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BOUNDARY VALUE PROBLEMS OF LINEAR 

ELASTOSTATICS AND HYDROSTATICS ON 

LIPSCHITZ DOMAINS 

E'ugene B. Fabes 

I nt reduction 

In t hi s not ll! I wi ! X report on s om:? recent progress i g~ the 

study of boundary 1\J'alue problems for systems of equations on 

Lipschitz domains D in 111111 , with boundary data in L2 <aD,dal 

'The specific prob! ems I wi 11 discuss here arise from 

elastostatics and hydrostatics. 

The Dirichlet problem for a single equation Cthe Laplacian) 

on a Lipschitz domain D with lL l.ID,da) data and optiliiiill 

estimates was f:irs'c treated by 13. E. J. Dahlber·g (see [3], [4J, 

His approach relied on positivity, Harnack's 

i naqual it y and the maRi mum p!'.i nci pl e, and thus, it could not be 

used to study for example the Neumarm prol:ilem, or systems of 

equations. 

N. Riviere [6] \'l'!?re able to ut.i!i:l:e A, P. Calderon's ([1Ji 

theorem on the boundedness of the Cauchy integral an c 1 

curves, to extend the classical m:?thod of layer potentials to 

the case of c1 domains. In this t;"Dr-k they 'W'E!re able to 

r·es ol '-'e the D.i ~:·.i chl et and l'iel.Hl'.ann probl em ~-nth L 2 ( BD, dcr) data, 

and to obtain opt.irro<:d estimates, for· c1 domains. They rE?lied 

on the Fredholm theory, e:v.plo.it:ing the compactness of the layer 

potential·;; in the c1 case. In 1979, D. Jerison and C. Renig 

[9] 1'J<Jef'"E able to g.i\'e a simplified proof of lDalhl:Jerg's results, 

using an integral identity that goes back to Rellich ([15]) 

However, the method still relied on pos.iti,..vity. Shortly 
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2 
L ( aD,da> 

[ 10] . 

Dahlberg's results. This still restricted the applicability of 

the method to a single equation. 

In 1981, R. Coif~n, A. Mcintosh, andY. Meyer [2] 

established the boundedness af the Cauchy integral en any 

Lipschitz curve, opening the door to the applicability of the 

layer potential method to Lipschitz domains. This lllE'thod is 

single equation or a system of equations. The difficulty 

becomes the solvability of the i nt egrad equat i ems. Unlike the 

case, on a Lipschitz domain operators like the double layer 

potential are not compact and so Fredholm theory is precluded. 

For the case of a single equation {the Laplariianl this 

di f !t :i cult :y ~r.ras ouercom£ by G. '\i'erolhot a ( [ 16]) .in his doct ora.i 

dissertation._ He made the key ol:lser•Yation that the Relliclh 

identities ~r.entioned before ar•E the appr-opriate substitute to 

con11pa.ct ness in the case of Lipschitz dowoai f'11S, Thus , he >•JB s 

able to recover the results of Dahlberg[~], and of Jerison and 

Renig [10], for Laplace's equation on a Lipschitz domain, but 

using the :method of layer- potentials. 

This note sketches the extension of the ideas of 

G. Verchota to the case of systems of equations. The results 

thus obtained had not been previously available for general 

Lipschitz domains, although a lot of "''Ork had been devoted to 
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the case of piecewise linear domains. For the case of the 

system5 of e]astostatics, the result that ~ are about to state 

had been previously obtained rar c1 

[7], using the Fredholm theory as in [6]. Once again, 

compactness ~~s a cr~cial element in his analysis. Th.i s is, of 

course, not available for Lipschitz domains. 

The organization of the paper is as follows. Section 2 

treats the systems of elastotastics. This is the work of 

B. Dahlberg, C. ~enig, and G. Verchota. Section 3 considers the 

Stakes probleM of hydrostatics. This is joint \"rork with 

C. Kenig and G. Verchota. FuJi proofs of the results stated 

here will appear· in future publications. 

It .is a pleasure to express my gratitude to B. Dahlberg, C. 

Kenig, and G. Verchota for allo~ring me to announce here their 

unpublished results. 

Section 2 Linear- elastostatics on a U.pschitz domain. 

For simplicity, .in the rest of this note \":>E will tn;;at 

doma.i ns D above the graph of a Lipschitz runction P, i.e., 

D = {(::;;' yl : y where P : ~n-l~ is a Lipschitz 

function and n = 3 . Points ( M , '\"( R) ) or ( y,¥'( y)) on oD 

\"n 11 usually be denoted by P or Q • Points ( R, yi in D or-

cD will be denoted by X . The surface measur-e on BD ~·Jill be 

denoted by do- , and the ·i nv."ard uni t nor-mal wi 11 be n By 

l'+ ( Q/ , Q E BD we wi 11 denote a vertical circular cone 

completely contained in D . Note that the opening of + r < Qi 
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can ( and w.i 11) be t aiken to depend only on the Lipschitz constant 

cant ad ned in 
c­

D 

sup 

XE!'+ ( P> 

- w.i U denote the reflection of !'+ ( Q> 

D- For a function defined on 

con<.rerges non-tangentially at P to a 1.i w t .e if 

~~~+(~~X~ ; t 

[) ' 

non-tangenti. ab1 y at lF' E em from [l and D- 1 """' wi 11 denote 

the respecti •.•e 1 i oo ts by and u ( P> 

Let A~ 0, p > 0 be constants (Lame moduli), 

.fL.6if + ( l\.+p) Vdi V if = 0 

au. 

v d.i v ti "' ill in D 

oD, da> 

in D 

au. au. 

We wi 11 

J (~,+fl)n.i(}!:) ilK. (X) + k< n. ( X) 
J 

__ J (X) -n. (X) ~ Xl} 
BK. ! u:ll:. 

( 2) J l ! 

5 .. ~ (X) 

au. 
1 

!J un oD 

Here and .in the sequel -we 'lfn 11 use the summat.i on con\renti on. 

Problem ( 1 is the Di r.i chl et problem, \~"li 1 e Problem ( 2) is a 

positive number. To ease the notation we introduce the operator 
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Bu . Bu . Bu . Bu . 
<>.+p>ni<K> BK~<K> + k<n/K> BK~<K> -n1 <K> BK~<K»+poij BnJ<K> 

The operator Tk is called the generalized stress. 

In the particular case k 

T _ T 11 is called the stress. 

p of problem <2>, the operator 

Theorem 2.1: a) There exists a unique solution of problem <1> 

in D 

limit 

and ti having non-tangential 

for almost every P E aD The solution -t 
u 

belongs to the Sobolev space H112 <D> 

b) For every k > 0 there exists a unique 

solution of problem (2) in D, which is 0 at infinity, with 

<vti>* E L2 <oD,du), and with Tkti having non-tangential limit 

for almost every P E aD The solution ti belongs to 

the Sobolev space H312 <D> 

In what follo-ws we will outline the proofs of part a and 

part b in the case k # p The case of stress boundary 

conditions is considerably more involved and an outline of the 

proof would take us afield of the main ideas. The primary 

difficulty in the stress case will be pointed out in the course 

of the argument . 

To begin the proof of Theorem 2.1 1 we first introduce the 

Kelvin matrix of fundamental solutions (see [lll for example), 

< r i j < X> > ' where r . . <X> 
l J 

A 5.. C K.K. 
lJ + 1 J , and 

4n TXT 4n IK!3 
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a = !_ [ !_ + 1 1 C ~ 1 1 1 Our solution of ( 1 > wi 11 2 /l 2p+}.. I : 2 p - 2p+}.. • 

be given in the form or a double layer potential 

rl< X> = 21~< X> = J <Tk< Q> r< X-Q>} t ~< Q> da< Q> , 
BD 

where the operator Tk is· applied to each column of the matrix 

r and the superscript t denotes the transpose matrix. 

Our solution of <2> will be given in the form of a single 

layer potential 

rl< X> = S~< X> = J rc X-Q> ~< Q> da< Q> • 
an 

Lemma 2. 3: Let 21~< X> , S< ~> <X> be de£ i ned as above, with 

Then, they both solve the system phrl + (}..+p) v 

div ti = 0 in D and D- . Moreover, 

(a> + II< :ng> :II 2 
L <aD, da> 

+ ll:n~JI 1/2 
H <Dl 

Cll~ll 2 
L <BD,do") 

(b) <:D""*g>±<P> ± 1 ""*<P>+ f <Tk<O>r<P-Ql}tg""*<Olda<O> "i g p.v. - Jan · · · 
I 

(c) II< VSg) :n 2 + II< VS~> :II 2 + IIS~II 3/2 ~ 
L < BD, da> L <em, da> H < m 

(d) a """* + -+ {< A+C> (CJX_<Sg)J.)- <PI= 2 n.<P> g.<P>-
l 1 J 

n<P>,g<Pi > )} + <p.v.J 0=_r<P-Ql g<Q> da(Oll .• 
BD 1 . J 

(n.<Pl n.<P> 
1 J 
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+ P·''· J 
.fm 

See [16J for the 

tleta.i]s in~ siWlar situatio?L, 

Thus, the proof of Theorem 2.1 reduces to the invertibility 
'""'!~ 

o:n LL<OD'iida) of the operato~rs 

f I -nk< q; n P-Ql} t it( Q> ocr< Q) 
Jon 

This is accompli shed by means of the foll <rn~Yi ng ] emw.a: 

Lemma 2. 'I: There e•ists a constant c vlh:i ch depends only on 

the Li psch.i tz 

that}' i {f k yt 

'!, l I - . i ( 2 . { 

constant of aD 
' 

and on the 

ha·~~.:Pe, for all 
_, 

E L 2( ji 'li'JE g 

c!D, do) 

.( ODr. da) 
~ C !!( ~ I -

of all the inequalities clearly shaw that 

2 I - .( 

numher It 
' 

such 

aD, da) 

Fi r:·s t 

1 
~ I + and 
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the graph of t~ , 

([2ll, the operators * 9 corresponding to the do~ins Dt , 

are continuous in norm. .Qt t "'0 'We are in the case of the 

the inde~ is also 0 at t = 1 •nd tbe desired inuertibilfty 

i' oll o~rl'S. We are indebted to A. Mcintosh for pointing out to us 

this simple argument using the i.ndeY.. 

do so, we w:i 11 i' irs t ell p! ai n the bc:uxndar·y cond:i t ions .in probl em 

Let 

satisfying the ellipticity condition 

" 2 2 
?; c ~~I 111 i ' I 

. 1;'. t;:. r,{ 
J .I J 

and the symmetry condition 
j 

SF· 
We consider vector· JL ~ 

J l 

valued functions on mn satisfying tbe 

divergence form system 

0 in D 

Fr·mn •.rariationaJ cons.lderi:!.'i::ion, the most natural boundary 

conditions are Dirichlet conditions or the 
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ati rs a 
au= ni Aij ax. u 5 loD = fr 

J 

interpretation of problem <2> in this framework is the 

The 

foil owing: given k > 0, there exist constants A~:<k> 
1 J 

= A~: 
1 J 

3 • 1 $ r , s $ 3 satisfying the ellipticity and 

symmetry conditions, and such that p~d + (A+p> v diu ti = 0 in 

_E_ Ars au s 
D if and only if 

axi ij ax. 0 in D 
' 

and with 
J 

Tk -+ a -+ A~: a s u au u n. ox. u 
1 1 J 

J. 

Lemma 2. 5: <The Rellich, Fayne-Weinberger, Necas identities 

<see [151, [141 and [131>. Let ii be a constant vector in 

and suppose that 0 s 
ox. u 

J 
= 0 in 

and ti and its derivatives are suitably small at ~ . Then 

Proof: Apply the divergence theorem to 

Corollary 2.5: I£ 

satisfies 

'"us .,rs v d 
n.f! "'-tj ax. a 

J 

where r vt u denotes the tangential components of the gradient 
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of ur , and the comparability constants depend only on the 

Lipschitz constant of ~D , 

Proof: Take Because of the Lipschitz character of 

BD , Then, 

c 

~ c ( l' J 1 ,r (2 0 , 112 (J .iati 12 da) 112> , VL . a, 
I" an an °11 

Jan !vt 
ur!2 r ~~ti 1 

2 
Thusg ;r da ~ c da 

r ""liD CIIJ 

For the opposite i nequa1 i t y 1 observe that, for each r,s,j 

fi:v.ed, the vector 
r-s 

A . . -
1 J 

is perpendicular to 

n . Because of lemma 2.5, 

Jim he 
au r au s 

J!rs 
ax. BH. 

da = 
1 J 

l J 

J_ <he 
au <!~ J!rs h. 

rc:. 
da 2 - n.e "i! 4::-: o:tt a:x: 1 ,] .l J oD J 

Hence~ 
2 ~f lvtu 

If' 12 .. 1/2 f I I da < c ( a en ( l: • ~Jan Jan ' r 

and so, 

f ~ - f 
i ~~2 r . i2 p;u!;.; r 

~ !a·· da :;; c n IVU da ,, c [; l ~'YU da 
JoD ~ Jan r JaD · t 

RemB.rk 2. 7: 

problem 12) for k ~ p and for k = p. In the case of problem 
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rs 
fu_ i' /J ' .l'L . ( !){) 

. l J satisfy the hypothesis af Caroll•ry 

au 5 au r 
2" 6" f)n the other hand, 'llil'hen ~t Ji:s },.( d.i v = p ' ,;x ax. l J 

l J 
au. Bu. 

2 !1 E ( J 
o:i/} + 2 ,fiE. 

~ wrh.ich ol!H•ious1y does not sati·s:fy the 
j f j ] J 

hypothesis of 2.6. 

Proof of !Lemma 2 .Iii: Let HJ = S~i HJ We \<l'i 11 

Cor-o] l ary 2.6 to -t 
~'llhi ch in the Ill u 

' 
we can case 

do so in D and also in D- First note that 

Then Jr;ote that because of Lemma 2.3 (d), u.) 
J -!-

Therefore, r I( Tki:il + 12 da "' 
Ji:iD 

r I ( Tkih - ! 2 da 
'"'~D 

apply 

# ffJ We 

{ V. u. J 
'( J -

l8ut again using Lemma 2. 3 ( dD , we see that Lemma :L 4 foll 0'<11'5 

] l1l!T.edi ate1 y. ~~e have thus established Lemma 2.4 and hence 

Theorem 2.1, 

Section 3~ Linear hydrostatics on a Lipschitz domain 

continue utilizing the notation introduced in 

Section 2 .. We \<rill discus~ the so-called Stokes problem of 

hydrostatics, 

We seek a vector ualued function and a 

scalar valued function p satisfying 

f .611 Vp in D I -7 ( q) J diu ll Ill in lD 

I -t f E (an, da) 

l u!oD 

-ii, 
UJ 

2 

~,":i 11 



38 

Theorem 3.1: There exi~ts a unique solution of problem (4) in 

D , with -t * 2 <u> E L <dD,da> , and ti having non-tangential limit 

r<P> , for almost every P E aD. The solution ti belongs to 

the Sobolev space H112 <D> 

In order to sketch the proof of Theorem 3.1 <which 

parallels that of Theorem 2.1>, we introduce the matrix of 

fundamental solutions <see the book of Ladyzhenskaya, [121> 

r< x> ( r i j ( X> ) I where 

corresponding pressure vector ~<X> 

1 X.X. 
--~ 1 and its 
Bn fxf3 

< qi < X> > where 

1 -xi 
q (X> = -----,::- . Observe that ~r .. <X) 

4njxj3 lJ 

Our solution of (4) will be given in the form of a double 

1 ayer potential 

ti< X> = 2l9< X> = J {T 1 ( Q> rc X-Q> >9< Q> da( Q> 
aD 

where T 1 < Q> is a matrix of first order boundary operators. As 

we ha,Je already seen in Section 2 there are se,Jeral 

possibilities for T~<Q> In the case of elastostatics any 

T'< Q> connected with a pseudo-stress <k ~ p> could have been 

used to formulate an elastostatic double layer potential. Let's 

make clear at this point the procedure for constructing double 

layer potentials. 

f N b d d . t. a We first look or a eumann-type oun ary con 1 1on, ov , 

for which the conclusion of Corollary 2.6 is valid. We then 

apply to each column of the fundamental matrix, r<K-Y> as 

a function of Y . This defines a matrix of kernels denoted by 
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{T' ( Q> r< X-Q)} with Q E BD The corresponding integral 

operator is called a double layer potential. 

In the case of Stokes problem, we will show that for 

functions, ti<X> , satisfying .6ti<X> = vp<X> , an appropriate 

Neumann-type condition is 

ati ati 
811 on - pn • 

Having now chosen this boundary operator, we write down the 

corresponding double layer potential 

~-g<K> = I <T'<Q>r<K-Q>>-g<Q>da<Q> 
aD 

where ( T' ( Q> r< K-Q>)., = 6 . . q~( K-Q> 
1 ~ 1 J 

We also introduce the single layer potential, 

~ ~ 
u( K> = Sg< Kl I r< K-Q> -g< Q> da< Q> 

an 
and observe that .65-g = vP5 -g where 

I 

Lemma 3. 2: Let ~g , 5( g) be defined as abo~re,· with 

Then ti< K) = ~<g) ( Kl solues 

.1ti Vp 

div ti 0 in D and D Moreo•.•er 

(a) li< :llg) : li 2 
- L <aD, dal 

·+ ll:nglj 1/2 
H (D) 
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± ~ ;;j( f) + p. v. -J {T' < Q» 1'( P-Q> }q! Q> do( Q> 
aD 

IH VSg) +II 2 
L ( illD, da) 

(d) {
Jl'L ( p) g . ( p) 

! ,J --;z-.--
n.(f') n.(f') } 

1 2 J { n( P) ' ~( p) } 

( T< P! n F Q> ) i .f n. ( Pi 
J 

n P-Q> !/( Ql da( Q> I , and 

:!: 1 
2 

j 
lP-Q) n. ( Pl 

J 

The proof of Lemma 3, 2 il' oll D1Pl5, a.s the one .i. n Lemma 2. 3, f· rom 

[2J. See [12] fo1r- the case of smooth domains. Thus, the proof 

of Theorem 3.1 reduces to the invertibiJity in i'ID,da) of 

the operator 

do( Ql A.s in secti r;;n 2, 

this in turn follo~ frort1 

Lemm<>.. 3. 3: There e~~:.ists a constant C , which depends only on 

the Lipschitz constant of BD such that, for a11 

I! 1 .... ,, 
!( 2 I - E) g J 2 

L ( BD, d.::r) 

1 * -4 ~ c Iii 2 I + II } g II 2 
L <oD,dal 
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and 

'!Je turn now to the proof of Lemma 3. J. The proof relies on two 

Lemma 3. 4: Let 

that ..oil = Vp 
' 

deri villt.i ~res are 

f 

I n. -~ .e n.e 
-ov 

Lemma 3. 5: Let 

"" n be a constant ~I.,vector in mn 
' 

and 

di v 
-! 

0 in D and that .... and u = • u,p 

suitably s rr.al l at "' Then, 

au s au s 

Lm aa. da 2 on i:lH 
da 

J € 

s 

tJ) au 
2 p. nsht.:nre da 

H 
' 

.... 
and be u p 

I a r 
2 h ,.u .pda 

oD r un 

2J h 
aD r· 

n 
s 

- s au 
ax. 

J 

as in Lemw.a 

- 2J 
i)J) 

ax. da 
J 

3. 4. 

suppose 

their 

-

Then, 

The proofs of Lemmas 3.4 and 3.5 are simp]e applications of the 

properties of 
.... 
u p, and the divergence theorem. 

An immediate consequence of Lemma 3.5 is 

Corollary 3.6: Let ti, p be as in Lemrr.a 3.4 , D a Lipschitz 

d01nai n. Then, J. 2 

aD P 
c depends 

only on the Lipschitz constant of HD 

.. 
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A consequence o£ Corollary 3.6 and Lemma 3.4 is 

Corollary 3.?: Let ~ , p be as in Lemma 3.4, D a Lipschitz 

domain. Then, 

I r 2· lvt u I da, 
aD 

where, by definition a~ 
an - pn . 

Proo£: Lemma 3.4 clearly implies that 

da 

Arguing as in the proo£ o£ Corollary 2.6 1 using Lemma 3.4, we 

see that 

Since ti is divergence £ree (i.e., div ~ 0) 

n 
. s. 

It is easy to check that £or s fixed the above operator is a 

tangential vector field on s 
u From this £act and Corollary 

3.6 we have the bound, 

IJ P 
aD 

Hence J lv-tu 12 d- · · 1 t t b th ~ 1s equ1ua en o o 
aD 

and so these last two quantities are themselves 

equi ual ent . 
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We can mow prove Lemma 3. 3 o In fact, if we set 
-j -? 
u = Sg , 

!LemW~a 3 o 3 is an i mmedi ate ccmsequence of Cor·oll ary 3. 7 and the 

second part of ( tD in Lenm~a 3 o 2 o 
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