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THE FACTORIZATION METHOD FOR TWO POINT BOUNDARY VALUE PROBLEMS
FOR ODE'S AND ITS RELATION TO THE FINITE DIFFERENCE METHOD

I. Babuska and V. Majer

1. INTRODUCTION

Finite difference and finite element methods for solving two point
boundary value problems for systems of ordinary differential equations

consist of

(a) a discretization procedure which transforms the original problem
into a family of finite dimensional systems of algebraic equations

parametrized by the mesh size h , and
(b) a solution procedure for the systems of algebraic equations.

For linear boundary value problems the algebraic equations are linear and
step (b) reduces to the selection of a matrix reduction scheme. In this

paper we consider only direct (elimination) methods of matrix reduction.

By these two steps, taken together, the original problem is transformed

into a sequential numerical process (§5) which depends on the mesh parameter

h. A complete analysis of the numerical procedure must consider this
underlying numerical process, not merely the discretization step (a). In
this paper we carry out such a complete analysis for a model singular
perturbation problem of turning point type (§2) studied by H.O. Kreiss

et al. in [1]. We show (§4) that the numerical process converges, as h + 0,
to the solution of initial value problems for certain differential eguations.

These limiting equations are the closure [2] of the process. Thus it is
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possible to interpret the numerical process as a special method (of low

order) for solving these initial value problems.

This fact suggests that one should study directly a class of such
transformations of the original boundary value problem into systems
of initial value problems. Such transformations will be called
factorizations. We address this matter in §3, where we
single out those transformations of this class which are stable in a
precisely defined sense, and which therefore can be solved by proper
numerical methods. One such method, of course, would lead to the
identical numerical process as that stemming from the finite element
or finite difference discretizations. Although we restrict ourselves
here only to a linear model problem, the results described here hold
for general systems of boundary value problems and can be applied also

to nonlinear problems [3].
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2. MODEL PROBLEM

2.1, Statement of the problem
Consider the scalar second-order boundary value problem
a? d
(2.1a) . e —5u(s) = 7z (als)uls)) + b(s)uls) + gls), s € [o,0%]

d52

(2.1b) u(o) = v, u(o*) = y*.

The functions a, b, and g are smooth on [o,0%], and 0 < e <K 1 is a
constant parameter. The solutions of (2.1) can exhibit boundary or interior
layers in which the solution is rapidly changing. A discussion of the range
of possible behaviors may be found in [1].

We seek the values of an approximate solution of (2.1) on a partitiom

m: 0 = g < 9y < eoe K O = o*

of target points of [o,0%]. We would also like to determine the location of
the interior or boundary layers and perhaps to resolve them.
2.2. Reformulation as a First Order System

It is possible to recast (2.1) as a first order system in a number of

ways. We consider one of them here. Let v~ = bu + g. Then

w(s) = 22 + 1y,
(2.2a)
vi(s) = bls)u(s) + g(s),

(2.2b) u(o) = vy, v(c*) = y*,
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in which we have used = ", Written in matrix form (2.2) becomes

ds

u”(s) a(s)/e 1/e u(s) 0
(2.33) = +

v (v) b(s) 0 v(s) g(s)
subject to

u(o) u(g®)
(2.3b) [1 o] = v, [1 0] =y,

v(o) v(o*)

Equation (2,.3) is but a special case of

u”(s) a(s) c(s) u(s) £(s)
(2.4a) = "
v7(s) b(s) d(s) v(s) g(s)
subject to
u(o) u(o*)
(2.4b) [« 8] = ¥ C = .
v(o) v(g¥)

The form (2.4) encompasses all the various reductions of (2.1) to first order

form. In the sequel, it is assumed that the solution of (2.4) exists.
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3. INDIRECT SOLUTION OF THE MODEL PROBLEM

The indirect method of solution of (2.4) is based upon the propagation
across the interval [o,0%] of the boundary conditions (2.4b) in a manner
consistent with the original equation. For this we require certain auxiliary

initial value problems.,

3.1, Auxiliary Initial Value Problems

Consider the initial value problems

07(s) = =-a(s)¢(s) - b(s)y(s) + z(s)e(s),
(3.1)
¢(o) = a,
P(s) = =c(s)¢(s) = d(s)Pp(s) + z(s)y(s),
(3.2)
y(o) = B,
x“(s) = £(s)¢(z) + g(s)P(s) + z(s)x(s),
(3.3)
X(O) = Y
$*7(s) = =a(s)¢*(s) = b(s)P*(s) + z*(s)¢*(s),
(3.4)
¢*(o*) = a*,
Px7(s) = =c(s)¢*(s) - b(s)y*(s) + z*(s)P*(s),
(3.5)

V(o) = B*,
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x*(s) £(s)¢*(s) + g(s)y*(s) + z*(s)y*(s),

(3.6)
x*(o*) = v,

in which the conditioning functions s + z(s), 2*(s) are continuous but, at
the moment, otherwise arbitrary. Problems (3.1)-(3.3) are solved forward,

while (3.4)-(3.6) are solved backward.

Theorem 3,1. Suppose that (3.1)-(3.3) have been solved on (o,E) and (3.4)~-
(3.6) have been solved on [E*,0*%]. Then for s ¢ [o,E] N [E*,0%] , and

[u(s)v(s)]T satisfying (2.4),

o(s)  P(s) u(s) x(s)
(3.7) = . @
o*(s)  P*(s)] Lv(s) x*(s)

Corollary 3.2. If s + [u(s) v(s)]-r is the unique solution of (2.4) and

the hypotheses of Theorem 3.1 are satisfied, then
(3.8) (8)p*(s) - ¢*(s)Y(s) # O
for s¢€[o,£] N [E%,0%]. @

It is possible to relax the hypotheses of Theorem 3.l1. It is necessary

%
only that 2z and =z be piecewise continuous.

Theorem 3.3. Suppose that (3.1)-(3.6) are satisfied with s + z(s), z*(s)

piecewise continuous and having points of discontinuity Ei’ i=1,.00,0 and
*

52, i =1,¢00,n , respectively. If there exist non-zero constants ki, i=

l,000,0t and k:, i=1,...,0% such that
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(3.92) CwED = RuED,
+ —
(3.9b) ¢(Ei) = kiw(Ei),
<+ -
(3.9¢) X(6D = Ix(E),

for 1 = 1,.e.,n, and such that

(3.10a) $E = geEh,
(3.10b) w*(az') = k:w*(z?)
(3.10¢) x*(az") = k:x*(g*J")

*
for i = 1,se.,n , then formula (3.7) continues to hold, as do the

conclusions of Corollary 3.2. .

The collections of functions {¢,¥,x,z}, {¢*,¢*,X*,z*}, breakpoints
{Ei}, {Ez}, and multipliers {ki}’ {k;} satisfying the conditions of
Theorem 3.3 comprise a factorization of the two point boundary value problem
(2.4).

Theorem 3.3 is central to the viability of a computer implementation of
a factorization procedure based on the solution of (3.1)-(3.6) followed by the
solution of (3.7) at selected target points at which the values of u and
*

*
, the breakpoints Ei, £,

v are desired. The conditioning functions =z, =z 5

and the multipliers ki’ kz are chosen adaptively by the computer during the

computation in order to stabilize the factorizatiom.
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3.2, Stable Factorizations

Definition 3.4. A factorization for (2.4) is bounded if there exist

constants 0 < A € A < @ such that

2

(3.11) AT < ¢2(s)+|p2(s) < A2

* *
for all s € [0,0 ] with a similar inequality for ¢ .

Bounded factorizations are stable in the sense of

~

Theorem 3.5. Let $, @ i and $*, v, i* be the solutions of the
initial value problems (3.1)-(3.6) under the relaxed hypotheses of Theorem 3.3
and such that the right hand sides have been perturbed by functions of
magnitute T (in the L_ norm). Then ;, v solving (3.7) with %
replacing ¢, etc., are solutions of a perturbed problem (2.4), for which the
perturbations of the input data are of magnitude c(A;A)T where c(A,A) is

independent of the problem. e

The significance of Theorem 3.5 lies in the fact that c(A,A) is
independent of the data of the problem (e.g. of € in (2.1a)), and in the
fact that the numerical solution of the initial value problems (3.1)-(3.6) can
be interpreted as the exact solution of perturbed equations., The magnitudes
of the perturbations of the equations are under the direct control of the
solution tolerance, for example, of an adaptive solver. The adaptive
selection of the functions z, z* the breakpoints Ei’ 5: and the
multipliers ky, kz by the computer itself is essential to ensure.that A/

and A are of reasonable magnitude.
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Example 3.6. Normalized Factorization

Set

(3.12) sy - 2(220%(s)H(b(s)+e(s))o(s)u(s)+d(s)v?(s)

¢2(S)+¢2(S)

It is not hard to see that ¢, ¢ satisfying (3.1) and (3.2) with this

choice of =z have the property that

(3.13) 02(s) + p2(s) = 1

if az +82 = 1 (which normalization we may assume without loss of general-

ity). In this case =z 1is continuous and the sets of breakpoints and

multipliers are empty.

Example 3.7. Riccati Factorization
It is possible to normalize the boundary conditions (2.4b) so that

either a=1 and |B/ <1 or B=1 and |a|] < 1. If a=1 set
(3.14) z(s) = a(s)¢(s) + b(s)y(s).

" In this case it follows that ¢ satisfying (3.1) is constant,

(3.15) #(s) = 1,

and equations (3.2) and (3.3) take the forms

—c(s) + (a(s)-d(s))p(s) + b(s)p>(s)

(3.16) y7(s)

(3.17) ¥ (s)

f(s) + g(s)p(s) + a(s)x(s) + b(s)P(s)x(s).
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(3.18) z(s) = d(s)¥(s) + c(s)¢(s).
In this case it follows that ¢ satisfying (3.2) is constant,
(3.19) w(s) = 1,

and equations (3.1) and (3.3) take the forms

(3.20) 07 (s) b(s) + (d(s)-a(s))¢(s) + c(s)p>(s)

(3.21) ¥ (s) g(s) + £(s)¢(s) + d(s)x(s) + c(s)¢p(s)x(s).

The constraints (3.15) or (3.19) are made explicitly in (3.1), (3.2), and
(3.3). This reduces by one the number of initial value problems to be solved
in each direction and the lower bound A equals 1. Unfortunately the
solutions of the resulting (Riccati) equations may not exist on the entire
interval [o,c*]. But if they do not, this fact is signalled by

¢2(S) + ¢2(S) + o (i.e., 1 + ¢2(S) > A2 or ¢2(S) + 1> Az)v in which case a
breakpoint can be defined and the solutions renormalized. That is, the
factorization algorithm can switch adaptively between the ¢-problem and the

y-problem.
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4, DIRECT SOLUTION OF THE MODEL PROBLEM

The direct method of solution of (2.1) i1s based upon the discretization
of the problem by a finite difference (or finite element) scheme and the
subsequent solution of the resulting matrix equations for the values of the
discrete solution. The dicretization may be carried out in the second-order
form (2.1) or in the transformed first-order forms (2.3) or (2.4). In either
case, a complete analysis of the algorithm should consider the underlying
numerical processes which result from the solution of the discrete matrix
equations., Let us carry out such an analysis for a particular discretization

based on (2.4).

4,1. Block-Diagonal Matrix Equations

A difference scheme for problems of the type (2.4) with a(s) >> d(s)
has been proposed in [1], where such problems are said to be essentially
diagonally dominant., In the spirit of the particular form (2.3) let us
restrict ourselves to the case d(s) = 0.

Suppose that a mesh

*
G O L I U (:) [
0 1 (h)
m
with 7 C w(h) has been given. The parameter h characterizes the fineness
L B (h)_ (h) .
of the partition; e.g., h = mgx(oi+l o )+ Then the difference scheme
i
proposed in [1] can be written
S _ ()
. ivl 4 _ (h) (h) (h) (h)
(4.12) B, kylaguy 7 egvy )+ () ag qug ]+ C5qVi,7)
(h)__(h)
vii=v
i+1 1 1 (h) (h) 1 )
(4.10) R T 7 Pt TP ) g (Btey)

i
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where

ro if  |a;hy | <0

\4
s
.
f
e

N
fo—

_ 1
(4.2) kg = 47 if |aihil

L1 if |ayh | > 1, a; > 0.
Written as a system of linear equations for the vector U(h)
(h) (h) (h) (h) ,,,TT
g oY

= [eeen i M1V

9

of nodal variables, (4.1) has the form

(4.3) aAlWg® - 5(h)

where the structures of A(h) and F(h) are given in Table 4.1, based on the

quantities
Py 57 ;i by>
a = -l
L I ;i LI
s; = 1,
By

(4.8) £, 0= 5 (gy%gy,)s
t, = 4(1+|<ihiai),
Wi = —Kihici,
g = 1 - (U-xphgas ),
vy = ~(=kphgegy,

for 1= 0,1,00.,m¢M=1,
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TABLE 4.1

Matrix A(h) and vector F(h).

o B 0 0 0 0 0 o e e |y
Po a9 g s 0 0 0 o o o | £q
tg W X Yo 0 0 0 - | o
Pp 9 ) 81 0 coe !
t) Wy x) '8} 0 e e | o
. | .
. | .
. |
Pi qy r; CH 0 o o o] £;
ty LA L3 5 0 e e .! 0
. | .
. | -
. | -
Pp-1  9m-1 Tm-1  Sm-1 | fa-1
ta-1 Yo-1| |%a-1 Ymw-1| | O
a* g* | y*
\ ¥ / -

A () # (B
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Perform forward Gauss elimination with pivoting on A(h) in order to
bring it into the upper triangular form shown in Table 4.2. A similar
backward elimination beginning with the last row of A(h) brings it into the
lower triangular form shown in Table 4.3. Observe that the nodal values of

the solution vector U(h) then satisfy the local 2 x 2 matrix equations

SR T N O X
(4.5) -
% £ (h) *
$301 Vim L V4 X141

for i = O,l,...,m(h). Clearly (4.5) is a discrete amalog of (3.7). However
* * *
now the entries bis Yy Xy and ¢i’ wi’ X4 satisfy explicit one-step
recursion formulas which are determined by the nature of the elimination
algorithm,
As an example, it is possible to perform the elimination in such a way

that one or the other of the following two recursions hold:

P recursion:

(4.6a) ¢i+1 1,
h
T
b; (I+c hya )+ b e - (1- CH by ) (1=k )h e,
(4.6b) ¥y, B h;
=7 by (0 eghyag =iy e J+(1= 5= By ) (1-(ly Oy a, ) )
by
5 (g0+gl+bixi)(1pi(1+;<ihiai)-Kihici)+xi(l+o<ihiai)
(4e6c) X341 = —H o ;
1 i
=7 by (9 (Treghya d=ehye, J+(i= = byw ) (1-(1-kdhyay )
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TABLE 4,2

Forward Elimination

bg Yo O 0
0 * * *
0 0 TR

0 * * *

0 0 ¢ b

0 *

0 0

Xp

Xy

Xa



86

TABLE 4.3

Backward Elimination

o, 1 0 0
* *
451 IPI 0 0
* * * 0
* *
%9 L) 0 0

% wi| [0 o |
* * * 0 |
. |
. I
. l
* *
by Y| OO I
%* * * 0 |
* *
Pme1 Vme1 '
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Q recursion:
by by
=5 by (It hya by c 0, )+(6- 2 b, )(1-C1-x )h, ai+l)
(4.73) ¢1+1 = h )

1
(1+jha —cnyeé,)-(05= 5= by )(1-x;)bye;

(4:7) Wy, = 1,

) h
i i
(= 5= Caytmy 0%y )oxg (g hyag =i by ey 0 0+( 6= 5= ) kiBiCiXy

(4.7¢) x,

i+l =

Ry
(1+ehia,—kihie d,)=(4,- 5 by ) (I pOhee,

It is readily seen (by letting h + 0) that the explicit recursion
formulas (4.6) and (4.7) can be regarded as special one-step methods for the
initial value problems (3.15)-(3-17) and (3.19)-(3-21), respectively. That
is, the closure of (4.6) is (3.15)-(3-17) and the closure of (4.7) is (3.19)-
(3-21). Of course, it is also possible to devise an elimination scheme for
(4.35 which yields the normalized factorization (z given by(3.12)) as its

closure. Analogous recursions can be given for the backward elimination.
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5. STABLE NUMERICAL PROCESSES

The explicit one-step recursion formulas (4.6) and (4.7) are examples of

a general one-step numerical process (cf. [2]) of the form
(5.1) Yi+1 = Qi(yi’hi)’ i =0,1,2,000

where yi,¢i € RN. We have already noted that (4.6) and (4.7) are consistent
with (i.e., the closures of) particular realizations of the initial value

problems (3.1)-(3.3). They are also stable.

Definition 5.1 (Stability). The process (5.1) 1s stable if it is bounded,

(5.2a) nyin < K,

and if there exist a neighborhood BS(Y) = {z: lz~y 1< 8} of yy, and an

L € 1 such that

(5.2b) i < LHzi—uiH

Zi41 V141!
for z;,; given by

Zig = 3(zgahy)

with zg € Ba(yo)'

Definition 5.1 is an adaptation of BN-stability (cfe [4])e 1Im
contrast to the concepts of A-stability and B-stability, the definition is
made without reference to a particular test equation. If L < 1 the process

is strongly stable,

Consider the model problem (2.1) with

(5.3a) :“—(z—)h- < -1
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and
(5.3b) b(s) > 0.

Under these conditions it is not hard to see that recursion (4.6) will hold

=0 in (4.2). In fact, (4.6b) reduces to

with Ky
hibi
(5—+ ey -1y
(5.4) wi+l = 7] »
hib,a, eh, (b, +b )
( A it7i i+l )¢ + (e-h,a )
2 2 i i i+l

which can be shown to be an order 1 method for (3.16).

Theorem 5.2. For e < € with £, such that conditions (5.3) hold, the

recursion (5.4) remains in the semi-infinite strip

5 (‘l}eo 1/2
(5.5) P < ;ﬁl R a > max|a(s)|, b > max|b(s)]
and is strongly stable, independently of e. ®

Results analogous to Theorem 5.2 hold for the y recursion (4.6¢c), and
. , ha(s)

also for the recursions (4.7) in the event that |__E__| > 1., For the case
ha(s) c s . . . .
1——E~—J < 1 it is not possible to say a priori whether recursion (4.6) or
(4,7) will be used. It is likely that the matrix reduction algorithm will
switch between them, depending upon the behavior of a(s), b(s), and on the
pivoting strategy in a particular case, It is not our intent to give an
exhaustive analysis here.

As a final example to illustrate the ideas discussed above, note that

another first order accurate, stable, explicit recursion for the initial value
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problem (3.2) can be obtained by applying the implicit Euler method. Thus

a
B 1, Aam 2
(5-6) wi+1 = ‘pi + hi { 3 + ( € )\Piﬂ + b1+1“‘j_+1}’
whence
_ ol
I S T OO T e S
(5.7) Yigp T 7eh b, e o )2 :
12141
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6. CONCLUSION
We have shown on a model problem

1) that there exist factorizations of the original two point boundary
value problem into systems of initial value problems with guaranteed

stability properties;

2) that there can be many methods--some specially designed--which solve
these initial value problems. Some of these methods will produce
the identical numerical processes as the finite difference (or
finite element) methods applied to the original boundary value

problems.

In view of these two points, we suggest that it may be advantageous to
avoild the finite element or finite difference approach altogether, and rather
to study the class of stable factorizations directly, with the goal of
selecting both an optimal factorization for the given boundary.value problem,
and also an optimal method (possibly a special omne) for solving the initial
value problems of the factorization. In this way one might employ the modern
ideas and adaptive approaches widely used in today”s software for the
numerical treatment of initial value problems for ordinary differential

equations.
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