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THE TOPOLOGY OF ASYMPTOTICALLY EUCLIDEAN 

STATIC PERFECT FLUID SPACE-TIME 

A.K.M. Masood-ul~Alam 

1 . INTRODUCTION 

In this paper we prove that a geodesically complete, asymptotically 

Euclidean, static perfect fluid space-time having a connected fluid region 

and satisfying the time-like convergence condition is diffeomorphic to 

R3 x R • It is believed that such a space-time would be spherically 

symmetric at least for physically reasonable conditions on the density 

function p and the pressure function p The above assertion (that 

the space-time is 'diffeomorphic to R3 x R) has been claimed in [1] 

provided the Poincare conjecture is valid. In fact a theorem due to 

Gannon [2] says that such a space-time is diffeomorphic to N x IR where 

N is a simply connected complete 3-manifold. The asymptotic conditions 

then imply that N has the same homotopy as R3 ([1]). Thus Gannon's 

result reduced the question to proving the non-existence of fake 3-cells 

in N • In particular it would give the full result if the 3 dimensional 

Poincare conjecture were known to be true. 

2. STATIC PERFECT FLUID SPACE-TIME 

By a static perfect fluid spacetime we mean a geodesically complete 

space-time (M, ~g) such that: 

(i) M is a c""' manifold diffeomorphic to N x R where for each 

t E R , Nt = N x {t} is a spacelike three-manifold. 
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(ii) The Lorentz metric 4g can be written as 

(2.1) 

where v is a positive c1,1 function and g is a tensor such that g 

restricted to N is a Riemannian metric on N ' and v and g are 

independent of t We assume that 4g is at least c1,1 

(iii) (NI, 4g) satisfies Einstein's equa·tion 

(2. 2) 1 4 4 
Ric("g)AB- 2Scalar( g) gAB 

where p and p are bounded measurable functions and is a unit 

timelike vector field on M . 

By virtue of the Gauss-Codazzi embedding equations for the 

Lorentzian metric 4g , (2.2) decomposes into 

(2. 3) Ric(g)aS 

and 

(2. 4) L\.V = 41TV(p+3p) on N , 

where denotes the covariant derivative with respect to g and L\. 

denotes the Laplacian with respect to g ([3]). It is clear that p 

and p are independent of t It follows from (2.2) that if "'g satis-

fies the timelike convergence condition, namely, 

(2.5) 

for all tirnelike vectors W , then p + 3p ~ 0 . By continuity (2.5) 

implies the null convergence condition, namely, Ric("'g) (K, K) ~ 0 for 

all null vectors K By virtue of (2.2) the latter condition is satisfied 

if a~d only if p + p ~ 0 



152 

We also assume that there exists an open connected region Q. C N 

such that ess inf (Pip) > 0 for all compact K C Q and p = p = 0 in 
K 

N ~ Q . The functions P and p are respectively called the density and 

the pressure of the fluid. We assume that ~g satisfies the timelike 

convergence condi·tion so that by (2.4), 1:1V is non-negative. However 

when Q. is unbounded, the null convergence condition will be sufficient 

for our purpose. We say that (M, "g) is "asymptotically Euclidean" if 

(N, g) satisfies the following condition: There exists an open connected 

set such that is compact and is diffeomorphic to 

3 -R ~ B1 where B1 is the closed unit ball centered at the origin and, 

with respect to the standard co-·ordinate system in we have, on 

(2 .6) 
3g 

( I-A and ~ = O(J~j- 1-A) gas = oas + o lx ) a:xP ~ 

for some A E (0, l) , where Jxj = [ I (xa) 2)~ + oo • 

C!=l 

3. THE MAIN RESULT 

From ·the above condition it follows that there exists a smooth 

sphere S in N ~ Q given by 
r 

jxj = r in the asymptotic coordinate 

system such that the mean curvature of S in 
r 

(N, g) with respect ·to 

the outward normal is strictly positive. Now by Gannon's Theorem 

(Proposition 1.2 in [2]) N is simply connected. Let N1 be the simply 

connected compact submanifo1d of N with boundary 

asymptotic co-ordinate system 

a"N1 = sr <that is, in 

). Then a fundamental 

existence theorem due to Meeks, Simon and Yau implies, 

THEOREM 1. [4]" Either N1 is diffeomorphic to a closed unit ball in 

R 3 or there exists a c 2 ,a , a E (O, 1) embedded area minimizing 

minimal sphere S in the interior N1 of N 1 · 
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We apply the above theorem to obtain, 

THEORE~~ 2. Either N is diffeomorphic to R 3 or there exists a c2 ,a 

a E (0, 1), embedded totaUy geodesic spher•e S in N ~ Q. • 

Proof. The proof is essentially a straightforward modification of a 

result due to Frankel and Galloway (corollary to Theorem l in [ 5] l . 'rhe 

area minimizing minimal sphere S of Theorem l satisfies the stability 

inequality 

where n is the unit normal vector field on S . (Here we have assumed 

that the metric is C2 in a neighbourhood of S . In general, since the 

Ricci curvature is only defined almost everywhere we have to use an 

approximation argument. For details see[6].) We put ~ = V and use 

(2.3), (2.4) and LW=!13 V+V;af3nanS togetJ}!A! 2 +81T(p+pl)~2 so 
Hence the theorem follmvs. o 

Now S separates N ~ and N ~ S has exactly two closed component.s, 

say N1 and N2 having boundary S (see Lemma 4.4 and Theorem 4.6 on 

page 107 in [7]). It follows from the asymptotic condition that exactly 

one of the componen·ts, say N 1 , is bounded. Since Q. is connected we 

may have either 

Case I: Q. C N2 or Case II: Q. c J§ 
l 

To rule out these cases we first deduce some formulae. 

l-EMMA 3. Let S be a (c2) t t ll d . b dd d h . (N l o a y geo etnc em e e sp ere -z-n , g 

such that S c N ~ Q. • We suppose n is a continuous unit norrflal forrfl 
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on S , Then 

(3' l) (i) g (n, llV) ~ m' , a constant on S ; 

r jv svl2 
J --- - 4Tr , where 
s v 2 -

v8 is the gradient operator on (2. 3) (ii) 

S cvith respect to the metric induced from g ; 

and provided V < l , 

(iii) for a sequence Tl of smooth spheres in N ~ Q converging 

to S in the sense 

(3.3) 

h 1 _12 - -~ w ere w = 17 V , n = n ( "l is the smooth unit normal foY'/71 

on T l consistent in direction cui th n , < , denotes 

induced inner product on Tl and c, a are arbitrary 

constants to be specified later. 

Proofo (Outline only. Details can be .:found in [6]). (3.1) follows by 

virtue of (2.3) and Codazzi's equation. (3.2) follows from (2.3), (2.4)i 

contracted Gauss' equation and Gauss-Bonnet Theorem. For c2 metric 

(3.3) follows from (3.2) and g(n, llW) = -m'RV on S where w = jvvj 2 

and R is the scalar curvature of S , For c1 ' 1 metric we use 

approximation. o 

Lemma 3 immediately rules out Case I: because on N1 , ~V = 0 giving 

0 on S • Thus I j11Vj 2 

Nl 
g (n, llV) 0 which contradicts (3,2). If 

Case II occurs, then Q is compact. Hence using elliptic theory we may 

take 

(3. 4) as lxj-+oo 
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(I 1-1-13) an (I 1-2-13) 2 where . m >. 0 , n = 0 x , T = 0 3: and the L average 

a2 ax -3-13 
of n over B I I (0} ~ Bl I (0} is o(lxl ) for some 13 E (0, 1} • 

axcra~T 2 X X 

Now we shall use Robinson's divergence form inequality ([8]} on 

N ~ Q, viz., 

(3.5} (FV-lw;ct + GwV 1ct) :::: 0 

;a 

where 

(3.6} 

and 

(3.7} G = -2a(l- 0)3 + 6(av2 + a)!(l- 0) 4 , 

a and a being constants such that F > 0 on N~ Q. 

Integrating (3.5} over N2 , and using (3.1}, (3.3} and 

m' = -4nm/ISI we get 

Now using w = IV8VI 2 + m'2 and choosing (a,a} 

(a,a} = (1, 0} we get respectively, 

(3.8} 

and 

(3.9} 

(-1, 1} ,and 

Finally' using l-90 < 1 and (3.2} in (3.8} we get lSI > 16nm2 

(1-0) 3 



whereas using 
l-4!? 
(l-V2)4 

< 1 
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in (3.9) we get 

also does not occur. Hence we have proved, 

Thus Case II 

THEOREM 4. A geodesiaally complete asymptotically Euclidean static perfect 

fluid space-time having connected fluid region and satisfYing the timelike 

convergence condition is diffeomorphic to 1R3 x IR , 
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