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BOUNDARY VALUE PROBLEMS OF LINEAR
ELASTOSTATICS AND HYDROSTATICS ON
LIPSCHITZ DOMAINS

Eugene B. Fabes

Section § Introduction

In this note I will report on some recent progress in the
study of boundary value problewms for systems of eguations on
Lipschitz dowmains D in R" , with boundary data in Lz(aD,da).
The specific problems I will discuss here arise from
elastostatics and hydrostatics.

The Dirichlet problewm for a single équation (the Laplacian)
on a Lipschitz domain D with Lz(aD,do) data and optimal
estimates was first trgated by B. E. J. Dahlberg (see [31, [4],
and [31)., His approach relied on positivity, Harnack's
inequality and the maximum principle, and thus, it could not be
used to study for example the Neumann problem, or systems of
egquations. Shortly afterwards, E. Fabes, M. Jodeit, Jr., and
H. Riviere [&8] were able to utilize #. P. Calderon’s ([11)

i

theorem on the boundedness of the Cauchy integral on C

curves, to extend the classical wmethod of layver potentials to

the case of C1 domains. In this work they were able to
resalwve the Dirichlet and NHeumann problem with LZ(BD,dG) data,
and to obtain optime! estimates, for C1 domains. They relied

on the Fredholwm theory, exploiting the compactness of the laver
potentials in the 01 case. In 197%, D. Jerison and C. Henig
[91 were able to give a simplified proof of Dalhbergfs results,
using an integral identity that goes back to Rellich (L1317,
However, the method still relied on positivity. Shortly

af tervards, they were alsc able to treat the Heumann problewm on
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Lipschitz domains, with L2(6D,da) data and optimal estimates

[1@)l]. To do so they combined the Rellich type forwmulas with
Dahl berg’s results. This still restricted the applicability of
the method to a single equation.

In 1981, R. Coifman, A. McIintosh, and Y. HMeyer [2]
established the boundedness of the Cauchy integral on any
Lipschitz curve, opening the door to the applicability of the
layer potential method to Lipschitz domains. Thic methed is
very flexible, and does not in principle differentiate between a
single equation or a system of equations. The difficulty
becomes the solwability of the integral equations. Unlike the
C1 case, on a Lipschitz domain operators like the double laver
potential are not compact and so Fredholm theory is precluded.

For the case of a single eguation (the Laplacian) this
difficulty was owvercome by G. Verchota ([161} in his doctoral
dissertation. He wmade the kev observation that the Rellich
identities ment:ocned before are the appropriate substitute to
compactness, in the case of Lipschitz domains. Thus, he was
able toc recover the results of Dahlberg [41, and of Jerison and
Eenig [1@], for Laplace’s equation on a Lipsch;tz domain, but
using the method of laver potentials.

This note sketches the extension of the ideas of
G. Verchota to the case of systems of eguations. The results
thus obtained had not been previecusly available for general

Lipschitz domains, although a leot of work had been dewoted to
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the case of piecewise linear domains. " For the case of the

systems of elastostatics, the result that we are about to state

1

had been previously obtained for C domains by A. Gutierriez
(7)1, using the Fredholwm theory as im [61. Once again,
compactness was a crucial element imn his analysis. This is, of

course, not available for Lipschitz domains.

The organization of the paper is as follows. Section 2
treats the systems of elastotastics. This is the work of
B. Dahlberg, C. Eenig, and G. Verchota. Section 3 considers the
Stokes problem of hydrostatics. This is joint work with
€. Eenig and G. Verchota. Full proofs of the results stated
here will appear in future publications.

It is a pleasure to express my gratitude toc B. Dahlberg, C.
Eenig, and G. Verchota for allowing me to announce here their

unpubl i shed results.

Section 2 Linear elastostatics on a Lipschitz domain.
For simplicity, in the rest of this note we will treat
domains D abowve the graph of a Lipschitz function ¢ , i.e.,

D= {{x,v: v > ®x)> , where ¥ : Rn-l—)l‘é‘ is a Lipschitz

function and n = 3 . Points (x,%(x)) or {y,P{y)} on &b
will wusually be denoted by P or @ . Points {(x,y) in D or
°D will be dencted by ¥ . The surface measure on &D will be
denoted by do , and the inward unit normal will be n . By

F+(Q) ;s @ € 8D we will denote a wvertical circular cone

completely contained in D . HMNote that the opening of I‘+(Q)
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can (and will) be taken to depend only on the Lipschitz constant

of ¢ . By I'(Q) we will denote the reflection of r'e Q

contained in °D = D- . For a function u(X) defined on D ’
(w P = sup Juex>}, P € 8D .. We will say that wu(X)
xert(p

converges non-tangentially at P to a limit & if

lim, WX =€ . If u is defined in R™\8D and converges
HEr (P) =2 F
non-tangentiably at P € 8D from D and D- ; we will denote

the respective limits by u+(P) and u (P)
et AN @&, g > @ be constants (Lame moduli). We will
seek to solwve the following boundary wvalue problewms, where

3 = (ui,uz,u )

3
gAd + (A4 v div d =0 in D
(13} {-} 2
¥ap = F e Lap,do
bl + (A vdiv @ = @ in D
: du. du du,
(Rt n (K =L (0 + K(n (X —Y (0 -n (X =—9(10) +
. i ax . J o . i oax .
(23 J i i
Bu. 2
a8, . —L (W = £, € L°(8D,d®
ij 8nm aD i

Here and in the seguel we will use the summation convention.
Problem (1) is the Dirichiet problem, while Problem (2) is a
Neumann-type problem in which k is an arbitrary, but fized,

positive number. To ease the notation we introduce the operator
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Tka -
auJ Bu buJ BUJ
(A+p)nj(){) 6—X——(X) + k(nJ(X) E—X_(X) —ni(X) ax x)>+g5 ij H—(X; .

The operator Tk is called the generalized stress.
In the particular case k = g of problem (2), the operator

T = T‘u is called the stress.

Theorem 2.1: a} There exists a unique solution of problem (1}
in D, with (¥ e L2(6D,da) and @ having non-tangential
limit F(P) for almost ever); P € 3D . The solution u
belongs to the Sohbholev space H1/2(D) .

b For every k > @ there exists a unigue
solution of problewm (2} in D , which is @& at infinity, with
(vir ™ € L%(aD,do), and with T°U having non-tangential limit
Fom for almost euery‘ P € 80 . The solution u bel ongs to
the Sobolev space H3/2( Dy .

In what follows we will outline the proofs of part a and
part b in the case k # g . The case of stress boundary
conditions is considerably more involved and an ocutline of the
proof would take us afield of the main ideas. The primary
difficulty in the stress case will be pointed out in the course
of the argument.

Tc begin the proof of Theorem 2.1, we first introduce the
Eelvin matriaz of fundawental sclutions {(see [11] for example),

XAX.
+ C d

5
7 TE A g e

I e

FCXy = (FiJ(HEE, where Fi‘,(XZI

<

£y
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I .1 1
Q_§[;+m]

, C = Qur solution of (1) will

be given in the form of a double layer potential
= -3 k t 2
ul( ) = gl = {T(QRQIH-Q I g(Q dolQ)
ap

where the operator Tk is applied to each column of the matrix
I' and the superscript t denotes the transpose matrix.
Our solution of (2) will be given in the form of a single

layer potential

B = ST = J FX-Q gt dotQ
ab

Lemma 2.3: Let 93(X), S(@ (X be defined as above, with

d € L%(aD,do) . Then, they both solve the system gAD + (A4 ¥
divds=@ in D and D- . Moreower,
(> s i, + ooy, « 23, ,, s

L°(3D,do L“¢ 8D,do) H D

-3
clizh ,
L“( 8D, do
+
(my (3hTm =+t L3me pou. [ et rer-@ g o dot
“ dap

; oS ¥ 5. 3 - %.
[§=)] ip ng)+il 2 + “( V’Sg)_“ 2 + "Sgu 372 Z

L( 8D, do L (8D, do B Sem

N
cligl

. B .
(@ (2ash e = T UBD L m gam -
éui g 2 i J

2 by 3
(ni(PJ nJ.(P) { n{Pr,g(Pr ¥ )3} + (p.u.j 3%

ap i

FCP-Q) gl @ dat Q)
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Theref ore,

+
(st = i% geP + p.v.I T™"P FHP-Q N QP dal P .
aD

The proof of Lemma 2.3 follows from the theorem of
R. Coifwman, A. MHcintosh; and Y. Meyer ([21). GSee [16] for the
details in 2 simlar situation.

Thus, the proof of Theorew 2.1 reduces to the invertibility
on LQ(aD,da) of the operators

* I+ Kk

L
5
k) *

T

I + (E , where

[ R

E'giP: = p.u. J M rir-9t FQdo®
8D

This is accomplished by means of the following lemma:

Lemma 2Z2.4: There exists a constant € , which depends only an
the Lipschitz constant of 8D , and on the number k , such

that, if R # g we have, for all g € L2(aD,dm

RS SR R s ey 1o+ kNP
L% ap, de L?¢ 8D, da
and,
ke, o=

RS SN | s el - eBHIY
: 2 z
1% ap, do L%( 2D, do

To show that Lemma 2.4 implies the invertibility of the

operators in guestion, we follow Verchota’®s ({161 ideas. First
11 ; PR N . 1 o

of all the ineguaiities clearly show that f‘I + (K} and

i Bo® . . .

=1 - (K} are one to one. fi simple argument using the

-
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continuity of (Rk)* shows that these operators have closed

range. We can, therefore, attach an index to these operators
which might possibly be infinite. MNow, for each
t , @< t £ 1 , we consider the Lipschitz domain Dt given by
the graph of iv . By the theorewm of Coifwan ~ HMcIntosh - Meyer
(L21), the operators (R:)* , corresponding to the domains Dt '
are continuous in norm. At ¢ = @ we are in the case of the
upper half plane, and, therefore, the index is @ . Therefore,
the index is also @ at t =1 , and the desired invertibility
follows. We are indebted to A. Mcintosh for pointing out to us
this simple argument using the index.

We, therefore, pass to the proof of Lemma 2.4. In order to

do so, we will first explain the boundary conditions in problem

(2) from the point of wview of second order elliptic systems.

rs

Let Aid ; L&y 8 4 By L &1, J ¢ n be constants

satisfying the ellipticity condition

[

2 2
L P T L LA

ij
C ek rs 5T .
and the symmetry condition nid = Ajj . We consider wvector
valued functions @ = (u1 ,...,un) on R" , satisfying the
divergence form system
2 452 v -0 in D
a ;b a j

From variational consideration, the wmost matural boundary

s A . -+
conditions are Dirichlet conditions (u;aD = ) or the
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.-)
D du re 4 s
Neumann-type condition T aij 5ﬁ; U ap = fr . The
interpretation of problem (2) in this framework is the
following: given k ) ® , there exist constants Af;(h) = a{? s

1 24 ,°§J 23,1 zr, 85 % 3 satisfying the ellipticity and

symmetry conditions, and such that uAd + (A4 v div d =0 in
a8 rs 8u"
D if and only if E;T'Aij Y O in D, and with
i J
B a = rs 4 E
T g = 5;- u = nj '“1,] a———x u .
d
Lemma 2.95: { The Rellich, Payne-Weinberger, Necas identities
{see [151, [141 and [131). Let K be a constant vector in
n <] rs 5] s . rs sr
R, and suppose that 5§; ﬂid Eﬁ; u = ® in D, AiJ = ﬁji y

and U and its derivatives are suitably small at o . Then

h, n, A ° ¥ do = o n, &°
fan ¢ "¢ Tij 3K, 3 8%, "¢ T¢j B¥

r o, s r '
rs 8u du 5 J h, au rs du
i J ap

Proof: fipply the divergence theorew to

[=) rs s res,,
A - - '
axg £t he ﬁid hj A i h. &i ¥

”
= 2z H — o ? = T
Corollary 2.6: If AiJ 3%, axJ : C z jvu , then ,

g§ = n ﬂrs BUS
gv i Tij 8X.
d
satisfies
8 =42 - rgl
[ e dlfer gm et
aD 8D

where v, u' denotes the tangential cowponents of the gradient



: r
of u

7

Lipschitz ¢

Proof : Tak
[5) S h8 ne
Z

r

Thus, I j
r a

For the opp
fixed, the

f Becaus

Henoe,

and so,

Bemark 2.7:

problewm (2}
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onstant of 8D

o

and the comparability constants depend only on the

e B = e - Because of the Lipschitz character of
» € . Then,
r s
J IVUPIQ do { C f h, n, ;? g%— g%— do =
ap ap J a8y o8
r s
8u rs du
= C j h £, = do 2
ap ! axi € ij 8.
r2, 1/2 ad 2 172
cC(Z J fvu [“dey . (j [5; do) Yo
r ©oD abD
-3 2
A urfz de : € [ [93 do .
.4 du
D Y 3D

osite inequality,

APS

i

vector hi ne

e of lemma 2.3,

¢}

[,
3

At this

k

for k # g and for

observe that,

2
| do 2z C £ {
r

i

for 2sach r,s,j

is perpendicular to

o

oD

point we can explain the difference between

In the case of problem
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(2) with k # g, A:;’(k) satisfy the hypothesis of Corollary
rs du- au’ = 2
2.6. On the other hand, when &k = g , A" =z5— z=5— = Aldiv w
ij ij a j
. Bu‘i aux 2
+ 5 'E. (BX, + BX.) , which obviously does not satisfy the
1y4d 1 Jd
hypothesis of 2.6.
Proof of Lemma 2.4: Let X = SS(X) . We will apply
Corollary 2.6 to a s which we can in the case k # g . We will
K au
do so in D and also in D- . First note that T d = 3
Then note that because of Lemma 2.3 (d}, (Vt uJ.)+ = (vtuj)-

Therefore, J I(Tk3)+‘2 do = J l(Tk?x)—!2 do
ap aD
But again wusing Lemma 2.3 (d),; we see that Lemma 2.4 follows

immediately. We have thus established Lemma 2.4 and hence

Theorem 2.1.

Section 3: Linear hydrostatics on a Lipschitz domain

We will continue utilizing the notation introduced in
Section 2. We will discuss the so-called Stokes problem of
hvdrostatics.

We seek a vector wvalued function d = (ul,uz,u ) and a

3

scalar wvalued function p satisfyving

Au = Yp imn D
(4 divd= @ in D
E’l = P e L%aD,do



38

Theorem 3.1: There exists a unique solution of problem (4) in

. 3 2 - . . .
D, with (w € L"(8D,do) , and wu having non-tangential limit
fom , for almost every P € 8D . The soclution a belongs to
the Sobolev space H'/Z(m .

In order to sketch the proof of Theorem 3.1 (which

parallels that of Theorem 2.1), we introduce the matrix of

fundamental sclutions (see the book of Ladyzhenskaya, [121)

i 6i,j i ij‘i
Yy = (riJ(X)) , where er(X) = “&Fn TiT < R T;Ti , and its
correspondi ng pressure vector H(X) = (qJ(X)) s where
i —Xi .
g (¥ = —2—_ . Observe that AF. (X = D, gl(® .
3 13 .
an x| i

Our solution of (4) will be given in the form of a double
layer potential

WH = IGH = j ITHUQME-QIFQdal @
ap

where T'(Q) is a matrix of first order boundary operators. Afs
we have alrea&y seen in Section 2 there are several
possibhilities for TH(QY . In the case of elastostatics any
T Q) connected with a pseudo-stress (k # ) could have been
used to formulate an elastostatic double layer potential. Let's
make clear at this point the procedure for constructing double
laver potentials.

We first look for a Heumznn-type boundary condition, o
for which the conclusion of Corollary 2.6 is walid. We then
apply %F to each column of the funﬁamental matrix, F{X-¥} , as

a function of Y . This defines a matrix of kernels denoted by
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{T'(QI(E-QY with Q € 3D . The corresponding integral
operator is called a double layer potential.

In the case of Stokes problem, we will show that for
functions, a0 , satisfying ATK) = vp(¥) , an appropriate

Neumann-type condition is

Q|
C'L‘.~L
Qf Qv
C’IG-L

- pn .

Having now chosen this boundary operator, we write down the

corresponding double layer potential

mE(X) = I {T’(Q)F(X—Q)}E(Q)de(Q) .
aD
£ arie
where (l’(Q)r(X—QJIie = Sjjq (H-Q) nJ(Q; + BQJ

(R-Q) n (@
We also introduce the single layer potential,
WK = SgR = J Y- gEQ do(Q
' aD

and obserwve that ASE = VPSE wvhere

.U

A
[
i

I ) 9,0 @ dot Q
an ‘

Lemma 2.2: Let 3g , S(a) be defined as abowve; with

g e 1%aD,do) . Then W = MP(B solves

"
(=]
Ll
]
!
w
]
=
]

Morsover

PRSI -3, . -3 . An?
Lal ﬁ( Ig) + ii 2 r ﬁ:’ﬂg ﬁ 1/2 =L iig H 2
T L7{aD,do) H ¢ D3 L™t ap,do)
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+
(b) (D) (P) = % % geP) + p.v. -I (T'(Q T P-Q 33 Q dot Q
ab

-, * -5, #* -
ter mevsy [ , + Jewsay |, < cligl ,
L“(aD,do) L(aD,d» L(aD,do
. n; (P)g (P) n, (P nJ(P) .
+ e _
(d) ax Sg)J) (P) + { 5 5 ¢ nlP),g(P) >}
+ (p.v. 8 rP-F(Q do(Q) , and
i
aD i
lim =— Sg(X)—P 4(X)n =+ L 3(P)+p.v.J LT(PY FCP-Q) 2G( Q) dol Q)
i a 2
X+ P, 8D
X € r'(p
where
97 ¢ y;
(TCPYT(P Q) p = n (P a7, (P-Q) - 5;; d (P-Q) n (P .

The proof of Lemma 3.2 follows, as the one in Lemma 2.3, from
{23. See [12) for the case of smooth domains. Thus, the proof
of Theorem 3.1 reduces to the invertibility in LQ(BD,da) of
the operator

I + B, where

[ R

Eg(P) = p.v (T (QTMP-Q3) J(Q dolq . As in section 2,

Jop

this in turn follows frow

Lemma 3.3: There exists a constant € , which depends only on

the Lipschitz constant of 08D , such that, for all
g e L2(6D,d0),

1 1
ez 1 - B G s clfiz 1o+ BN '
2 L%( 3D, do 2 than do)
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and

k1 o+ gD, s clicz 1 - B9,
AT(aDh,do? LY (aD,do}

We turn now to the proof of Lemma 3.3. The proof relies on two

integral identities.

Lemma 3.4: Let B be a constant vector in Rn ; and suppose

that Ad = vp , divu=® in D, and that d,p and their

derivatives are suitably small at o . Then,
£ au® B8u” J au” au®
h, n, . z5— zo— do = 2 = . h, = do -
JBD € ¢ OXJ 6XJ 3D an € axe
s
du
2 J p. n_h do
ap s CBXE
Lemma 3.35: Let B ’ 3 and p be as in Lemma 3.4. Then,

' r r
2 du gu  Jdu
h_ n, p do = ZJ h =—.pdo - 2] h do +
Jan £ ¢ ap * an ap © 3¥. dn

2J hr n_
aD
i

The proocfs of Lemmas 3.4 and 3.5 are simple applications of the

s r
u du

X. &Y.
d d

[+T]

do

7]

properties of a ; py and the diwvergence theorem.

An immediate consequence of Lemma 3.5 is
Corcllary 3.6: Let o ; p be as in Lemms 3.4 , D a Lipschit=z
domain. Themn, J p2 de = C I ‘v2'2 do , where € depends

ap an

only on the Lipschitz constant of 8D .



A consequence of Coro

-3

Corollary 3.7: Let u P

domain. Then,

_’
INGSRES
ap

2|2

where, by definition

Lemma 3.4 clearly

[ aedr?
aD

Arguing as in the proof of

Proof:

see that

J jv8]? do ¢ c(z f
A r

v
ap ¢

-3
u

Since is diwvergence fr

n

It is easy to check that §

tangential

vector field on
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llary 3.6 and Lemma 3.4 is

be as in Lemma 3.4, D a Lipschitz
= I I Iv, u" |2 do,
r ab
I .
T pn -

implies that

.
do ¢ C j 12512 do
ap .

Corollary 2.6, using Lemma 3.4, we
s
uP'Q doy + lj pn_h, %%— de | .
ap £
ee (i.e., div d = @
h au® - n_ h au”
s &€ OX € ¢ oX
4 s
or s fixed the above operator is a
us From this fact and Corollary

3.6 we have the bound,
172 172
J P n_ b g%—-dog < C[J |?3]2da¥ {z J !Vturfzdg
aD s e 8D ! r Jap
—*
Hence J ;v3{2 do is egquivalent to both I ]%E 2 45 and
ap ap Y

¥

z
r

j [vﬁrlzda and so the
aD

equi valent.

se last two guantities are themsel ves
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We can now prove Lemma 3.3.. In fact, if we set g = 53 ’
Lemma 3.3 is an immediate consequence of Corollary 3.7 and the

second part of (d) in Lemma 3.2.
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