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HARMONIC ~10RPHIS1'1S ONTO RIEMANN SURH\CES 

- SOME CLASSIFICATION RESULTS 

l. INTRODUCTION 

I,et ¢ : H + N be a mapping between smoo"t11 Riemannian manifolds. 

Then ¢ is called a harmonic rnoT'phism if f o ¢ is harmonic on . ¢-l (V) 

for every function f harmonic on an open set V c N . Such mappings were 

firs-t s-tudied in detail by Fuglede [8] and Ishihara [10]. They established 

an al-terna-tive charac-terization as follows. 

For a point x E M at which dql (x) # 0 , let. denote the 

subspace of given by ker dcp (x) , and let H/! deno-te ·the orthogonal 

complemen·t of V M 
X 

in TM 
X 

Say that is hor·i.2ontaUy conformal if 

·the restric-tion mapping drp(x) I is conformal and 

surjec·tive. Le-tting g,h denote ·the me·trics of H,N respec-t:ively, this 

means i:ha·t there exists a nuniber A (x) such that 

A(x) 2 g (X, Y) h (dcp (X) , dt/J(Y)) for each X E ~1 wit~h dcp(x) 
_, 

0 and for r 

all X,Y E H ]Vj Le1: {x E M I d</J(x) o} denote the critical set 
:n: 

qi and set II 0 on c¢ Then ·we obtain a con·tinuous funct:ion 

,_ 
]J[ + IR called the dil-ation of ¢ In geneJ:·al 1\ is no-t smooth, "-

although clearly M + IR is a srnoo·th function. 

(Ll) il map ¢ : M + N is a har•monic mo-;.•phism if and only if it 1:s both 

harmonic and horizontally comfm'lnal [8], [10]. 

It follows therefore that if o> is a harmonic morphism then 

dim M ~ dim N . If dim M = dim N , then in ·the case vJhen dim M = 2 , the 

harmonic morphisms are precisely the weakly conformal mappings between 
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surfaces. If dim M = dim N 2 3 , then any harmonic morphism must be a 

homothetic map. It is easy to check that ·the composi·tion of two ha:t.lllonic 

morphisms is also a hanuonic morphism. 

If cp : M + N is a harmonic morphism, then the critical set. Ccp 

forms a polar set in !4 [8]. At points whe~re is a submanifold ·this 

means that codim 2 m-2 , where m ~ dim M • In certcdn circums·tances, 

vJhen N is the Euclidean space , 'che critical set forms a minimal cone 

in JRm [1] • Fuglede. has shown tha·t in the case 1u1hen the vector field 

is bounded away from 'che horizontal then is emp·ty [9]. 

Independently, harmonic morphisms have been studied by Bernard, 

Cawbell and Davie [4] ~ 'rhey sh0\'.1 tha·t a mapping bet·ween open subsets of 

Euclidean spaces is Brovmian path preserving (in the contex-t of stochastic 

processes) if a.nd only if it is a harmonic morphism" Tha'c charac·terizat.ion 

of Brownian path preserving functions is due t.o P.. Levy.. They study in 

detail the case when I'll is an open stil;set of and N a domain in the 

complex plane Q: " One o:E the problems they pose is ·to classify all such 

harmonic morphisms" That classification is outli:o.ed below" One of "the 

properti•es 'chey observe of such mappings is that: ·the fibres are straight 

lirAes" That: ties in wi <th resul t.s shovJ:n in [ 3] ? '\\rhere the follo\~ing is 

es·tablished. 

(L2) If ¢ .M + N i8 h(;Cl'"J,mort·ia and n - dim N .5· -!;hen 

(a) :n 2 the over values of cjJ a1Jje nr~n-tmal 

of j)i[ 

(b) n 2 3 the a1,...~3 minimal if and 

VA 2 is vel"ticaZ. 

From the above- \ve see tha·t t.he case when N is a Riemann surface is 

special. Indeed any conformal t.ransformation of the range N v.rill yield 

ano·ther harmonic morphism. One of ·the aims in the classification outlined 
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below is to factor out such conformal transformations, restricting our 

attention to the structure of the fibres. 

I would like to thank J. Eells, J. Jost and J.C. Wood for their 

helpful comments and correspondence. 

I am especially indebted to the Centre for Mathematical Analysis, 

Canberra, for their support during the preparation of this work. 

2. The alassifiaation of hannonia morphisms from an open subset of 

3-dimensional Eualidean spaae onto a Riemann surfaae. 

We obtain the classification in outline only, referring the reader to 

[2] for a detailed proof. Our aim is to establish the following theorem. 

(2.1) THEOREM: If ~: M ~ N is a harmonia morphism from an open subset 

M of JR3 onto a Riemann surfaae N • Then ~ is the aorrrposition, 

~ r;; o y , 7JJhere y : M ~ p is a harmonia morphism onto p c s2 and 

r;; P ~ N is a lJJeakly aonformal map betlJJeen Riemann surfaaes. Furthermore 

the fibres of y have the form 

s 1-+ sy + c(y) 

for eaah y € p , 7JJhere s ranges over suitable values, and c is a 

aonfomal veator field over P 

Conversely, any aonformal veator field c on an open subset P of 

s2 yields a hannonia morphism y as above. 

Outline of proof 

Step 1. Assume the aritiaal set is empty. This is a convenient 

assumption which we will be able to remove later (Step 6). 

Step 2. The map ~ faators. Thus ~ = r; o ~ , where $ 

r;; N ~ N and N is the space of connected components of the fibres of 

~ Furthermore N can be given the structure of a Riemann surface with 
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respect ·to which ~ is a harmonic morphism with connected fibres and I;; 

is a confm:Eal map bettveen Riemann surfaces. 

This follmlS since for each x EM , dcjl(x) I : H M + T"'( )N is an 
H M X 'I' x 

X 

isomorphism. Thus if ~il is a slice about x , that is a 2-dimensional 

submanifold of M which is everywhere bounded away from the vertical, then 

<jJ lw : W + N is locally a diffeomorphism by the inverse function ·theorem. 

Therefore W can be used to parametrize the points of N , and we can pull 

back the differentiable and conformal structure of N to N , thereby 

giving the above factorization. 

Step 3. Suppose that ¢ : ~1 + N is a harmonic morphism from an open 

subset M of IRm onto a connected Riemann surface N " From Step 2 •we 

can assume that the fibres are connected. From (l. 2) the fibres are 

minimal in M . 

In addition tJe vJiU asswne -they are so that 'che 

fibres are par·ts of (m-2) -planes in we define the 'Gauss map' 

y : M + G (m·-2, IRm) , \Nhere G (m-2, IRm) deno·tes ·the Grassmannian of 

oriented (m-2 -planes in =l!l 
.u;, ' by y(x) = for each X E M " Then y 

is constan·t along the fibres of ¢ and we obtain the commutative diagram 

M 

¢ 1 
N -- G (m-2, IRm) 

1jJ 

for some map 1)! : N + G (rn-2, IRm) . In fact writing 

ljJ (y) = e 3 (y) II • • • A em (y) for each y E N , \llhere e 3 (y) , ••• , (y) is 

an orthonormal basis for the (m-2}-plane 1/J(y) , the fibre of ¢ over 

has an expression 

for suitable s 
m 

INhere 

m 
~ srer(y) + c(y) 

r=3 

c(y) satisfies { c (y) ' (y) ) 0 



95 

(r 3, •.. , m) with respect to the Euclidean inner product on 

Step 4. '1'!"!e map ~J defined above is holomo1phic with respect to the 

natural complex st1oucture on G(m-2, IRm) . 

The Grassmannian G (m-2, JRm) is equivalent. ·to ·the Grassmannian 

G ( 2, IRm) of oriented 2-planes in 
n1 

JR. This can be identified with the 

complex quadric hypersurface Qm_2 of d:Pm-l from which i·t inherits a 

natu:t·al complex s·tructure [5]. The proof ·that 1jJ is holomorphic is given 

in [2] and follo~~<rs from the horizontal conformality of ¢ . 

s·tep 5. 'Phe case when m = 3 . 

The Grassmannian G(l, IR3 ) is biholomorphic to the 2-sphere 

'illri ting P = 1jJ (N) c s2 , we gave the commuta'c:i.ve diagram 

M c 

1 "''"Z 
' "" 

N r p c 

2 
s 

Now for each y E N , the vec·tor c (y) is perpendicular ·to the line 

Thus c(y) can be regarded as a vector in T 
1j!(y) 

Othenvise 

said c is a sec·tion of the bundle lj! -lT s2 . The two impor·tant results 

are 

(i) 1~ is -[njectiveo 

(ii) c can be 1oegarded as a conformal vector field on P • 

See [2] for a detailed proof of these 'cwo sta·tements. In fact, since 

~J is holomorphic it is a branched covering map onto P . Removing branch 

poin·ts, the fibres over differen·t sheets of the covering locally fill out 

open subsets of M As we extend globally it is impossible for these open 

subsets to intersect in M •rhus M is ·the disjoint union, M U H. , 
. :J. 

:L 

of open sets corresponding 'co t.he nu.or<ber of sheets of the covering. Since 

any hannonic morphism is an open ma.p, the image <jl (M.) 
:J. 

is open. 
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Furthermore ~(M.) n ~(M.) is empty since the fibres of ~ are connected. 
~ J 

Thus N is the disjoint union of open sets. The statement (i) now follows 

from the connectedness of N • 

Statement (ii) is a result of the horizontal conformality of ~ • 

Step 6. Reintroduce the critical set 

The image of the critical set under ~ consists of isolated points in 

N [8]. From the injectivity of w and the compactness of s2 , it 

follows that w has finite energy on deleted discs. By a Theorem of Sacks 

and Uhlenbeck [11], w extends over isolated points. Thus y extends over 

c~ also. 

The above steps complete an outline of the proof of Theorem (2.1). 

3. AN EXAMPLE 

. 2 . ( . i9) h Every po~nt y E S has an express~on y = cost, s~nt e , w ere 

t E [0, TI/2] , 9 E [0, 2TI) • Let C be the vector field given by 

c(y) sint(O, i eie) 

at the point y (regarding s2 as the unit sphere in lR3) In fact c 

is a Killing vector field corresponding to rotations of s2 about an axis. 

The corresponding harmonic morphism y : M + P has domain M given by 

3\ { ( ) 3 J 2 + z.2 >_ 1} d M = lR K , where K = x, y, z E lR x = 0, y , an range p 

given by the upper hemisphere (or lower one). The fibres twist through the 

hole x = 0, y2 + z2 < 1 • 

' 
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Fibres over the equatorial circle 
iS 2 

C = { (0 1 e ) E S i e E [0 1 21f) } 

intersect in K • The boundary of K is the envelope of these fibres. In 

fact the point of tangency of the fibres to the boundary of K is given by 

s = 0 . 

Each point of M lies on the fibre over a point of the upper 

hemisphere, and on a fibre over a point of the lower hemisphere. In this 

sense y can be regarded as a multiple valued map. We now proceed by 

analogy to the construction of the Riemann surface of a multiple valued 

analytic function [12]. 

Take M and cut it along the set K • Points 

0, 
2 2 

1 now be said to lie on one of X= y + z > I can 

point p of the fibre over a point of c I say that 

sheet if s < 0 and on the upper sheet if s > 0 

pass from the lower sheet to the upper sheet. 

/ ...,._ 
/ 
\ 

\ 

\ 

\ 

\ 

Notice now that distinct fibres never intersect. 

(x,y,z) 
3 

E JR. 1 where 

two sheets. For a 

p lies on the lower 

Thus fibres over c 

We now take two copies of the cut manifold and join along the edges 

created by the cuts, in such a way that fibres over corresponding points of 

C are identified. We thereby obtain a C0 -manifold M homeomorphic to 

s 2 x lR. The harmonic morphism y now extends to a continuous single 
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valued mapping y The map y sends the interior of one of the 

cut manifolds to the upper hemisphere and the interior of the other to the 

lower hemisphere. The edges, which are identified, are mapped onto the 

equatorial circle. 

4. The classification of harmonic moPphisms an open subset 

onto a Riemann surface. 

There is a one-to-one correspondence between harmonic morphisms 

\) Q -> N where Q is an open subset of and harmonic morphisms 

~ M + N , where M is an open subset of lR4 and ¢ has totally 

geodesic fibres which extend through the origin in This is given by 

defining M 'co be the set + 
1R Q = > o} , and writing 

¢ = v o 'IT , where 7r : l\1! + Q is given by 1T(x) x/1 xI • As before 'We have 

the commutative diagram 

M 

I 
¢ ! 

~ 
N 

where 
4 W : N + G(2, lR ) is holomorphic. Since the associated vector field 

c is identically zero, ·ij! must be injective and hence a biholomorphic map 

onto its image. Otherwise said, 1jJ is a holomorphic curve in the 

Grassmannian G(2, Conversely, given such a curve lfl , •~e can 

const.ruct a corresponding harmonic morphism ¢ : M + N , with totally 

4 
geodesic fibres \vhich el'tend through the origin in IR ·· . We i:herefore 

ob·tain the following classification. 

( 4. 1 ) THEORE~l: If . v : Q + N is a ha:t'monie moPphism from an open subset 

Q of 
3 s onto a Riemann surface N , then \) is the cornposi-tion3 

where p Q + P is a haPmonic morphism onto P c G(2, and 
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c; : P + N is a uJeakly conformal map beween Riemann surfaceso FurtheY1nore 

p is a holomorphio curve in -the Grassmannian 
Ll 

G(2, IR ~) 

We consider the problem of which harmonic morphisms are defined 

globally on s3 

intersec·t in s3 

A necessary condition is that ·the fibres of \J must not 

This condit:ion can be rephrased as follows. 

The Grassmannian 
4 

G (2, IR ~) is biholomorphically equivalent to 

Write ·the corresponding· holomorphic curve 1p : N -+ s2 x as 

verifies t.hat the condition of non-intersecting fibres implies the stric·t 

inequality 

on the energy densit.ies of l/!1 and 1j!2 [2]" 

,3-sphm~e onto s 2 , i;hen up to a conformal- transformation of 3 v is 

the Hopf fibration. 

Proof: The Hopf fibration arises from the holomorphic curve 

~ s2 ~,. s2 xs 2 given by ~(x) = (x, (1,0,0)) for each x E s2 [2]. 

Now 1/J. : 
l 

2 2 s +s is harmonic. But any harmonic map from 

2 
S on·to a Riemann surface is holomorphic: [6] . 

Thus 1/J. s2 + s2 
l 

is a branched cove.ring" Furthermore, since 

and e > e(1/J2) ' 
\ve cannot have e (l/i2 ) = 0 anywhere. Thus 

branch points and is a conformal diffeomorphism having degree l 

e 2 

1/Jl has 

Any holomorphic map is an absolute minimum for the energy functional 

in its homotopy class. Since is 

0 ' 
no 

strictly less than the energy of 1/J l is holomorphic, from cvhich 

we conclude ·that 1/J 2 
has degree 0 and hence is constant~ 

isometry of s2 x s 2 , 1/J is 'che holomorphic curve ~ • 

Thus, up to an 
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