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TRACES OF ANISOTROPIC FUNCTION SPACES. APPLICATIONS 

Hans Triebel 

l. INTRODUCTION 

Let be the t\<VO-dimensional euclidean space, the plane. 

1 < p < oo and s = 1,2,3, ... 

(1) 

Then 

L llo"'f!Lp(R2) II< oo} 
Ia Iss 

Let 

are the classical Sobolev spaces, where Lp(R2) has the usual meaning 

(complex-valued functions). It is well-known that the trace-operator 

(2) R ,0) 

is a retraction from w;(R2J onto the special Besov space (-Lipschitz 

space) Bs-1/p(R ) 
p 1 

on the real line Here retraction means tha·t 

there exists a linear and bounded extension operator S from 

(the trace space) into w;(R2 ) such that 

(3) RS id (identity in Bs-1/p(R ) ) 
p l 0 

In other words, if a trace-operator is a retraction then this assertion 

covers both the "direct" and the "inverse" embedding theorems and 

indicates that R is a mapping "onto". The above-mentioned special 

Besov spaces B~ (R1 ) with o > 0 and l < p < oo are defined as 

follows. If t E R1 and T E R1 then 

(4) f(t +T) - f(t) , 

with m = 2,3, ... are the usual differences. Then B~(R1 ) is the 

collection of all complex-valued func·tions such that 
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(5) 

is finite, where m is an arbitrary (but fixed) natural number with 

m > cr (different m's yield equivalent norms). 

It is well-known that the above trace assertion can be extended 

easily to smooth curves in the plane, e.g. to the boundary of a bounded 

00 

C -domain in the plane. The situation changes drastically if one deals 

with anisotropic Sobolev spaces: As far as the trace-operator R from 

(2) is concerned one has a final answer since the early sixties, but 

there is no "standard way" to extend this result to traces on smooth 

curves, in general. 

First we give some definitions and describe what is known. Let 

again 1 < p < 00 and s = (s1 ,s2) be a couple of natural numbers, 

where we always assume that s 1 ~ s 2 . Then we put 

(6a) 

and the anisotropic Sobolev space w;(R2 ) is the collection of all 

f E Lp(R2 ) such that this norm is finite. Anisotropic Besov spaces 

B;(R2) with 1 < p < 00 and s = (s1 ,s2) , where 0 < s 1 ~ s 2 < 00 , 

are as defined via the norm 

(6b) 

where m couple of natural numbers with and 

Furthermore, 
ml 

!J. T,l must be understood in the sense of (4), 

where the differences are taken with respect to the x1-direction, 

whereas is fixed, e.g. 
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similarly is explained. For these anisotropic Sobolev-Besov 

spaces a final answer for the trace-operator R from (2) is well-

known: Let 1 < p < oo , 0 < s1 ~ s 2 (nat. nwnbers 1:n the aase of the 

SoboZev spaaea) and 

(7) cr 

-
then R is a retraction from w; (R2l onto and from 

onto B~(R1 ) , of, [1]. The difference between the isotropic Sobolev

Besov spaces and the anisotropic ones can be explained (in our context) 

as follows. Let y ~ ~(x) be a diffeomorphic map of onto i tse.lf, 

say, with VJ(l~) "' x if lxl is large. Then 

(8) f(x)-+ f(~(x)) 

is an isomorphic map of the isotropic (i.e. s "' 1 
) Sobolev-Besov 

spaces onto itself, [This is the basis to eztend trace-assertions 

from lines to smooth curves.] However anisotropic spaces of Sobolev-

Besov type have not this property, in general. On the other hand it 

had been observed by Uspenskij (- 1966) that one has at least the 

following substitute: Let 

(9) 

be a fibre-preserving diffeomorphic map of R2 onto R2 with, say, 

lj;(x) "" X if lxl is large, Then (8) yields an isomorphic map from 
-w; (R2l onto itself and from B;(R2) onto itself (recall that ah'iays 

s 2 ~ s 1 ), On this way, trace-assertions can be extended from the 

line (x1 ,o) to the curve (x1 ,1)J2 (x1 ,ol ), What about traces on 

other curves, e.g. on {x lxl "'1} or on the model curve defined 

below? The aim of this paper is to describe some results in this 

direction, to outline the method, and to sketch applica.tions to 
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boundary value problems for semi-elliptic differential equations. 

Detailed proofs may be found [2,3]. As far as basic assertions for 

the above anisotropic spaces are concerned we refer to [1]. 

2. OUTLINE OF METHODS 

The above-mentioned curve C is defined as follows. Let 
p 

00 

0 < p < 1 and let A(t) be a monotonically increasing C -function 

on (O,oo) with A (t) = 2 if t > 2 and 

(10) if O<t<l 

Then Cp = {(t,A(t)) , 0 < t < oo} .is our "model curve". We ask for 

traces of functions belonging to Ws(R ) 
p 2 

or on this curve. 

By the above-mentioned observa·tion by Uspenskij only a neighbourhood 

of the origin is of interest. Let again s = (s1 ,s2 ) with 

0 < s 1 $ s 2 < oo be the given anisotropic smoothness. We introduce 

the mean smoothness s and the anisotropy a= (a1 ,a2 l by 

(11) 

respectively. 

(12) 

1 
s 

Of course, a + 
1 

Let 

be the anisotropic dist;ance of x from the origin. Near the origin 

we introduce an anisotropic smooth resolution of unity ¢ r }"' L¢j (x) j=O 

with the following properties: The ¢.'s are non-negative infinitely 
J 

differentiable functions in R2 , 

I -j-l I I -j+l supp ¢. c {x 2 < x- < 2 } 
J a 

if j = 1,2,3, ••• ; 

there exists a positive number c a 



124 

with 

for all j 0,1,2, .•. and all X E R2 

and 
00 

~ 
j=O 

cjJ. (x) 
J 

l for all X E - {o} • 

The collection of all these systems 

easy to see that 

(13) 

and 

(14) 

<Pa 
is not empty. 

llf[ws II¢ ( 00 = ~ 
p 

j=O 

llf i:B; (R2 ) II¢ (j~O 

is deno'ced by 

- ll/p 
11¢.f[Ws(R) lip 

J p 2 ) 

ll¢.f[Bs r/p liP 
J p 

It is 

where cp E <P;;: and 1 < p < co (Recall ·that in the case of Sobolev 

spaces we always asscwe that s 1 and s 2 in s = a.re 

natural numbers.) We ask the question whether 

(15) 

(equivalen·t norms). If one tries to estimate ·the lef·t-ha."ld side of 

(15) from above by the right-hand side then it becomes clear that an 

inequality of the type 

(16) 

would be very helpful {recall that s stands for i:he mean smoothness). 

Such an inequality cannot be expected for any , but it is 

quite clear that f(x) must tend to zero sufficiently strong if 

lxl + 0 . Recall the following well-known embedding theorem (cf. e.g. 

(17) 

Then (Daf) (x) is a continuous function on R2 and there exists a 



constant c > 0 with 

(18) 
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sup I (Da.f) (x) I < ell fIB; (R2) II 
XER2 

In particular, (Da.f) (0) 0 makes sense for 

those a.'s It is easy to see that 

(19) if (17) holds} 

is a finite-codimensional subspace of Now it comes out that 

the anisotropic Hardy inequality (16) holds for all functions from the 

space described in (19) , provided that s is "non-critical" (the 

precise formulation will be given in the next section). This is the 

crucial point of the theory. With the help of (6b) and (16) one can 

prove (15) (for non-critical s ). Now the problem of the trace of 

functions from B;(R2) (or better from the space described in (19)) 

on the curve C can be attacked as follows. By (15) the trace of f 
p 

on C can be reduced to the traces of ~.f on 
p J 

(20) 

With the help of affine transformations one maps 

{xl2-j-l < lxl- < 2-j+l} onto a standard domain, hopefully that the 
a 

curves (20) are transformed in curves with uniformly bounded slopes. 

This additional restriction: 
~1 

However if this causes an - < p . 
52 

restriction is satisfied,· then one can apply the trace-assertions from 

Sect. 1 to these transformed curves with embedding-constants which are 

independent of j Re-transformation and a careful calculation of 

the dependence of all constants on j yields the desired result: The 

trace of functions from spaces described in (19) on c 
p 

is a weighted 

Besov space on Cp • Afterwards one can extend this result to 

functions from 5 
Bp(R2) , however we shall not do this in this paper. 
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3. HARDY'S INEQUALITY 

Let p with 1 < p < co be fixed. Then the couple s = (sl,s2) 

wi·th 0 < sl ~ s2 < 00 is called critical if there exists non-negative 

integers ml and m2 with 

(21) 

Otherwise s is called non-critical. Of course, critical couples are 

exceptional couples. 

Theorem 1. Let 1 < p < oo and let -s with 

be non-critical. 

(i) There exists a positive number c such that 

(22) J 
-sp 

[xi- - if(x) [p dx < 
R a 

2 

(23) 0 + lJ 
PJ 

(ii) Let additionally and Then 

there exists a positive number c such that 

(24) f -sp 
lxl- [f(x) lp dx::; 

R a 
2 
-

holds for all f E w:(R2 l with (23). 

Remark 1. This is an anisotropic inequality of Hardy type. Recall 

that the mean smoothness s , the anisotropy a , .and [ x 1- have been 
a 

defined in (11) and (12). An extension of (22) or (24) t.o critical 

couples s is not possible. On the other hand for non-critical 

couples s , the right-hand side of (22) can be replaced by 
- - -

cllf!H:(R2)1\ or cilf[Fs (R2)1\ with 
p,q 

0 < q < 00 , where H:(R2) are 
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-
anisotropic Bessel-potential spaces, and Fs (R2) 

p,q 
are anisotropic 

versions of the spaces Fs (R2) 
p,q 

which have been considered in [4). 

4. DECOMPOSITIONS 

We return to the problem (15). Let again p with ~ < p < oo be 

-fixed. Let s 

-couple. s , a , and lxl- have been defined in (11) and (12). Then 
a 

(25) 

and 

-
(26) {flf € Lp(R2) 1 11fiB;(R2) II < oo} • 

If additionally s 1 and s 2 are integers then we put 

- -
(27) 11flw5 (R) II = llflws(R) II + lllxl:s f(x) IL (R) II p 2 · p 2 a p 2 

and 

-
(28) w;(R2) = {flf E Lp(R2), 11flw;(R2)11 < oo}. 

Corollary. Let s be non-critical. Then 

-
(29) B;(R2) ={fifE B;(R2) with (23)} 

and (if additionally s 1 and s 2 are natural numbers) 

(30) 

Remark 2. The corollary is a consequence of Theorem 1. 

Let <jJ E <I>a • Then llfiB :(R2) II¢ and llfiw!(R2) II¢ have been 

defined in (14) and (13), respectively. 

Theorem 2. Let <P E <I>- • 1 < p < oo • and s 
a 
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(31) 

and (if additionaLLy are naturaL numbers) 

(32) 

Remark 3. This theorem and ·the above corollary are the precise 

version of the decomposition method which ~e?e mentioned in SecL 2. In 

particular, for different systems cp E ilia ·the corresponding norms in 

(31) are equivalen'c. Similarly in (32). 

5. TRACES ON CURVES 

Let 0 < p < 1 and let be the curve described at the 

beginning of SecL 2. Let T be the arc length on Cp , \vhere T = 0 

00 

corresponds to x = 0 Let d(T) be a mono'conically increasing C -

function on (O,oo) with 

(33) d(T) T if 0 < T < l and 

We introduce weigh1:ed Besov spaces on 

powers of the distance-function d(T) 

d(T) = 2 if T > 2 • 

C , where the weigh·ts are 
p 

Let L (C ) with 1 < p < oo 
p p 

be the usual L -space on C with respect to ·the Lebesgue measure 
p p 

dT , where T stands for the arc length on c 
p 

Then 

is defined by (5) with c 
p 

instead of and ~e1here the differences 

!:o.m are taken wi·th respect to the arc leng-th. Le·t l < p < oo , a > 0 
T 

and ]J E R1 • Then 

(34) 

with m > a , and is the collection of all complex-valued 

locally integrable functions such that is 
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finite. Again, different m's yield equivalent norms. This is a 

weighted Besov space; only the behaviour of the elements of these 

spaces near the origin is of interest. 

Theorem 3. Let 1 < p < oo and s 

Let 

(35) 

sl 1 
s ~ p < 1 ~ s 2 > P and 

2 

cr 

Then the trace-operator R ~ . 

(restriction of f to c p is a retraction from 

onto 

If additiona~~y are naturat numbers then 

retraction from 

onto 

R is a 

Remark 4. The formulas (35), (36) are the counterparts of (7), (2). 

The method how to prove the above theorem is quite clear now: The 

decomposition procedure which has been mentioned in Sect. 2 as the 

basic ingredient has been fully established by Theorem 2 (Remark 3 and 

the Corollary). Now one can proceed as indicated at the end of Sect. 2. 

6. BOUNDARY VALUE PROBLEMS FOR 
SEMI-ELLIPTIC DIFFERENTIAL EQUATIONS 

Let K = {xi lxl < 1} be the unit disc in the plane and let 

3K = {xi lxl = 1} be its boundary. There are no problems to study 
- -

spaces of the type B:(R2l and W:(R2) with 1 < p < oo and 
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s = (sl,s2) ' 0 < sl s s 
2 

< 00 ( sl and s2 nat. numbers in the case 

of.Sobolev spaces) , where the "singular poin-t" 0 is replaced by the 

·two singular points 

and i;l (K) 
p 

0 
( -1 '0) and 1 

(1, 0) ClK Then X X = on 

can be defined as the restriction of the 

corresponding spaces on R2 (in the just explained modified sense) to 

K • In the sequel we always assume that s 2 = 2s1 • In this case one 

has both a satisfactory inner description of the spaces and 

vl (Kl 
p 

(where only values f(x) with x E K are needed) and a final 

answer as far as traces of functions belonging to these spaces are 

concerned. The lat·ter problem is just a technical modification of the 

results from Sect. 5 where now p = ~ It is almost clear how to 

define weighted Besov spaces 

l < p < oo , where x 0 and 

B~(()K,V) , 0 > 0 , ~ E Rl and 

1 
x are ·the singular points of ClK 

(instead of 0 on c ) we omit any details and refer to [2 ,3]. 
p 

co {ti It I 1} Let n (tl be a C -function on < with 

It I > 1 and 

n (tl ~ 1-t near t = l ' n<tl - l +t near 

Then we consider the semi-elliptic differential operator 

(37) + __ v __ f(x) , 
2 . n (x1J 

n<tl > 

t 

where v is a real number. It is not really necessary ·that the 

0 

~1 

weight v 
2 

has this special form, but one needs in the theorem 
n . (xl) 

if 

below some qualitative behaviour of a weight in front of the ·term w·ith 

f (x) in (37). Let 

(38) A f = (A f fiClK 'J 'J I U . . 

where the ·two latter expressions in ( 38) stand for the ·trace of f 

and 
()f 

Clx2 
on ClK , respectively. 
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Theorem 4. Let 1 < p < oo There exists a number v0 with the 

following property: If v > v0 and s > 0 then Av yields an one-

to-one mapping from r/H2, 2s+4) (K) 
p 

onto 

s+2 _ _!_ 3 1 
s+----

i3(s, 2s) (K) XB 2P [aK, s + 2 - 2) XB 2 2p 
p p 2p p 

and if s = 0,1,2, •.• ~ from W(s+2,2s+4) (K) onto 
p 

s+2 - _!_ 3 1 

W(s,2s) (K) ( ClK, s + 2 - 2) s+---
XB 2P XB 2 2p 

p p 2p p 

( ClK, 
3 

s +--
2 2~) 

[ ClK, 
3 2~) s +--2 . 

Remark 5. Detailed formulations and proofs may be found in [3]. For 

the unweighted case, i.e. Vf(x) in (37) instead of 

has not such a final result. 
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