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SOME REMARKS ON NUMERICAL METHODS FOR NONLINEAR
HEAT EQUATIONS WITH NEAR SINGULAR SPECIFIC HEATS

Anthony Miller

Consider the one-dimensional nonlinéar heat conduction equation

Bu _ du '
c(u) 3t - 9w [k(u) Bx] + q(x,;) . xe (0,1), £t >0
(1) u(0,t) = u(l,t) =0, t >0
u(x,0) = uo(x) , x ¢ (0,1) ,

where c(°) and k() are continuous functions on IR satisfying

* *
(2a) dc > 0 such that c(u) 2 ¢ >0 Yu ¢ R

(2b) k(u) >0 Yue R .

Of particular interest are cases where c(u) varies greatly over a small
temperature range. Such behaviour can arise in simple models of phase
changes in alloys ("near Stefan problems"). It would be desirable to have a
numerical method for approximating the solution of (1) whose accuracy was
in some sense independent of the behaviour of the coefficients c(¢) and
k(*) . It is however unreasonable to expect this much since the accuracy
of any approximation will clearly be influenced by the regularity of the
exact solution. This regularity can vary considerably, depending on the
coefficient c(°) , k(e¢) as well as the initial temperature data uo and
the source data g . A more reasonable request would be that the stability
properties of a numerical method be uniform for all c(e) and k(°)
satisfying (2). That is, we would like to be able to assert something of

the form:



159

fel
SUP o <M<

where llel denotes some norm of the error e of the approximate solution ,
Hull is some measure of the approximability (i.e. regularity) of the exact
solution u , and the supremum is taken over all coefficients c(e¢) and
k(e) satisfying (2). This is the matter we wish to discuss briefly here.
iFor simplicity of exposition we shall only talk in terms of finite
difference schemes for (1) with uniform spatial and time mesh spacings
Ax = %—, At respectively. Most of what we shall say extends to more
general settings with minor modifications.
Typical of the standard discretization methods for nonlinear parabolic

equations that one may think of using is the classical (fully) implicit

method. Applied to (1), and assuming that k(e¢) is a constant, it gives

un+l un
T 2 n+l n
c[u?} [ = AT l] =k 6 uy +a; s (i=1,c..,N=1; n =0,L,...)
n n
(3) Uy = Uy = 0, (n=0,1,...)
i .
= uo&ﬂ ’ (i=1,...,N=1) ,
where
qug S W -2 el
i 2 i+l i i-1
(Ax)

(i=1,...,N=1; n=0,1,...)

s
|

I.l = q[ﬁ- B nAt] .
The standard stability analysis of the difference scheme (3) requires some
assumption that controls the slope of c¢(°) (e.g. Lipschitz continuity).
Counterexamples show that in the absence of any such assumption the
stability of the scheme can degenerate as more extreme choices for c(e)
are made. Intuitively, at least one reason for this is clear: any

3

[
. . . . n
perturbation in o say, may cause perturbations in the cluij , and

+ .
consequently in o t , which are unable to be uniformly controlled by the
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L. . . n
original perturbation in u

Rather than base the discretization directly on the formulation (1),
introduce a new dependent variable h = h(u) defined by
u
h(u) = J c(s) ds .
0

The problem (1) may now be reformulated as

h 9 )
g—t= = [k(u) i—] +qlx,t) x € (0,1), £t >0
(4) u(0,t) = u(l,t) =0, t >0
[h(x,O) =h(u,x)) =h x) say , =xe (0,1),

where

h(x,t) = h(u(x,t)) .

Physically h represents the specific (volumetric ) enthalpy. Notice that

by (2a) h(u) is strictly increasing, and so

(5) (h(ul) - h(u2))(ul -u.) =0 Vul,u e R .

2 2

There is no loss of generality in supposing k(u) = 1 in (4). For if

not we may define the Kirchhoff temperature,

u
B(u) = I k(s) ds

0
and rewrite (4) as

oh _ 3%
[_z——:q(x,t), x e (0,1), t >0

t 2

ox
g{(o,t) = 6(1L,t) =0, t >0

h(x,O) = hO(X) 7 X € (Orl) ?

where 0(x,t) = 0(u(x,t)) . Morxeover, since 6(u) 1is strictly increasing
by (2b), h regarded as a function of © is also strictly increasing.

Thus the problem (4) with arbitrary k , if thought of in terms of h and
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0 , is of precisely the same form as (4), (5) with k =1 . We shall from
now on only consider this case.
We may think of applying obvious generalizations of the standard

discretization methods to (4). Two cases will be considered:

Fully Implicit (FI) method:

(6) ’ (i=1,...,N-1; n=0,1,...) .

Crank-Nicolson (C-N) method:

pt ot
L 1 ;[

(7) AT 5

2 n+l 2 n n+l n .
6ui +6‘H}+%%i +qJ , (i=1,...,N-1; n=0,1,...)

with in both cases

0 _y (& = -
hi = hO[N) ’ (i=1,...,N-1)
n n
u0 =ug = o, (n=0,1,...)
n n
hi = h[ui] y (i=1,...,N-1; n=0,1,...) .

We wish to examine the stability properties of FI and C~N. However,
let us first mention that for both methods, various norms of the discrete
solutions uz ’ h? can be bounded independently of the discretization
parameters Ax, At . Using standard compactness arguments, it can then be
shown that the discrete solutions converge in some sense (see e.g. [2],
[3], [4]). However such arguments only establish convergence in rather

weak norms. Moreover they do not provide any form of estimate for the error in the

discrete solution. This makes it difficult to develop any theoretical
understanding of the equality of the methods.

We show that for the FI method h and u are stable in a discrete Ll
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sense. More specifically we have

THEOREM: Let h? , u? and Ei , G? be two solutions of (6) corresponding

to initial and source data hg ’ q? and ﬁg , a respectively
(i =0,...,N; n=0,1,...) , then
N N
z [J® -]+ {ﬁ‘.‘-ﬁrf{] SC(z n? - &2
i=0 . 1 i i i l=0 i i
n-1 N o m
sae 2 2 |8 -@) a-on..
m=1 i=0 J

where the constant c¢ <is independent of IMx , Mt and can be selected

uniformly for all c(-) satisfying (2a).

Proof: write

Subtracting the respective cases of (6) gives

kT Y VR U?+l-¥At Q? )

m
i
m
it

Multiply this equation by

1 oif s
i
+
sgn Wt = {0 e o
1 i
+
-1 e u™ <o
1

and sum over i = 0,...,N to obtain

1

5 Hn+]_ 1
i

+ + + +
sgntU " = T H sgnu’ iz At 62Un = sgnU" l+2AtQI.1 sgnUr.1+
. i . i i . i i . i i
(8) i i i i

"

= Z(l) + 2(2) + 2(3) say .

From (5) it follows that

. (
H2+l U?+l = [h(uzﬁl} - hlﬁl?+l}] (uI.Hl - ﬁr.wl] >0

and so the left hand side of (8) becomes
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z H?+l sgn Un+l =X |H9+ll .

. i . i

i

On the other hand
=) <= ||
. i
i
(3) n
12777 < ae 2 oy
i
while after a summation by parts (noting that Ug+l = U;+l =0) ,
(2) ae NI aer n+l n+l n+l
z = - — ¥ U, . - U sgn U, T - sgn U, <0.
2, i+l i i+l i
(Ax)™ i=0 *
Thus (8) gives
+
z |u) l| <Z [EY + a2 Q7 .
. i . i . i
i i i

Iterating this result back to n = 0 gives the theorem, having noted that

by (2a)

//

The natural question to ask now is whether a similar stability result
holds for C-N. This question is of some practical interest since, by
analogy with the case of the linear heat equation say, if some reasonable
form of stability holds for C-N then C-N can be expected to be markedly
more accurate than FI. However the following simple counterexample shows
an estimate analogous to that of the theorem cannot hold for C-N.

Suppose the enthalpy-temperature relation is given by

u if u=0
hu) =
Ru if u<0,
where B > 0 is a constant. Take Ax = .5 (i.e. N = 2) and consider

solutions of (7) corresponding to data

ﬁg=o, ari’=o
(1 =0,1,2; n=20,1,...)
and h0 =g qn =0 .
i ! i
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Obviously ﬁ? =0 (i=0,1,2; n=0,1,...) , whereas provided

At

o =—>1
2
(Ax)
is satisfied, then )
hi = e i;:{i .
1+ 2
B8

Clearly an estimate of the form [hi] < ée cannot hold with C independent
of o and B . In other words, the estimate of the theorem cannot apply

in the C-N case with C independent of Ax , At and uniform for all c(e)
satisfying (2a).

Let us remark however that if we impose the extra condition
(9) =<1

then the theorem can be shown to hold for C-N. Note that this condition
was specifically violated in the above counterexample.

The above counterexample does not preclude the possibility of a
slightly weaker form of stability than that of the theorem holding for C-N
(e.g. discrete Ll stability for just u ). However the following
numerical example suggests that this is unlikely.

Consider the classical Neumann solution of the Stefan problem in the
one-dimensional half space x > 0 (see [1l]). Concentrate on the interval
(1,2), and use the exact solution to obtain boundary values at the end;
points of this interval and the initial value when the moving phase
boundary passes the left hand endpoint of the interval. Transforming (1,2)
to a (0,1) and choosing a new time origin we can obtain a formulation for
the problem of the form of (4). More specifically the exact solution is
given by

1
peray erf (&) 0< g <A
u(x,t) =

1
2 ~;f‘c—)-\‘6rfc(€) A< g
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where A = 0.05 and & = ———5412——;- (x € (0,1), £t > 0) . Erf(°) and

2(t +100) "~
erfc(°) are the usual error and complementary error functions respectively.

This solution satisfies a slightly modified form of (4) with k=1, g=20

and enthalpy-temperature relation given by

u u <1

h(u) =4 [1, 188.738] u

1]
-

188.738 + (u-1) u>1.

Note that here wu has non-homogeneous Dirichlet boundary conditions at
x = 0,1 , and that h(u) is set valued at u = 1 . These modifications
however introduce no major new features to the problem and our previous
discussion is unaffected by them.

This problem was solved for two sets of mesh parameters, Ax = .05 ,
At = 10 and Ax = .025 , At = 5 . The pointwise errors in the numerical
solution at times t = 100 and t = 250 at selected nodal points are

shown in Table I.

A comparison of the errors for the two methods reasonably suggests that FI is

more reliable than C-N. While the errors in the FI solution increase
steadily towards the phase transition (this occurs at x = .414 for

t =100 and x = .87 for t = 250 ), those in the C-N sclution oscillate
with relatively large amplitudes. Decreasing both Ax and At ~does not
seem to effect the comparative behaviour of the two methods.

The inferior performance of C-N in this example seems to suggest that
the stability properties of C-N are appreciably weaker than those of FI,
since presumably there is little significant difference between the
discretization errors made in the FI and C-N equations (é) and (7). Indeed,
if anything, the expectation would be that the discretization error in the

C-N eguation (7) would be less than that in the FI equation, at least in



the limit as Ax,At > 0 .

3
of (9) takes the values 4 X10

here.
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3
and 8X10

Note incidentally that the quantity

1 At
c* (Ax)?

for the meshes considered

Errors in Numerical Solution of Test Problem.

TABLE I:

= .05, At = 10 M = .025, A& =5

t = 100 t = 100
X FI CN b4 FI CN

*

.1 6 (E-4) -105 .1 -1 -57
.2 14 -280 .2 -1 -36
.3 18 -107 .3 -2 35
.4 27 100 .4 -3 56

t = 250 t = 250
b4 FI CN X FI CN
.1 3 86 .1 -2 -66
.2 7 247 .2 -3 =57
.3 11 63 .3 -4 10
.4 14 -155 .4 -7 34
.5 i8 125 .5 -10 -8
.6 22 -215 .6 -13 90
.7 26 48 .7 -16 133
.8 29 202 .8 -19 2

[*: All quantities in the FI and CN columns

factor.]
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