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THE FACTORIZATION fi'IETHOD FOR TWO POINT BOUNDARY VALUE PROBLEMS 

FOR ODE'S AND ITS RELATION TO THE FINITE DIFFERENCE METHOD 

I. Babu~ka 

1. INTRODUCTION 

Finite difference and finite elemen't methods for solving two point 

boundary value problems for systems of ordinary differential equations 

consist of 

(a) a discre"cization procedure which trcmsforms the original problem 

into a family of finite dimensional systems of algebraic equa,tions 

parametrized by 'the mesh size h , and 

(b) a solution procedure for 'the sys,tems of algebraic equations. 

For lineax boundary value p1:oblems ·the algebraic equa-tions are linear and 

step (b) reduces to the selection of a matrix reduc-tion scheme. In this 

papeJ: vJe consider only direc-t (elimination) me-thods of ma,trix reduc-tion. 

By these tvm s·teps, ·taken i:oge-ther, the original problem is transformed 

in·to a sequen·tial nt.u.nerical process (§5) ~rihich depends on the mesh parameter 

h. .A comple'ce analysis of 'the m.u--uerical procedure must consider this 

underlying numerical process, not merely the discretization step (a) . In 

this paper \fie cal~ry 01xt such a complete analysis for a_ model singula.r 

per-turbation problem of turning point type (§2) studied by H.O. Kreiss 

et al. in [1]. \"e shmv (§4) tha_t the nw-nericcd process converges, as h + 0, 

to the solution of ini-tial value problems for certain differential equations. 

These limiting equa·tions are ·the closure [2] of ·the process& Thus i·t is 
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possible to interpret the numerical process as a special method (of low 

order) for solving these initial value problems. 

This fact suggests that one should study directly a class of such 

transformations of the original boundary value problem into systems 

of initial value problems. Such transformations will be called 

factorizations. We address this matter in §3, where we 

single out those transformations of this class which are stable in a 

precisely defined sense, and which therefore can be solved by proper 

numerical methods. One such method, of course, would lead to the 

identical numerical process as that stemming from the finite element 

or finite difference discretizations. Although we restrict ourselves 

here only to a linear model problem, the results described here hold 

for general systems of boundary value problems and can be applied also 

to nonlinear problems [3] . 



73 

2. MODEL PROBLEM 

2.1. Statement of the problem 

Consider the scalar second-order boundary value problem 

( 2. 1a) 
d2 

e: - 2 u(s) 
ds 

~s (a(s)u(s)) + b(s)u(s) + g(s), s E [o,o*] 

(2.1b) u(o) y, u(o*) y* .• 

The functions a, b, and g are smooth on [o,o*], and 0 < e: << 1 is a 

constant parameter. The solutions of (2.1) can exhibit boundary or interior 

layers in which the solution is rapidly changing. A discussion of the range 

of possible behaviors may be found in [1]. 

We seek the values of an approximate solution of (2.1) on a partition 

of target points of [o,o*]. We would also like to determine the location of 

the interior or boundary layers and perhaps to resolve them. 

2.2. Reformulation as a First Order System 

It is possible to recast (2.1) as a first order system in a number of 

ways. We consider one of them here. Let v' = bu + g. Then 

u'(s) a(s) u(s) + ~ v(s), 
e: e: 

(2.2a) 

v'(s) b(s)u(s) + g(s), 

(2.2b) u(o) y, v(o*) y*' 
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in which we have used 
d 

Written in matrix form (2.2) becomes 

(2.3a) [
a(s)/E 

b( s) 

1/ 

[
u(s)] [ 0 J 
v(s) . + g(s) .· 

0 

subject to 

(2.3b) [l [u(a)] 
o] 

v(cr) 

y, [l [

u( 

v( 

Equation (2.3) is but a special case of 

] fa(s) c( 
[ u( ') I 

::J (2.4a) + 
~ 
lb( s) d( v(s)J 

subject to 

ru( ru( 
(2.4b) [c. a] y l' 13*] y<J: G 

Lv( lv( 

The fon11 (2.4) encompasses all the various reductions of (2 .1) to first order 

form. In the sequel, it is assumed that the solution of {2.l;) exists. 
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3. INDIRECT SOLUTION OF THE MODEL PROBLEM 

The indirect method of solution of (2.4) is based upon the propagation 

across the interval [cr,cr*] of the boundary conditions (2.4b) in a manner 

consistent with the original equation. For this we require certain auxiliary 

initial value problems. 

3.1. Auxiliary Initial Value Problems 

Consider the initial value problems 

(3.1) 

( 3.2) 

(3.3) 

( 3.4) 

(3.5) 

4-'(s) 

q,(cr) 

V(s) 

-a(s)q,(s)- b(s)w(s) + z(s)q,(s), 

a, 

-c(s)q,(s)- d(s)w(s) + z(s)w(s), 

w(cr) 8, 

x'(s) f(s)q,(z) + g(s)w(s) + z(s)x(s), 

x(cr) y, 

4-*'(s) -a(s}q,*(s) - b(s)w*(s) + z*(s)q,*(s), 

q,*(cr*) a*, 

w*'(s) -c(s)q,*(s) - b(s)w*(s) + z*(s)w*(s), 

w*(cr) 8*, 
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s) f( s) s) + g( s) s) + z*(s) s) ' 

in \>Jhich the corulliU.oning funct:l.o!l.'!l s + z( s), /' ( s) are continuous but, a.t 

the moment:, othenrlse arbitrary. Problems {3.1)-(3.3) are solved fon;rard, 

Theorem 3.L Suppose that (J.I)-(3.3) have been solved o;: (cr,O and (3.4)-

(3"6) have been solved on [t;*,cr*]. Then for s E [cr,U n [i;'~,cr1'], and 

[u(s)v(s)]T satisfying (2.4), 

(3.7) [

<jl(s) 

4>*( s) 

Corollary 3~2~ If s + [u( 

\!J(s) "I 
s)_ 

fuC s)l 
~ ! 
!_v(s)J 

s) is the unique sol1J.tion of (2~4) and 

the hypotheses of Theorem 3~1 are satisfied') then 

s) >F 0 

for s E [cr ,I; l fl [ 1;* ,cr''']. IIi 

It is possible to relax the hypotheses of Theorem 3 ·t 1 ~ It J.s neeessary 

j~ 

only that z and z ·be piecewi..se continuous w 

The01cem. Suppose that ")-(3.6) are satisfied •lith s + z(s), s~'(s) 

piecewise continuous and l:lavinfS points of discontinuity 

,r, 
t;i~ i = l,oo<l,TI 9 respect:lv~ely·" If there exist non~z.:eJUJ const&T1t8 i = 

1, ~,,, n and 
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(3, 9a) ' ) , 

(3. 9b) 

( 3. 9c) 

for i 

(3, lOa) 

(:3' lOb) 
,, *-

~} (I;. ) 
:.t 

* X ( 

for i 
~h 

1,.,., n ,, then formula (3. 7) continues to hold, as do the 

conclusions of Corollary 3m2o Ill 

~!~:Itt:.~* 

111e coll.acttons of functions ,1(J ,x ,z }, breakpoints 

}, *} satisfying the conditions of 

Theorem 3. 3 comprise a faeltorization of the tv10 point boundary value problem 

Theorem 3.3 is central to the viability of a computer implementation of 

a factor.:?~ zation procedure based on the solution of ( 3 ~ 1 )~( 3 m-6) follor.,yed by the 

solution of (3., 7 at: selected target points at which the values of u and 

'il are desired. e The conditioning functions z, * the breakpoints ~i~ ~i 

and t}l!.~ multipli,erg are chose::! adaptivelj? by the computer during the 

computatioc in o~der to stabilize the factorization~ 
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3. 2. Stable Factorizations 

Definition 3.4. A factorization for (2.4) is bounded if there exist 

constants 0 < A ( A < ~ such that 

(3.11) 
2 2 

4> (s) + 1fJ (s) 

* * for all s E [o,o ] with a similar inequality for 4> • 

Bounded factorizations are stable in the sense of 

$. $ 
~ ~* ~* ~* 

Theorem 3.5. Let X and 4> • 1fJ • X be the solutions of the 

initial value problems (3. 1)- ( 3. 6) under the relaxed hypotheses of Theorem 3.3 

and such that the right hand sides have been perturbed by functions of 

-(3.7) with magnitute T (in the L norm). Then u, v solving 4> ~ 

replacing 4>. etc., are solutions of a perturbed problem (2.4), for which the 

perturbations of the input data are of magnitude c(A;A)-r where c(A,A) is 

independent of the problem. • 

The significance of Theorem 3.5 lies in the fact that c(A,A) is 

independent of the data of the problem (e.g. of £ in (2.la)), and in the 

fact that the numerical solution of the initial value problems (3.1)-(3.6) can 

be interpreted as the exact solution of perturbed equations. The magnitudes 

of the perturbations of the equations are under the direct control of the 

solution tolerance, for· example, of an adaptive solver. The adaptive 

selection of the functions z, z* the breakpoints ~i' * ~i and the 

multipliers by the computer itself is essential to ensure that A/A 

and A are of reasonable magnitude. 
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Example 3.6, Normalized Factorization 

Set 

(3.12) z( s) 

It is not hard to see that q,, ~; satisfying (3.1) and (3,2) with this 

choice of z have the property that 

(3.13) s) + s) 

if = l (which normalization we may assume without loss of general-

ity). In this case z is continuous and the sets of breakpoints and 

multipliers are emptyo 

Example 3,7. Riccati Factorization 

It is possible to normalize the boundary conditions (2. L:b) so that 

either a = and IS I < l or 13 = 1 and I a I &; l. If a = l set 

(3. ll:.) z( s) a(s)¢(s) + b(s)o/(s). 

In this case it follo<;rs that .p satisfying (3 .1) is constant, 

(3 .15) t/J(s) 1' 

and equations (3.2) and (3.3) take the forms 

(3. 16) s) -c(s) + (a(s)-d(s) s) + b( s) 

(3.17) x""( s) f(s) + g( s) + a(s)x(s) + b( s)x(s). 

If 13 set 
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(3.18) z(s) d(s) s) + c(s)t(s). 

In this case it follows that ~' satisfying (3. 2) is constant, 

(3.19) s) 1, 

and equations (3 .1) and (3, 3) talu~ ·the forms 

(3.20} s) b(s) + (d(s)-a(s)).(s) + c(s s) 

( 0 21) s) g(:s) + f(s) s) + d(s) s) + c(s) s) • 

The constraints (3.15) m· (3.19) are made expUd.tly in (:Ll , (3.2), and 

(3~3) ® This reduces by one the number of initial ~f;3.lt::2 problems to be solv-ed 

in each direction and the lov1er bound A equals 1 ~ Unfortunately the 

solutions of the resulting (Riccati) equations may not exist on the entire 

interval [o,o 
,, 

But: if they do not~ this fact is signalled by 
') 

s) + s) + (i .,e ~, 1 + s) A<(,., or 
., 

SJ + ., 
'- ) in which case a 

breakpoint can be defined and the solutions renormal:i.zed, That is, the 
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4. DIRECT SOLUTION OF THE MODEL PROBLEM 

The direct method of solution of (2.1) is based upon the discretization 

of the problem by a finite difference (or finite element) scheme and the 

subsequent solution of the resulting matrix equations for the values of the 

discrete solution. The dicretization may be carried out in the second-order 

form (2.1) or in the transformed first-order forms (2.3) or (2.4). In either 

case, a complete analysis of the algorithm should consider the underlying 

numerical processes which result from the solution of the discrete matrix 

equations. Let us carry out such an analysis for a particular discretization 

based on (2.4). 

4.1. Block-Diagonal Matrix Equations 

A difference schemeforproblems of the type (2.4) with a(s) )) d(s) 

has been proposed in [1], where such problems are said to be essentially 

diagonally dominant. In the spirit of the particular form (2.3) let us 

restrict ourselves to the case d(s) : 0. 

Suppose that a mesh 

(h) ( 0 (h) ( ••• 
cro 1 

(h) 
< cr (h) 

m 
* cr 

with has been given. The parameter h characterizes the fineness 

of the partition; e.g., 
(h) (h) 

h = m~x(cri+1 -cri ). Then the difference scheme 
1 

proposed in [1] can be written 

(4.la) 

{4.1b} ( b (h) + b.u(.h)) + 1 ( + ) 2 i+lui+l 1 1 2 gi+l gi 
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where 

if I ai hi I > 1' 

(4,2) Ki if laihil ( l 

if iai hi I > 1' 

l~ritten as a system of linear equations for the vector u(h) 

r (h) (h) 
= L(llol• ui !llvi 

(4 '3) 

where the structures of 

quantities 

(4,4) 

for i (h) O,l, ••• ,m -1. 

~T •••J of nodal variables, (4.1) has the form 

h) and p(h) are g:i.ven in Table 4. I, based on the 

r 
i 

-1, 

1, 



a e 

u 0 
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TABLE 4.1 

Matrix A(h) and vector p(h). 

0 0 

CJ 0 

D 1 

0 0 

0 0 

0 0 

~ 1 

I~ 
~ 

A(h) 

0 

0 

0 

0 

0 

~~ 
~ 

Pm-1 qm-1 

tm-1 wm-1 

y 

fo 

0 

f1 

0 

I 
0 • I 

0 • I 

I 

rm-1 5 m-1 fm-1 

~-1 Ym-1 0 

a* e* y* 
'--.,--J 

F(h) 
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Perform forward Gauss elimination with pivoting on A(h) in order to 

bring it into the upper triangular form shown in Table 4.2. A similar 

backward elimination beginning with the last row of A(h) brings it into the 

lower triangular form shown in Table 4.3. Observe that the nodal values of 

the solution vector U(h) then satisfy the local 2 x 2 matrix equations 

(4. 5) 

f . - 0 1 (h) or 1 - , , ••• ,m • Clearly (4.5) is a discrete analog of (3.7). However 

now the entries and satisfy explicit one-step 

recursion formulas which are determined by the nature of the elimination 

algorithm, 

As an example, it is possible to perform the elimination in such a way 

that one or the other of the following two recursions hold: 

( 4. 6a) 

(4.6b) 

(4. 6c) 

1jJ recursion: 

1, 

h. 
bi+l(wi(l+Kihiai)-Kihici)+(l- 2~ biljli)(1-(1-Ki)hiai+l) 

h. h. 
- 2~ bi+1(1jli(l+Kihiai)-Kihici)+(1- 2~ biljli)(1-(1-Ki)hiai+l) 
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TABLE 4.2 

Forward Elimination 

~0 wo 0 0 Xo 

D Q I * 

I xl 0 1 

D u I * 

Xz 0 2 

I 0 

I 0 

I 

DQ I * 

~i ljii xi 

I 0 

:J r * * , 

~ 
I * 

Xm 0 0 

* * * a B y 
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TABLE 4.3 

Backward Elimination 

0 0 

nDO 

I * ~J 
~--~ 

* * 

~-~ 
* <l\n :m, Xm 

<'( " 
,, 

4>~+1 '~ * ~1m+l Xm+l 
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p recursion: 

(4.7a) ~i+1 

(4.7b) .• i+1 1, 

(4.7c) xi+1 

It is readily seen (by letting h + O) that the explicit recursion 

formulas (4.6) and (4.7) can be regarded as special one-step methods for the 

initial value problems (3.15)-{3-17) and {3.19)-(3-21), respectively. That 

is, the closure of (4.6) is (3.15)-(3-17) and the closure of (4.7) is (3.19)-

(3-21). Of course, it is also possible to devise an elimination scheme for 

(4.3) which yields the normalized factorization (z given by(3.12))as its 

closure. Analogous recursions can be given for the backward elimination. 
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5, STABLE NUMERICAL PROCESSES 

The explicit one-step recursion formulas (4. 6) and ( 4. 7) are examples of 

a general one-step numerical proeess ( cf. [ 2]) of the form 

( 5 .l) i 0,1,2, ••• 

where ERN. We have already noted that (4.6) and (4.7) are cons:Lstent 

1"ith (:!..e., the closures of) part:Leular realizations of the initial value 

problems (3.1)-(3.3). TI1ey are also stable. 

Def:Lnit:Lon 5.1 (Stab:LHty). The process (5.1) is stable if it :i.s bounded, 

and if there exist a neighborhood 

L ~~ such that 

~y.~ < K, 
JL 

y) 

.;; Lil 

{z: II z-y 

Definition 5o 1 is an adaptation of BN-stabili·ty 

o} of y 0 , and an 

contrast to the concepts of A~stability and B-stab:Llity, the definition is 

made ,,Jithout reference to a particular test equation. If L the process 

is strongly_ etsble. 

Consider the model problem 2 .l) >nth 

5,3a) < -1 
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and 

(5.3b) b(s) > 0. 

Under these conditions it is not hard to see that recursion (Lf. 6) will hold 

0 in 4,2). In fact, (l,,6b) reduces to 

(5. 4) 

+ (£-h. 
:!. 

•~hich can be sho'"''' to be an order method for (3o.l6)<~ 

such that conditions (5.3) hold, the 

recursion (5o4) remains in the semi-infinite strip 

2 -
< --hi)-- a: "' men~ I a(s) 1, 

and is strongly stable, independently of s~ 

Results analogous to Theorem 5.,2 hoJ.d for recursion (4<~6c)~ and 

c~lso for the recursici!ns ( l~. v 7) :Ln the e'Jent that ) lm For the case 

( 1 it is not possible to say a priori ;;;Jhether recursion (i~ "'6) or 

sv.Jit ch bet~Ieen them, dep~~n.ding upon th·e: b.2havio:c of c_( s and_ on :.:he 

pivoting strategy in a particelar case"' It is not our intent to give an 

exhaus~ive analysis herea 

final example to illustrate the ideas discussed above) note that 

another first order accurete, stable~ exp:icit recursion for the initial value 
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problem (3.2) can be obtained by applying the implicit Euler method. Thus 

( 5. 6) 1jJi+l + } ' 

whence 

(5. 7) 1 f • 
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6. CONCLUSION 

We have shm·m on a model problem 

1) that there exist factorizations of the original two point boundary 

value problem into systems of initial value problems cV'ith guaranteed 

stability properties; 

2) that there can be many methods--some specially designed--which solve 

these initial value problems. Some of these methods "rlll produce 

the identical numerical processes as the finite difference (or 

finite element) methods applied to the original boundary value 

problems. 

In view of these tvJO points, we suggest that it may be advantageous to 

avoid the finite element or finite difference approach altogether, and rather 

to study the class of stable factorizations directly, v.'ith the goal of 

selecting both an optimal factorization for the given boundary value problem, 

and also an optimal method (possibly a special one) for solving the initial 

value problems of the factorization. 11• this v7ay one might employ the modern 

ideas and adaptive approaches wi.dely used in todayp s software for the 

numerical treatment of initial value problems for ordinary differential 

equations. 
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