_on to the linear algebraic system 

(K P) 
£ -

F 

where a. are the degrees of freedom in the finite element expansion, 
~E 

(x) global basis {q,.} 
J 
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5. NU~ERICAL EXAMPLE 

In this illustrative numerical example we consider the above biharmonic 

problem for a square domain Q = (0, 1) x (0, 1) and a discretization of 

Hermite cubic triangles. The degrees-of-freedom for the element are u , 

at each vertex and u at each centroid. The cubic is complete on 

each element but the global approximation is only c0 • The forcing function 

f is chosen so that we have the smooth solution 

(5.1) u(x, y) 

The problem was solved on a sequence of uniformly refined meshes of right 

isosceles triangles with element side h The 

log of the error in the H1 norm is plotted against log h for the exactly 

integrated penalty form (4.6) and an underintegrated form of (4.7) in Figure 

(2). The slope of the curve gives the rate of convergence. Since the error 

in the solution consists of a part due to t~e penalty approximation 

(dependent on E) and a finite element approximation error (dependent on h) 

we take £ = Cha , constant C with a to be determined so that the two 

errors are of the same order and the accuracy is optimal. Following 

arguments similar to that of Babu~ka and Zlamal [1973] for (4.6) we show 

(Carey and Utku [1983]) that a= 3 for (4.7) and the element in question. 

In the figure we plot results as a family of curves for different choices of 

C • We see that the fully-integrated method fails to converge for the meshes 

considered. Closer examination of the solution reveals that the approximate 

solutions approach u = 0 • Note that in this problem· the meshes considered 

extend to much finer resolution than one would use in engineering practice 

for such a problem. 

When three-point (exact integration) and two-point (inexact) Gaussian 

quadrature are used for the interface constraint in (4.7) the same behavior 
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is seen. It is only when we further reduce the order of integration to a 

one-point rule that the convergent results in Figure 2 are obtained, 

One can explain the success of this underintegrated penalty form by 

means of an equivalence theory relating the penalty method to a corresponding 

multipHer method.. The discrete inf-sup condition for this 

equivalent hybrid method leads to a rank condition and hence a consistency 

condition on the approximation basis for the solution and multiplier where 

Gauss point 

Let t be the degree of the equlvalent multiplier so defined and s k ·- 1 

be the degree of Then the method is stable if 

t ~ s - l s odd 
(5. 3) 

t ;;;; s - 2 ' s e'>len 

In the present exaraple k = 3 (cubic) so s = 2 .and t "' 0 for 

implies ~~~ is piecF~wise constant and the required integration rule is a 

one~point rule a.s observed experimentally abov•e. Fu:rth•er theo:;:eU.cal details 

and numerical results are g:l ven in Carey 9 Kabaila, and Utku [ 19132] and Carey 

and Utku [1983]. 
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C= I 

1- point Rule 

, Exact and 

f 2- poirnt Ru !es 
./ 
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Q? 0,4 0.6 0.8 1.0 

h 

Figure 2, Performance of m>Bthods as the 
different choices of C in s = 

is refined ·and for 
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