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MINIMISING CURVATURE - A HIGHER DIMENSIONAL 

ANALOGUE OF THE PLATEAU PROBLEM 

John Hutchinson 

The classical problem at the heart of contemporary geometric measure 

theory is the Plateau problem. One is given a smooth compact (k-1)­

dimensional manifold ("boundary") B in JRn and one asks whether there is 

a k dimensional object M with boundary aM equal to B and having 

least k-dimensional volume among all such objects. 

In order to make the above problem precise we need to clarify in 

particular the following notions: k dimensional object; k dimensional 

volume; boundary. In order to solve the problem by means of the usual 

variational approach (i.e. take a minimising sequence, extract a convergent 

subsequence, and show the limit has the required properties) our class of 

k dimensional objects must carry a topology which gives the required 

compactness and lower semi continuity properties. In a landmark paper [FF], 

Federer and Fleming introduced the class of k-dimensional integer 

multiplicity currents in ~n , proved the appropriate compactness property 

(very difficult) and semi continuity property, and solved the Plateau 

problem in this context (see thereferences[F) and [S] for details and 

further references). 

In order to fix our ideas we remark that we can represent a k 

dimensional integer multiplicity current T in ~n as a triple ~(M,8,~) 

where M is a countably k-rectifiable subset of ~n , 8 is a Hk 

measurable summable non-negative integer valued function defined over M , 

and ~ is a Hk measurable function defined over M which assigns to Hk 

a.e. x E M one of the two possible orientations of the approximate tangent 
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plane to M at x • In other words, T is the current corresponding to 

the set M with orientation ~ and multiplicity 6 • (Using the earlier 

conventions in [FF] or [F], T is called a rectifiable current.) 

After proving the existence of a minimizer in the context of integer 

multiplicity currents one is left with further regularity questions. Is 

the minimizer an analytic manifold or are there necessarily singularities, 

and is the boundary taken in a regular way? It turns out that in general a 

minimizing current can have singularities on a "small" set, but that 

outside this set the current corresponds to an analytic manifold possibly 

with multiplicity (see [A] , [F] , [S], [AF]) • 

The previous considerations generalise from n 
~ to an arbitrary 

ambient Riemannian manifold N • Recently this has been applied to the 

study of the geometry of N , see [S, §7] for a discussion. 

Rather than considering further the Plateau problem, I would like to 

discuss here an analogous proplem which turns out to be quite interesting. 

Instead of prescribing 3M and seeking to minimise fMl (where M is a 

manifold or more generally an integer multiplicity current), we seek to 

minimise JMF(A) where A = A(M) is the second fundamental form of M and 

F is an appropriate convex function. In terms of the number of 

differentiations performed in the integrand this is the next natural 

geometrically invariant problem. There is no notion involving first 

derivatives which is invariant under rotations; the second fundamental 

forni involves "second derivatives" and encodes all the local curvature 

information of M as imbedded in ~n • 

The following discussion is an outline of the ideas involved in 

particular in [Hl], [H2]. 

As in the Plateau problem we need an appropriate class C of objects 

with which to work. C should 1nclude the class of smooth manifolds and C 

should, as before, have appropriate compactness and semicontinuity 
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proper·ties., 

For the rest: of this discussion I assume the reader has some basic 

familiarity with the notions of currents and varifolds, as discussed for 

example in [S]. 

We first need a notion of boundary, and so C should presumably be a 

subse-t of the se·t of integral curren-ts. On the other hand current 

convergence is very ''Jeak and seems unlikely to be usefully related to 

curva·ture (which involves "second derivatives" if 1tJS are 'N"orking. in a local 

graphical setting). It would appear l:ha·t on these grounds we need ·to 

consider something like varifold convergence (which involves "first 

deriva-tive" or "tangen-t plane" informa-tion), but ·then the problem is that: 

varifolds do not have an appropriate notion of boundary. We are thus led 

to consider the class of oriented integer mul'ciplicity varifolds, which we 

will presently discuss. For a further discussion along the above lines see 

[!-Il' §l] . 

Henceforth we assmue n 
u c 1);: ' u open 

Because of the previous considera-tions -r.ie will be interes·ted in the 

class 1V~(U) of finite mass oriented in-teger multiplicity k dimensional 

varifolds in U . Any varifold V E IV~(U) can be written naturally in 

the form 

where E is a countably k-rectifiable Hk -measurable set, t; is a ll­
measurable function on E which assigns to Hk a.e. x E E one of the two 

possible orientations of the approximate tangent plane to E at x , and 

61 and 82 are Hk-measurable and l-lk-sul\1!11able non-negative integer 

valued functions over E • We think of V as being the set E with 

orientation t; taken with multiplicity e1 and orientation -t; taken 

with multiplicity e2 
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In a natural way we associate to V the integer multiplicity current 

J;; (V) obtained by cancellation, L e" 

The boundary ()V of V is defined to be ·the boundary of ~ (V) in the 

usual current. sense, and ••e v<ri te 

ClV 3 (~ (V)) 

We also associate ·to each V E: (U) an (unoriented) integer 

multiplicity current ~(V) E 1Vk(U) , the ciass of (unoriented) integer 

multiplici·ty curren·ts, where ~ (V) is ob'cained by ignoring ori.en·tation, 

i.e. 

The fil:·st varia,tion II ovll of v .l.S obtained by ·takiag ·t:t"le firs·t varia'cion 

of q(V) , Leo 

llovl! llo(q(V)lll • 

We .put a topology on (U) by regarding (U) as a subset of the 

set of Radon measures on 

(U) (k,n) 

>vhere (k"'n) :ts -"che set of oriented k dimensional subspaces of 

the usual ·'copology" For each (fJ e: (U)) and 

r 
01'E 

Oriented varifold convergence will mean convergence in the sense of Radon 

measures. 

We have a compactness theorem for li/0 (U) , analogous to the usual 
k 
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compactness theorems for integer multiplicity currents and integer 

multiplicity varifolds. Although our theorem does not seem to follow 

directly from these earlier results, the proof combines the techniques of 

these earlier proofs. 

00 

1. THEOREM [HI, 4.6.1]: Let u = U A. where the A. are open. 
i=l ~ ~ 

Then for 

of non-negative constants the following is 

sequentially compact with respect to oriented varifold convergence: 

for all i}. 

(~v is the measure in u obtained by projecting the measure V on 

~~(U) u x ~0 (k,n) onto u , and similarly for ~av ) . 

We next define the appropriate notion of generalised second 

fundamental form for certain (unoriented) V E·IVk(U) • The generalised 

second fundamental form for V E IV~(U) is then defined to be that of 

2 
First observe that ~(k,n) c ~n , where the imbedding is obtained by 

identifying P E ~(k,n) with orthogonal projection of ~nonto P c ~n, 

and thence with a matrix 
2 

cjl = cjl(x,P) E C1 (UX~n ) 

Define 

[P .. 11 . . • Consider those 
~J ::;;~,J::;;n 

which have compact support in the X variables. 

to be the functions obtained by partial differentiation with respect to the 

X, 
J 

and variables respectively. Finally let us recall that just as 

we can regard IV~(U) as a subset of the set of Rad:::>n measures on ~~(U) , 

so we can regard IVk(U) as a subset of the set of Radon measures on 

~k(U) , and so in particular if V E IVk(U) and cp is as above, then 

Jcjl(x,P) dV(x,P) is well defined. 
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Vile now can make ·the appropriate definition. 

2. Definition: With the above conven·tions we say that V E (U) has 

second fundamental form A. = A(V) = 
lSi,j,h:O:n 

(i) 

(ii) 0 

E (V; U) for 1 s i,j,h s n, 

f[P .. D.q\ + 
J l] J 

* A .. hD. 1 d? +A ... rp] dV 
l.J. Jfl JlJ 

in U if 

for 1 s i s n and scmmting j and h from l 'co n o The class of all 

V E (U) having second fundamen·tal form in this sense is deno·ted by 

(U) and any such V is callf1d a curvature v&.rifold. 

We say V is an oriented curva·ture varifold in U if V E (U) 

and ;i! (V) E (U) , and we denote the set of such varifo1ds by (U) • 

The definition is motivated by a calculation [Hl, §5. 111hich shows 

tha·t the above holds if V is the vari.fold ~(M,l) >1here £.1 is a 

embedded subrna:n.ifold of U 't;rith 3Eil n U ¢ and if 

(x)). 
~ 

Notice that "h (x) ]1 . l is J ,. :SJ , 1:Sn 

equivalent to ·the usual notion of second fund.amen·tal fm .. "m of H at x 

One easily checks ·tha·t .A(V) , if i·t e:dsts, is V a.e. unique. It: 

is 1:10r-th remarking ·tha.·t A (V) is defined over (U) and no·t over U as 

is the case for generalised mean curva·ture in 'che sense of Allard [A]. 

We next define a no·tion of convergence in 

curvature convergence in [Hl]) o 

3. Definition: Suppose {v. 
J.. 

E (U) and 

(U) (called weal< 

v + v 
k 

in the sense of 

vari1~olds. Then ~Je say converges ·to V in t.he curvatu:t•e sense and 

if moreover 

in ·the sense of vector-valued measures in U . 
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We ne~rl: have the following theorem. 

4. THEOREM: Suppose {vi }~=l c 

vm>ifold sense, and f lA (V 1 l IP dV i 

(U) 3 V E (U) , vi + v i-n the 

·ls bounded from above unl-f'o:Frnly in 

some P > l Then 

V E (U) , 

~v' 
and 

JIA(V) lpdV:;; lim inf fiA(V.) jpdV .• 
- l l 

l 

Proof (see [Hl, §5] for more details): Compactness and lo1ver semi 

i 

cont.inui ty for vector-valued measures imply on passing to a subsequence 

that V. L A (V. ) + V L f for some f such ·that 
l l 

J!tlpdV:;; lim inf Ji.I\.(Vi) i 
(cf .. [Hl, 4. 4. 3 (b) ]) • The definition of 

curvature convergence, the linearity of A in 2(ii) and the V almost 

uniqueness of 1'. (V) imply that A (V) exists and F = A (V) V a .. e. Hence 

v E Cvk (UJ Since ·the above holds for some subsequence of any subsequence 

of 
n 

} , we see that V. ~ V withou·t passing ·to a subsequence. 
J. 

In [Hl, §5] th.e above is generalised to conve"c functions of A other 

than I; 1-+ ! I; IP a.nd the relationship be·tween (weak) curvature convergence 

and a notion of strong curvature convergence is also considered. 

The follovling result now allows us to solve, in certain cases, ·the 

problem of minimising curvature within the context of (oriented) curvature 

varifolds. 

5. THEOREI\'l: Suppose B is a smooth compac-!; o1?iented k-1 dimensional 

manifold w-ithout boundo.ry imbedded in JRn Let u spt B a:nd let 

E B ' llavll L spt B :;; 1JB} • 

a:nd assume E ~ ¢ . 

0 
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Then if 1 < p < m or if p = m and I IA(~(V)) lpd~(V) $X (for 

u * 
some absolute constant X= X(k) ), there exists V E E such that 

Proof (see [Hl, 6.-7 for details): One first uses the isoperimetric 

inequality for varifolds to obtain a uniform mass bound on some minimising 

sequence {v.} 
~ 

A first variation bound is simultaneously obtained 

basically by using the fact that the generalised second fundamental form 

dominates the generalised mean curvature. The compactness theorem 1 for 

oriented integral varifolds implies some subsequence of 

* 

{v.} converges in 
~ 

the oriented varifold sense to V , say. From the previous theorem it 

follows v* E Cv~(U) and JiA<~<v*) lpd~(V) = inf{fiA(~(V)) lpd~(V) :vEE}. 

It ,remains only to show that v E E , in particular that II vii L spt B $ \.lB 

- this argument uses in particular that p > 1 (see the proof of 

[Hl, 6.2)). 0 

Interesting questions now include the interior and boundary regularity 

of minimisers. Although it is not relevant to the preceding theorem, we do 

have the following complete regularity theorem in case JIA(V) lpdV < 00 for 

n some p > k , V E IVk (~ ) • It is interesting to compare this with the 

partial regularity results which are due to Allard [A] and hold in case V 

has generalised mean curvature in LP(llv) • 

6. THEOREM [H2]: Suppose v E CVk(~n) and JiA(V) IPdV < oo for some 

p > k • Then for each x E spt \.lv there exists r > 0 , a positive 

integer Q, positive integers m1 , ••. ,mQ, subspaces P1 , ••• ,PQ E ~(k,n) , 

(i) VL B (x) 
=r 

Q 
~ v. 

~ i=l 

(ii) V. 
~ 

corresponds in 

such that 

B (x) 
=r to the graph of a Cl,l-k/p 

m. 
~ 
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valued funation defined over Pi , for eaah i 

(iii) v. has approximate and alassiaal tangent plane at x given by 
l. 

P. 
l. 

taken with multipliaity m. 
l. 

The above theorem is the main result in [H2], see also that paper for 

the relevant definitions. The theorem could be regarded as a Sobolev type 

result in a non-parametric setting. The.multiple valued functions in (ii) 

can occur in a non-trivial way. For example if V is the varifold 

corresponding to the algebraic variety 2 3 2 2 
{ w = z } c ~ x ~ ~ ~ x ~ then 

A(V) E LP(V) for any p < 4 (this is easily checked by using an 

appropriate cut-off function around 0 in Definition 2). From the 

previous theorem it follows V corresponds to a c1 'a 2-valued function 

defined over ~ ~ ~ x { 0} c ~ x ~ for any a < !a (of course, one can here 

take a = !a ) • 

The proof of Theorem 6 is quite long but a key ingredient is the 

0 

following monotonicity type result for functions depending on tangent plane 

direction. 

PROPOSITION [H2]: Suppose V E CVk(~Rl where p>k,and 
2 . 

f 1 A <v> 1 P dv ::;; rP Rk-p < "' 

~R n 2 

Suppose also that 1jJ E c1 (lRn ) and that for aU 

P E ~ . we have o ::;; 1jJ (P) ::;; 1 and 
n * 2 k 
:E (Djhlji(P)) ) 2 ::;; Alji(P) • 

j,h=l 
Then 

+ (1 +A.) 
p -k 

r 

whenever 0 < cr < p < R • 

The proof follows the argument used to prove analogous results for 

functions 1jJ = 1/J(x) The hypothesis concerning 

the term in Definition 2. 

* D 
jh 

is used to dominate 
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