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ON AN ELLIPTIC BOUNDARY VALUE PROBLEM WITH MIXED 

NON-LINEAR BOUNDARY CONDITIONS 

A.J. Pryde 

L 

E. Tuck has made a study of airflows (assumed to be irrot:ational 

of an inviscid incompressible fluid) under a thin body at a non-uniform 

small clearance from a plane ground surface. (See [6]). The problem 

is relevant to vehicle aerodynamics, especially for racing cars. 

J. van der Hoek and the present author have begun an investigation 

whose immedia·te aim is to establish existence, uniqueness and regularity 

properties for the model used by 'I'uck. This paper is a report of 

some of that v1ork. 

We take the body 'co be fixed and the flow to have a uniform veloci·ty 

at infinity of l in ·the posit.ive x-direc·tion. The plan form of the 

body is assumed to be a bounded convex domain Q in R 2 w·hich is 

syrrunet:ric \Vit.h respec·t t:o ·the :?:-axis and has a smoot.h boundary drl 

The heigJ1t of t.he body above the ground surface is given by z a(x,y) 

v1here a~ is a positive smooth function on TI satisfying· 

a(x,y) a(x,-y) Le·t qJ(x,y,z) be ·the \leloci·ty potential of 'che 

flo1r1 so that (jl (x ,y, z) = }; a·t infinity. For poin-ts q E ()Q le1: 

V (q) be ·the ouborard poin·ting unit normal to ()Q and T (q) the 

clock1t.rise poin·ting unit ta;.1gen:t., The boundary decornposes il'1 the form 

\vhere f L (·the leading edge) and rT (the trailing 
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edge) are connected relatively open subsets of aQ separated by 

transition point.s p,p which are symmetrically positioned with respect to 

the x-axis" See the diagram. 

Tuck shows that with u(x,y) tp (x, y, 0) the following boundary 

value problem arises 

(Ll) div a grad u 0 in Q 

u = X on r 
L 

IVul 1 on r --T 

together with the supplemen·tary condi·tion 

(1.2) 
au 
av at p,p 

The problem is to determine ·the transition points p,p as well as 

the funtion u E life work in Sobolev spaces H0 (Q) , 0 real, 

defined as in Lions and Magenes [ 2] for example. Recall ·the Sobolev 

embedding theorem t11hich gives H0 (S'l) C c 1 (Q) for 0 > 2 

Remarks 

(1. 3) If 
1-

u E C (Q) satisfies the t\vo boundary conditions of 

(1.1) then at p,p we have 



179 

1 -

( 
. ? ., l-

oXJ 
l 3\J 

so that and the supplementary condition simply picks mrt 

the second al·ternative. 

(1.4) 

(1.5) 

If a(x,y) = a(y) on Q then u(x,y) = x defines a 

solution of (1.1), (1.2) whenever p,p are on the wing tips of 

Q (that is, the se·t of points q E ()Q of maximal distance from 

the x-axis) . The interesting case is a (x, y) ¥ a (y) , vthereupon 

the velocity under ·the body may increase, the pressure therefore 

decreasing and adding to the stability of the body. 

Some supplementary condition is needed. Wi thoui: it >ve 

could take fT= ~ , fL= ()Q , p = p = p 0 the point (x,O) E 8Q 

with maximal x , and ob·tain a unique solution u = u 0 E C 00 (Q) 

However, the underlying physical problem demands that the trailing 

edge rT be non-empty. This is assured by condi·tion (1.2) if >ve 

make the in'cerpretation p = p = Po when r,r= IZI • Indeed by the 

Hopf maximum principle (Gilbarg and Trudinger [1]) ~ (p0 ) > 0 

so that (1.2) is not satisfied. 

2. LINEARIZATIONS 

Tuck considered the linearization obtained by setting v = u-x and 

ta~ing 
2 

!grad v! ~ 0 on r 
T 

Dropping the supplementary condition 
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div a grad, this gives 

(2.1) r= in n 

v = 0 on rL 

l~: = 
0 on 

Pryde and van der Hoek [3], [5] have looked at probleln (2.1) with p 

treated as a parameter u and ob·tained various existence: uniqueness 

and regularity results. 

In ·!:his paper we consider a. different linearization and 'tile use it 

to obtain an existence result r.elated to problem (Ll), (L2). Again 

·treat p as a parameter, and for sufficiently smooth func·tions 

f, g, b. consider t.he more gener<'.l problem 

(2. 2) 

i 
Au f in Q 

u g on rL 

llvul h on rT 

We sha.ll see later (proposition 2.16) that under certain natural 

conditions on f ,g ·there is a unique non-zero constant K such ·that 

the follovJing problem has a solution ]l E (Q) for sufficiently small 

a> 2 

(2. 3) f All 
f in S1 

]J g on 

ldjl av K on r 
T 
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Setting v = u-f.l , B = 2K a~ + 2 ~~ . aaT and 

we find that u satisfies (2.2) if and only if v satisfies 

(2.4) 

r= 
0 in n 

v"' 0 on rL 

-1Vvl 2 A 

rT Bv + h on 

In section 3, for appropriate choices of f,g,h, we shall use the 

following linearization of (2.4) or (2.2) 

(2 .5) 

on 

on 

Associated with (2.5) is an adjoint problem. Indeed, define 

Cw=aaw- a av aT 
(~ all w) 
K aT Then for the following 

Green's formula is valid 

(2.6) (Av,w) - (v,Aw) = { Bv, ~ w} - { v,Cw} 
2K 

where ( •, •) and { •, •} denote the L 2 (n) and L 2 can) inner products 

respectively. The associated (homogeneous)adjoint problem to (2.5) is 

(2. 7) r· 0 in n 

w"' 0 on rL 

Cw = 0 on rT 

To see more closely the relationship between (2.5) and (2.7) 
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consider the operator 

(A,yL,BT)O : H0 (Q) + H0- 2 (Q) X H0-~(fL) x HO-l~(fT) defined by 

BT)cru = (Au,yLu,BTu) for u E H0 (Q) , a> 2 , where 

for a real, 

are defined in [2] and the spaces r = r or 
L fT , are 

the spaces of restrictions to r of distributions in Ha((lQ) 

together with the natural infimum norm. The following result is 

proved in Pryde [4] : 

THEOREM 2.8. For suffieiently small a> 2 the operator (A,YL,BT)cr 

is injective vJith alosed range of aodimension 2. 

The range of (A,yL,BT) is identified via the adjoint problem 

(2. 7) • For this, let H!~a (Ql denote ·the space of u E (Q) such 

that Au E L 2 (Q) 
' 

provided w·i th the graph norm. 'rhen (Q) is dense 

in (Q) for all real a . Moreover, y L and CT , defined by 

= Cw/f T on smooth functions, eJ{tend ·to bounded 

operators 

(Q) 
1!;,-cr 

+H and 

operators to give meaning to 

is also proved in [4] that 

(m x 

V.Je use these 

w/fL and C>\1/fT when 
1-

w %. c {Q) • It 

is surjective with kernel 

of dimension 2 for sufficiently small cr > 2 • In pacticular 

PROPOSITION 2. 9 For sufficiently small cr > 2 the space of solutions 

wE H2- 0 (Q) of problem (2.7) has dimension 2. 
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It is also the case that the null spaces of the proposition all 

coincide for sufficiently small cr > 2 1 and that their members all 

belong to L2 (n) . See [4]. 
0 

For cr real and r = rL or rT I we introduce the spaces Hcr(f) 

defined as the subspaces of Hcr(an) consisting of distributions with 

support in r . Then and are mutually dual with respect 

to the pairing given by the extension of the L2 (f) inner product on 

the dense subspaces of smooth functions. Let ( . 
I 
. ) denote this 

Hcr-l~<r > X ~1-cr (f T) 
rT 

natural pairing on and ( . 
I 
. ) the pairing 

T rL 
Hcr-1~ (f ) 6!.--cr 

on X H2 (f ) It follows from Green's formula (2. 6) 1 theorem 
L L 

2.8 and proposition 2.9 that 

COROLLARY 2.10 For sufficiently small cr > 2 1 and 

cr-2 
(f1 1g1 ~h1 ) E H <nl 

solution v E Hcr(n) if and only if 

for aU solutions of problem (2. 7). Moreover, zuhen a 

solution exists it is unique. 

We now take account of the symmetry of our original problem. A 

continuous function v on s n I an I rL or fT will be called even 

if v(x 1 y) = v(x~-y) I odd if v(xly) = - v(x 1 -y) I for all <x~yl E S . 
So a continuous function v on s is even (odd) if and only if 

Is v~ = 0 for all smooth odd (even) functions ~ on s We define 

a distribution v on S to be even (odd) if ( v ~~) = 0 for all odd 

(even) test functions ~ on s 1 where ( ·~·) here denotes the pairing 

between distributions and test functions. 

The height function a is even and the operators A 1 YL 1 BT 1 
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CT all preserve even-ness and odd-ness. In particular, if f 1 ,g1 ,h1 

are even, so is the tmique solution of (2.5) when it exists. Moreover, 

it is proved in [4] that 

PROPOSITION 2.11 For sufficiently smaU 0 > 2 , the space of solutions 

v< E H2-o (Q) of problem (2. ?) has a basis consisting of a:n even function 

a:nd an odd function 

COROLlARY 2.12 Por suff'iciently small cr > 2, and an even triple 

,g1 E Ho~z (QJ x H0-~(fL) x Hcr-ll:>(fTl , the problem (2. 5) has a 

solution 

where 

We 

case of 

v E H0 (S"l) if a:nd only if (f 1 ,wc) = ( 

is a non-zero even solution in L2 (n) 

~ 'tl ) -
2K c r 'J: 91 

of problem (2.?). 

return to problem (2. 3). It. can be considered as a special 

(2.5) with coefficiencts 2K and 2 
d]l 

in B replaced by 3T 

l and 0 respectively. In place of 'che dual problem (2. 7) we have 

(2.13) r· 0 in n 

w = 0 on rr, 
dW 

0 rT d\! = on 

From corollary 2 .12 we ohtain 

COROLL,II,RY 2.14 For sufficiently smaU a> 2 , a:nd a:n even 

(.f,g,t<l E H0 - 2 (n} x H0-l2(fL) x Hr:J-ll:>(fT) , the problem (2. 3) has a 

solution Jl E (n) "f d Z "JY (f ) { } ( ~) "' 1.- an on y 1.-J , W = K , a:w f - g, a d\! f 
e e T L 

2 is a non-zero even solution in L (S]) of problem (2. 13). where 
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Consider now problem (2.3) with (f,g,K) = (0,0,1) • By the 

Hopf maximum principle, for a> 2 there is no solution 

~ E Ha(Q) C c1 <TIJ • Indeed if ~ E c1 (TIJ were a solution then 

~~ > 1 at a point where ~ achieves its minimum. By corollary 2.14 

we conclude that ( 1, a w >r ¢ 0 • 
e T 

In particular, for a general even pair (f,g) E Ha-2 (Q) X Ha-~(f ) 
L 

we can set 
-1 

K=<l,aw>r [(f,w)+(g, 
e T e 

a ~>r ] and by corollary 
L 

2.14, problem (2.3) has a unique solution ~ E Ha (Q) Moreover, K 

is the unique constant for which there is a solution in Ha(Q) . 

Finally, suppose in addition that (f,g) satisfies the condition 

(2.15) either f ~ 0 and max{g(q) g(p) 

or f ~ 0 and min{g(q) g(p) 

For example, (f,g) = (O,x) , as in the introduction, satisfies condition 

(2.15). Then, by the maximum principle,~ achieves its maximum 

(or minimum) or the boundary an and therefore at a point q E fT 

By the Hopf maximum principle K 
a~ av (q) > 0 (or < 0) • So 

PROPOSITION 2.16 For sufficiently small a> 2 and an even pair 
a;. 

X H - 2 (f ) 
L 

satisfying condition (2.15), there is a 

unique constant K ¢ o for which problem (2.3) has a solution 

Moreover, the solution ~ , when it exists, is unique and 

even. 
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3. AN EXISTENCE THEOREM 

We obtain an existence result for a non-linear problem closely 

related to problems (2.2) and (2.4). ~his is done using the contraction 

mapping theorem and knowledge of the solvability of the linearized problem 

(2.5) as given by corollary 2.12. 

For sufficiently small a• > 2 , let f E Ha'- 2 (n) and 

a• !.: 
g E H - 2 (fL) be even functions satisfying condition (2.15). Apply 

proposition 2.16 to obtain a constant K ¢ 0 such that (2.3) has a 

unique solution ~ E Ha' (n) . Let B and C be the boundary operators 

determined by K as in section 2, and we E L2 (n) a non-zero even 

solution of (2.7). Let a E (O,a'] be sufficiently small that the 

conclusions of corollary 2.12 are valid. Let h E Ha-ll:l<r > 
~ 

be an 

even function and set h = h- jv~j 2 . 

Recall that ~ (n) is an algebra for s > 1 with llvwll :::: cllvll llwll • 

In particular, if v E IF (Q) with a> 2 ' then jvvj 2 I r~ E Ha-l\r~) 

So 

With constant S to be chosen, we define a closed subspace V 

v is even, Av is constant, 

YL v = 0 , llv;Ha (Q) II :::: S} and a (non-linear) mapping ~ : V + V by 

~v = w , where 

(3.1) 

F 
A (constant) in n 

0 on rL 

-lvvl2 
A 

Bw + h on r~ 
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By corollary 2.12 and the Hopf maximum principle (l,wcl ¥ 0 . 

Hence by corollary 2.12 there is a unique constant, namely 

-1 A I !2 a A (l,wc) {h- ~v , 2K wc>rT , for which (3.1) has a solution 

w E Ha{Q) • Moreover, w is even and unique. 

To show that w E V it only remains to verify the norm condition. 

For this 

/lw Ha<m/1::: c 1 <11Aw;Ha- 2 mll/ + /lyLw; Ha-\rL>H 

+ IIBTw ; Ha-l!:icrT>I/l 

(by corollary 2.12 , since the set of even functions in any of these 

Sobolev spaces is a closed subspace) 

(provided /lh 

::: s 

(provided 

Furthermore, T is a contraction for sufficiently small S • 

Indeed suppose v. E V 
J 

for j = 1,2 with Tv.= w. and Aw. 
J J J 

A. 
J 



Then 

(provided 

!!Tv -l 

- w 
2 
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r-P (mil 

By the contraction mapping theorem, T has a. unique fixed point in 

V . So we have proved 

THEOREM 3.2 Given a• > 2 and even funcUons f E t-P'-2 ml , 

cr' k 
g E H - 2 (f L) satisfy1:ng condition (2.15) there exists S > o , 

0 a lk o E (2,0'] and 11 E H (Q) such -t.ha-c if hE H- 2 (fT) is an even 

function with 

constant A for which the problem 

{ 

Au = f+A on ~ 

\Vu\~ : : :: ~: 
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has a soZu-c·Lon E 

the .sc Z-ut·Lon u 

()£ couz-se t~his theorem j_s only a prelimina:r;_z step towa:t~ds 

•;:roal of pr0'';7ing r;;:xis·tence t' uniqt:J.eness t' and regula.ri t:y for px·oblerr~ 

(1.,l}f (1..~21 .. Xn i·t, :che supplementarJ?' condi·tion has been snpp:r.::esst!d .. 

But it is our conject.t:tre that for cert.a.in ch.oice~s of 

includin.9 (fl!g_.,b) 1t?i.J . .l be 0 for 

appropriat:.e ch.oic2 of p E an F and ·that. 1:hG supplernelTta:t:y condition. 1ttli11 

then holda NuK1eri.cal e\tidence for.· this conjecture is. provided. in Tuck 

[6]. 
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