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Remark. It can of course happen that · g0 = 0 (and L is a 

round sphere) even if g 1 . This is a problem in proving existence 

of the required genus 1 (or higher genus) minima which we show how to 

overcome in the next section. 

To give an outline of the proof, firs.t note that since ILk I = 1 

we may choose a subsequence such that the corresponding sequence 

of measures , given by lA n Lk,l for Borel sets 

A c lR3 , converges to a Borel measure ].1 of compact support. Thus 

for each fixed continuous function f in :JR3 , and (by (*)) the 

support of ].1 is compact. 

In spt ].1 (the support of ].1 ) we say is a bad point (relative 

to a preassigned number £ > 0 ) if 

lim 
p ""0 

where is the second fundamental form of Lk . Evidently, since 

J 1Akl 2 = F(Lk) - - 2g) , by the theorem, 
Lk l< 

is bounded and an obvious argument then shows that there are at most 

finitely many bad points for each £ > 0 • By taking a subsequence 
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again (denoted subsequently simply by Zk ) we can actually assume 

lim 
P +o 

for the, finitely many bad points I; P( E)). 

On the other hand for any I; E spt ~ ~ {1;1 , .•. , l;p} we can 

select P(s) > 0 such that for P s P(s) Lemma 4 is applicable to 

Zk in Bp(s) for infinitely many k . At the same time we have, 

since S < l6TI , that we can apply Lemma 3 to deduce that for large 
g 

enough k and for small enough e ( e fixed, independent of k, E, 

only one of the discs D ~k) , say D(k) 
' 

given by applying Lemma 4 
J 1 

can intersect the ball Bep<t;o) For E small enough (which we 

subsequently assume) it is then ~lear there is a plane containing 

and a set and such that, for 

there is a connected domain Ilk c Lk , with ea,ch component of 

circular and with outermost component = Lk n .dB (t;) , and a 
pk 

function uk with 

(1) (k) -1 I . ~ graph uk c D , p juk + Llp uk S cr:; 
(k) 

, D ~ graph ~ 

where is a union of discs -i c n(k) ~ r 
dk k ' rk = graph 

( ~ I Lk n .8B P (I;) ) , and where is the intersection of the disc 

!;), 

(k) k 
D1 with the truncated cylinder {x + A\Jk : A E (-1, 1) , xE ~nB (t;)} 

pk 
(Notice that automatically is a topol-

ogical disc by (1).) 
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Then we can apply Lemma 5 to obtain a biharmonic function wk 

such that 

Letting Ak be the second fundamental form of graph wk , we then in 

particular have 

On the other hand Ek is a minimizing sequence for the functional 

F1 (L:) = ~ l IAI 2 , and hence the c1 •1 composite surface 

Ek = ( L:k ~; (k)) U graph wk satisfies 

so that 

Thus we conclude that for infinitely many k 

where ok f 0 . Since pk was selected arbitrarily from the set Tk 

1 of Lebesgue measure :=:: 4 8 p we can arrange that 
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so that in fact we get, for p S 8p(~) arbitrary, and for infinitely 

many k (depending on p ) 

s c I lA 12 + 0 ' 
L: nB (~) ~B I (i;) k k 

k p p 2 

where '\ + 0 • 

We also need to make the remark that p(~) above merely had to 

be chosen so Jchat l I Ak j 2 S E for infinitely many k . In 
L:k n Bp(l;) (f,) 

particular this means that if t,0 E spt Jl ~ {1;1 , •.. , i;P} , then we may 

take 

that the following is established: 

If Tlfe let 

l{!(i;, p) 

then we have for all 

and all f, E spt Jl n 

1;0 E spt 11 ~ {t,1 , 

Bp(f,o)/ 2(t,0 ) that 

l{J(p/2, f,) :s YIP (p, 0 

and all 

for some fixed y E (0, l) , independent of p, t; . Thus 

(2) 

for some ~ E (0, l) and for all such p, t;, where p0 

Thus we see 

8p(t; )/2 . 
0 

Henceforth 1;0 E spt Jl ~ {t;1 , •.. , f,P} is fixed and we take 



202 

and let ~· ~· ~· pk' ~ be as in (1). Also let ~ denote an 

extension of ~ to all of ~ such that 

(3) 

Since I: diam d~ ~ cli\"p (by Lemma I.J.), Poincare's inequality gives 

with c independent of k • Applying this with f = Dj~ , we have 

nk E Lk so that 

Then, since by Lemma lJ. El~l ~ cli\"p2 , we have 

so finally, by (2), for suitable y > 0 

(I.J.) f !ni - n 12 ~ c p 2+y . 
B <O nL J< k 

9p/2 k 

Taking a subsequence so that the ~ converge to L , 

nk + n E L , and so that (by the Arzela-Ascoli theorem) graph ~ 
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converges in the Hausdorff distance sense to graph u , with u E Lip L , 

l k 
P- sup I u I + Lip u :S c E: 4 and 

(5) 

In measure-the01~etic terms (provided we take E: small enough 

to begin with) this means we have established that for all 

where ek is a signed measure with total mass 

limits in the measure-theoretic sense) 

2+y 
:S c p and (taking 

(6) 
2 H L (graph u n B (/;)) + 6 , 

p 

where total mass of 
2+y e :s c p and where u satisfies (5) (with 

n = nCp, s) E L ). 

In view of the arbitraryness of p , s it then follows from 

(5) and (6) that, if E: is small enough, firstly 

l the measure ~ has a unique muZtiplicity 1 tangent plane at each 

point s E spt ~ n Beoc~ }/4(1;0 ) with normal v(l;) , such that 
(7) . so 

lv(l;l)-v(i;2)J :scJi;l-s2JY 'sl' s2Sspt ~nB6p(I;0)/4(i;O)' 

and also that then 
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(8) 

wher•e I: is an embedded c1 'Y 12 surface expressible as graph w for 

some w E rf•Y/ 2 (U) , U an open subset of a plane containing l;o 

On the other hand, since J }~ ::: c p y and since l: 
:>.: nB (1;;) 
k p 

(with multiplicity 1) is the varifold limit of L:k in Bep(l;o)/ 8(1; 0) 

1: has generalized mean curvature H satisfying 

I H2 < c py , 
1: n B (i;) 

p 

for l; = x + w(x)v0 E graph w (v0 unit normal of 10 ) such that 

dist (x, oU) > 2p . Since w is a c1 weak solution of the mean 

curvature equation 

it then follows from a standard difference quotient argument (e.g. by 

the obvious modifications of the argument used in [GT, Theorem 8.8]) 

that and (by an additional hole-filling argument) 

( 9) 

for each X E u with dist {x, au) > 0 • 

We now show that w is actually c2 •a for some a> 0 . 

(Higher regularity, and real-analyticity, of w is standard (see e.g. 

[MCB]) once we get as far as c2 'a .) To establish c2 •a regularity 

on u we need the following lemma: 
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Lei11Jla 6. Let s > 0 • n = {x E JR2 : I X I < 1} • and let 

u E w2 • 2(n) n c1 'a(Q) satisfy 

fnn{x 
ln2ul 2 ::: Sp2a. 

lx- ~~ < p} 

foP eaah ~ E n and p < 1 • Suppose fUT'theT' that u is a weak 

solution of the 4thoT'deT' quasilineaT' equation 

'-'he~ aijrs ~a fj t' _, th -1'. 77 • w L-~ ~· sa ~SJY e JOvvOW~ng: 

(i) 

foP eaah ~ E n and p < 1 • 

(ii) 
__ ijrs( a x, ~. p) is a Lipsahitz 

funation on JR2 x lR x JR2 with Lipsahitz aonstant S and with 

aijrs~. ~- ::: s-1 f ~~ . laijrsl ::: s . 
~r JS i,r=l ~r 

Then u E w3,2W) 
ioc and there are c = c(S) and a' a.'(l3) > 0 

suah that 

J{x 
ln3ul 2 ::: c p 2a.' 

lx-~l<p} 

foP eaah ~ E Q with dist (~, an)> 2p • (So u E c2 •a' (Q) .) 

For the proof of this lemma we refer to [SL]. Here we simply point 

out that for any ~ E n we can write the equation in the form 
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where 
". "2 

aJ.Jrs)~ 

0 <l:x?Clxr 
u(i;) , Du(~)) 

One then uses difference quotients and the technical lemma 5.4.2 of 

[MCB] to establish the required result locally near i; . 

Thus we have sketched the proof of real analyticity of ~=spt ~ 

away from the finitely many bad points 1;1 , ..• , l;p • Since (by lower 

semicontinuity) f~1AI 2 < 00 , one can (essentially by direct modific-

ations of the techniques sketched above) establish that 

c for p E ( 0, 1) and ·that L: is representable as a 

near Then Lemma 6 can again be applied to give c2 'a regularity 

near E;. 
J 

(See [SL] for details.) 

Finally the fact that I:k converges to I: in the Hausdo:r>ff 

distance sense is an easy consequence of the fact (from identity ('"'"'') 

of §1) that each limit point E; of a sequence l;k E .Ek vrhich is not 

in spt jl must have J H2 -+ co for each p > 0 ; thus there 
B(~)n.Ek 

p k 

can be no such points E; because f(~k) is bounded. 
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§4. Proof of the main fixed genus result in JR3 . 

Suppose first g = l and let I:k be a sequence of embedded tori 

with Assume we normalize (as in §3) so that 0 E L: 
k 

and 

FO:k) + 131 

IL:kl = 1 Then by Theorem 1 we have a subsequence (still denoted 

I:k) and a real analytic compact embedded surface L: of genus S 1 

which minimizes F relative to all surfaces I: of the same genus as 

L: • If L: is a sphere (genus 0) then it must be a round sphere 

(because only round spheres minimize F) • Thus we are left with 

the alternatives 

I: is genus l with F(L:) as required 

(1) 

is a round sphere. 

Naturally the second alternative can occur; what we want to 

show is that we can make an appropriate inversion and rescaling to give 

a new minimizing sequence I:k of tori for which the limit surface 

Z definitely satisfies the first alternative in (1). 

As a matter of fact we shall show quite generally that if L:k is 

any genus g minimizing sequence in the sense of §3 with g ~ 1 

then there is a new genus g minimizing sequence zk converging to 

a minimizing surface of genus ~ 1 . We briefly sketch how such ~k 

is constructed. First, we may assume that the limit surface I: of 

the original sequence is a round spher'e (otherwise it has genus ::0: 1 

and we have nothing further to prove). Since the convergence is in 

the Hausdorff distance sense, for each k we can find a Jordan curve 

with not null-homotopic in IR3 v d 
~ "'k , an 
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~ + 0 , where 

yk homotopic to yk in :n\3"' E } 
k 

In view of the definition of ~ one readily checks that there must 

be a ball B(k) = B (~k) with B(k) n E !1l and with 3B(k) n E 
(lk k 

containing at least two points pk' qk with pk not in the open 

hemisphere of 3B(k) with pole qk • Now let ~k be the surface 

obtained as the image of Ek by first making a translation taking 

~k to 0 , then making an inversion in 

-1 
X 1-+~ X • 

B (0) , then scaling 
~ 

k 

Then ~k c ii1 (o) and ~ n 3B1(o) contains at least two points 

pk, qk with !Pk - qk I ::::: 12 . Furthermore since diam Ek ::::: c (indep-

endent of k ) by Lemma 1, and since (lk + 0 ' it follows that there 

On the other hand if ~ is 

the limit surface of (a subsequence of) ~k , then (using the Hausdorff 

distance sense convergence of Ek to ~ ) we have that E contains 

0 as well as two distinct points p, q E 3B1 (o) , and we also have 

r c Bl(O) • Thus r is not a round sphere, hence (since it minimizes 

F relative to surfaces of genus = genus E , and since only the round 

spheres minimize F relative to genus 0 surfaces) we conclude 

genus Z =:: 1 as required. 

In view of the alternatives (1) this completes)_,the existence proof 

for genus 1 • For genus g =:: 2 the required result is an easy conse-

quence of the above general result, together with the cutting and 

pasting procedure used to prove (3) of the introduction. 
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§5" Existence of Willmore Immersions in Riemannian Manifolds. 

Here we briefly discuss existence results for the Willmore func-

tional in case the ambient manifold is a general complete Riemannian 

manifold of dimension n ~ 3 (instead of 
n 

JR ) • Since we have no 

analogue of (2) of the introduction or of Lemma 3, it is necessary 

to work with immersed rather than embedded surfaces in order to get 

a good natural existence theory. 

First we need to set up some terminology, principally "che 

following definitions, in which 

f M -+ N 

is an immersion from a surface M E M ; here we let M denote the 

set of compact 2-dimensional manifolds without boundary, and for 

technical reasons we do not require the elements M E M to be connected" 

Definition l Given f : M -+ N as above, [f] will denote the set of 

immersions f : M ->- N which are smoothly homotopic to f 

Thus f E [f] means that f is an immersion M + N and that 

ther·e is a 1-parameter family of maps {fi:} t E [O, l] with 

(i) 

(ii) the map (x, t) E M x [0, 1] ~-+f. (x) E N is smooth. 
T 
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Definition 2 Given f : 'M -+- N as abo.ve, ffi is the set of smooth 

immersions f of some M ~ B into N , where M E M and B c M 

-is a finite (or empty) set of points, such that f extends to give 

a Cl,a branched immersion of all of M into N for some a > 0 , 

and such that there exists a sequence ~k of diffeomorphisms of 

M ~ B onto open subsets Uk of M , and a sequence fk E [f] with 

(i) locally in the sense on 

(ii) 

Of course M may have more components and fewer handles than M 

because if ~ denotes M equipped with the metric pulled back from 

N by fk , then (i), (ii) mean that ~ may have necks and handles 

which shrink to zero as k -+- oo • 

Remark. By Cl,a branched immersion f M -+- N we mean that f is 

of class c1 •a , there are only finitely many points y such that 

the Jacobian of f vanishes, and, at such points y , in suitable 

local coordinates for M and N , f has a classical branch point of 

some order m::: 1 Thus there is a plane L through f(y) in N 

(identified with JR2X {o} c JRn via local coordinates for N such 

that, with M locally identified with JR2 and y corresponding to 

f(rcos9 , rsin9) (rcosm9 , rsinm9 , lji(rcos9 , rsin9)) 

where 1jJ JR2 -+- JR'i'!- 2 satisfies 

0 ' 
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for Jxl I X I < 1 • x, X E IR2 

Next we introduce the class of functionals to be considered here; 

for smooth compact oriented surfaces E (isometrically) embedded in 

N (possibly with dL # 0 ) we consider functionals of the form 

w·here A is the second fundamental form of L: , <ll is smooth, T is 

a smooth orienting unit 2-vector for L: (thus at each point x E 2: , 

for some orthonormal basis of TECTN), 
l{ X 

F extends naturally to smooth immersions f M + N (where 

M EM ). For such an immersion 

F(f) 
l ( 

~ Jrangef 
I _1 <IACx)J 2 + <ll(y, T(x)))dH2(y) 

xEf (y) . 

where IA(x)l 2 d ( ) an T x are defined for x E M as the square 

length of second fundamental form and orien·ting 2-vector at y f(x) 

of the embedded submanifold obtained as the image under f of a small 

neighbourhood of x E M . 

Subject to these agreements, we have the following theorem. 
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Theorem 2. Let M E M , f : M -+- N be a smooth imme:Psion, 

a. : = inff E [flcf) , and suppose the:Pe is a sequenae fk E [f] UJith 
co 

F(fk) -+-a. , with lim sup area (fk) <co, with U range fk aontained 
k -+- co k=l 

in a aompaat subset of N , and UJith the sum of diamete:Ps of the aomp-

onents of range fk f 0 as k -+- co • 

Then the:Pe is f E ffi, Pelated to fk via diffeomo1'phisms <Pk 

as in Definition 2, with 

and f E [f] if and only if equality holds he:Pe. In any aase 

f : M ~ B -+- N minimizes F :Pelative to all imme:Psions g : M ~ B -+- N 

whiah a:Pe homotopia to f via smooth homotopies whiah fix a neighboUT'-

hood of the finite set B 

Remarks. (1) Notice the assumption lim sup area (fk) < co is autom­

atically satisfied if ~ is everywhere positive. If N is compact, 

if F is the exact Willmore functional (as defined in [WJ]), and if 

N is locally conformally flat and has positive sectional curvature, 

then we can always replace fk by a new sequence fk E [f] such that 

all assumptions on fk are automatically satisfied (as one easily 

checks). 

(2) The theorem naturally extends to more general classes of 

functionals; in place of F we could consider for example functionals 

of the form G(E) = JE~(x, T, A)dH2 , where A is the second fundam­

ental form of E and where ~ is smooth with appropriate convex and 

"essentially quadratic" dependence on A . 
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( 3) It may be ·that f is null homotopic (e.g. in case 

N = 1R3 we shmved in §4 that there is an embedding of the torus 

which minimizes the vlillmore functional relative to all branched 

immersions of the torus). 

(4) Trivially we can extend the above result to branched 

immersions of non-orientable surfaces, provided @(x, T) = ~(x, -T) 

(x, T) EN x A2(N) , by using oriented double covers as follows: If 

M is non-orientable and compact and if f : M .;.. N is a branched 

immersion, we let M be the oriented double cover of M f the 

branched immersion: M + N corresponding to f F(f) l -
• and let = 2nf) 

Then we apply Theorem 2 to f in order to deduce the appropriate 

result about f • 

(5) One can say more about the regularity of f near the 

points of B ; see [SL]. 

To prove Theorem 2 we modify the techniques of the previous 

sections to work in the setting of immersions into N . In particular 

ther•e are analogues of Lemmas 2 and 4 to such a setting, in addition 

to local analogues of iden·tities like (1<1'), (>'dd:) of §l. One begins 

by taking a minimizing sequence f as in the statement of the theorem, 
k 

and by defining the associated Borel measures )Jk on N according to 

wher•e ek is the multiplicity function for 

points in -1 H2 the set fk (y)) ' 
and where is 2-dimensional Hausdorff 

meast>re on N 
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We select a subsequence (still denoted _fk ) so that ~ has a 

limit measure ]..l The principal aim (cf. §1-4 above) is to prove 

that spt ]..l is the image of a branched immersion~ As.before, for a 

given E > 0 we define ~ E spt ]..l to be a bad point if (with a 

notation similar to that in (*) above) 

lim lim inf J L _1 I ~{x)1 2 dH2(y) >E •. 
p.fO k+oo Bp(Onrangefk x E.fk (y) 

Since J L _1 IAk(x) 12 dH2(y) is bounded, it is easy to 
range fk x E fk (y) 

prove that there are at most finitely many bad points ~1 , ... , ~P, 

P = P(E) • 

By using modifications of Lemma 2 and Lemma 4 to the immersed 

setting, and using again biharmonic comparisons as in §2, it is quite 

easy to prove that, near each point ~ E spt ]..l ~ {~1 , •.. ,~P} , the 

measure ]..l is the area measure of a finite union of smooth embedded 

discs. To handle the bad points ~l' .•• , ~P it is necessary to use 

the following lemma. For further details of the proof of Theorem 2 

(and of the proof of the following lemma), we refer again to [SL]. 

Lemma 7. Suppose f : D ~ {O} + lRn is a smooth irronersion, where D 

is the disc {x E lR2 : I xI ::: 1} and where lRn is equipped with a 

smooth metric g • Suppose that f(f) < oo and area (f) < oo, that 

f extends continuously to D , and that f minimizes the functional 

F relative to aU irronersions f : D ~ {o} + lRn such that f :: f in 

some neighbourhood of an u {o} • 

Then we can reparametrize F so that it extends as a c1 •a 
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br•a:nched immersion of' D into JRn for some a > 0 ; that is, there 

is a diffeomorphism cp of D ~ {o} onto D ~ {o} such that 

lim cp(x) = o and such that f o cp extends to be a c1 'a branched 
x-+0 
immersion of D into JRn • In case the multiplicity of' the branch 

point is l, we can select cp so that f o cp extends to a c1 •a 

embedding" 

In the proof of Lemma 7 one shows that it is possible to select 

such that p . - lim f(x) rt f(<JD ) Vp < P0 
x-+0 p 

and such that the 

varifold f~ID J has multiplicity m tangent planes at p for some 
n- P 

positive integer m independent of p , and that then the theorem 

holds with f 0 cp having branch point of order m (and no branch 

point if m 1 ). 
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