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THE TOPOLOGY OF ASYMPTOTICALLY EUCLIDEAN
STATIC PERFECT FLUID SPACE-TIME

A.K.M. Masood-ul=Alam

1. INTRODUCTION

In this paper we prove that a geodesically complete, asymptotically
Euclidean, static perfect fluid space—fime having a connected fluid region
and satisfying the time-like convergence condition is diffeomorphic to
R3 x R. It is believed that such a space-time would be séherically
symmetric at least for physically reasonable conditions on the density
function p and the pressure function p . The above assertion (that ‘
the space-time is ‘diffeomorphic to R3 x R) hés been claimed in [1]
provided the Poincaré conjecture is valid. 1In fact a theorem due to
Gannon [2] says that such a space-time is diffeomorphic to N X IR where
N is a simply connected complete 3-manifold. The asymptotic conditions
then imply that N has the same homotopy as R3 ([11). Thus Gannon's
result reduced the question to proving the non-existence of fake 3;cells

in N . 1In particular it would give the full result if the 3 dimensional

Poincaré conjecture were known to be true.

2.  STATIC PERFECT FLUID SPACE-TIME

By a static perfect fluid spacetime we mean a geodesically complete

space-time (M, “g) such that:

00
(i) M is a C manifold diffeomorphic to N X R where for each

te€ R , N, =0Nx {t} is a spacelike three-manifold.

t
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(ii) The Lorentz metric “g can be written as

(2.1) ' *g = —Vz(dt ® dt) + g

: ‘s 1,1 . .
where V is a positive ('~ function and g is a tensor such that g
restricted to N is a Riemannian metricon N , and V and g are
. . 1,1
independent of ¢ . We assume that “g is at least (°'7 .
(iii) (M, %g) satisfies Einstein's equation

R 1 [ _ y
(2.2) Ric( g)AB -3 Scalar('g) 94 = 8ﬂ((p+p)uAuB +p gAB)

where p and p are bounded measurable functions and Uy is a unit

timelike vector field on M .

By virtue of the Gauss-Codazzi embedding equations for the

Lorentzian metric “g , (2.2) decomposes into

(2.3) Ric(g),, = V"lv;(xB + 4m(p-p)g,,

and

(2.4) AV = 4nV(p+3p) on N ,

where ; denotes the covariant derivative with respect to g and A

denotes the Laplacian with respect to g ([3]). It is clear that p’
and p are independent of ¢ . It follows from (2.2) that if “g . satis-

fies the timelike convergence condition, namely,
(2.5) Ric(*g) (W, W) = 0

for all timelike vectors W , then p + 3p =2 0 . By continuity (2.5)
implies the null convergence condition, namely, Ric(“g)(K, Ky =20 for
all null vectors K . By virtue of (2.2) the latter condition is satisfied

if and only if p+p =20 .
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We also assume that there exists an open connected region Q CJ
such that ess i]r{uf (p+p) > 0 for all compact K C Q and p = p =0 in
N~ E . The functions P and p are respectively called the density and
the pressure of the fluid. We assume that 'g satisfies the timeélike
convergence condition so that by (2.4), AV is non-negative. However
when ¢ is unbounded, the null convergence condition will be sufficient
for our purpose. We say that (¥, “g) is "asymptotically Euclidean" if
(v, g) satisfies the following condition: There exists an open connected
set N0 Cy such that NO is compact and N ~ TV.O is diffeomorphic to
R3~ El where El is the closed unit ball centered at the origin and,
with respect to the standard co-ordinate system in |R3 , we have, on
m~ Ny

(2.6)

ag
-\ -1~}
gOLB = 60”3 * 0(‘“" ) and —Bf(-jﬁ: Ole )

3 5
for some A € (0, 1) , where |x| = [E (xa)Z] e
O=1

3.  THE MAIN RESULT

From the above condition it follows that there exists a smooth
sphere Sr in N N'Q given by |.'L'l = r in the asymptotic .coordinate
system such that the mean curvature of Sr* in (N, g) with respect to
the outward normal is strictly positive. Now by Gannon's Theorem
(Proposition 1.2 in [2]) N is simply connected. Let Wl be the simply
connected compact submanifold of N with boundary B-ﬁl = Sr (that is, in

. . o 3 &7
asymptotic co-ordinate system N ~ Nl = R NBl,, (0) ). Then a fundamental

existence theorem due to Meeks, Simon and Yau implies,

THEOREM 1. [47]. Either Wl is diffeomorphic to a closed unit ball in

3 . 2,00 e e .
R™  or there exists a ¢~ , a€ (0, 1) , embedded area minimizing

minimal sphere S in the interior N, of Wl .
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We apply the above theorem to obtain,

THEOREM 2. PFEither N <s diffeomorphic to R} or there exists a *'®

o € (0, 1), embedded totally geodesic sphere S in N~ Q .

Proof. The proof is essentially a straightforward modification of a
result due to Frankel and Galloway (corollary to Theorem 1 in [5]). The

area minimizing minimal sphere S of Theorem 1 satisfies the stability

inequality
2 _ 2 2 1
J (14]° + ric,m)E lev.SEI , E€CT(S)
S
where 7 is the unit normal vector field on S . (Here we have assumed
that the metric is C2 in a neighbourhood of S . 1In general, since the

Ricci curvature is only defined almost everywhere we have to use an
approximation argument. For details see[g].) We put & =V and use

(2.3), (2.4) and AV = AV +V 0P o getf (1412 + sm(psp))E® < 0 .
; 5

B

Hence the theorem follows. a

Now S separates Ny and N ~ S has exactly two closed components,
say Nl and N2 having boundary S (see Lemma 4.4 and Theorem 4.6 on
page 107 in [7]). It follows from the asymptotic condition that exactly
one of the components, say Nl , is bounded. Since @ is connected we

may have either
Case I: QC ﬁé or Case II: (C ﬁi .
To rule out these cases we first deduce some formulae.

LEMMA 3. Let S be a (02) totally geodesic embedded sphere in (N, g)

such that S C N~ Q . We suppose n is a continuous unit normal form
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on S . Then

(3.1) (2) g, VW) =m' , a constant on S ;
2

( |V5Vl A 3

——m = 4T, where V_, 18 the gradient operator on

(2.3)  (ii)
s v o

S with respect to the metric induced from g ;

and provided V < 1,

(iii) for a sequence T, " of smooth spheres in N ~ ( converging

to S 1in the 02 sense

e+ a ~ eVa :
(3.3) limJ =g @, W) = J am'{v {————) , VLV
el V(1-77)° s s v(-v)3 8 )
where w = |VV|2 , #=7%(l) is the smooth unit normal form
on T, consistent in dirvection with n , { , ) denotes

A

induced inner product on T and ¢, a are arbitrary

constants to be specified later.

Proof. (Outline only. Details can be found in [6]). (3.1) follows by
virtue of (2.3) and Codazzi's equation. (3.2) follows from (2.3), (2.4),
contracted Gauss' equation and Gauss-Bonnet Theorem. For C2 metric
(3.3) follows from (3.2) and ¢g(n, Vw) = -m'RV on S where w = IVV|2
and R is the scalar curvature of S . For Cl’l metric we use

approximation. o

Lemma 3 immediately rules out Case I: because on Nl , AV = 0 giving
2
gn, VV) = 0 on S . Thus j |VV1 = 0 which contradicts (3.2). If
) N
1
Case II occurs, then § is compact. Hence using elliptic theory we may

take

(3.4) V=l-|—’:;r+n_as |z| »
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where - m > 0 , N = 0(|xl_l_B) , _QY_]E_ = 0(|x|_2_6) and the L2 average
dx

2
of =30 over Byy| © ~ By @ s 0({x!‘3'8) for some B € (0, 1) .

Bxc zmT

Now we shall use Robinson's divergence form inequality ([8]) on

N~Q, viz.,

(3.5) W% + av'® =0
o4
where
(3.6) F= eV’ +a)/{r V)
and
(3.7) ¢ =-2(1-7)% +6(c +a)/(r-V)*,

¢ and a being constants such that F >0 on N~ Q .

Integrating (3.5) over ]V2 , and using (3.1), (3.3) and

m' = -4mm/|S| we get

J [ - [ cV2+aJ , VSV> L2 6(cV2+aju7—l'[ > (cra) |5|/an?

3 2,4
v 1-77 7?2 (-
. 2 22 .
Now using w = IVSV| +m and choosing (c¢,a) = (=1, 1) .and
(e,a) = (1, 0) we get respectively,

1-97° 2 2
(3.8) Js 2;2[-(1%2;-3 leV| > gn 2Js _(_l___lVEF

> 8m'2|S|

and
( -
(3.9) J [ 18V24 |V5V|2 ——L——]-l 472:[> 5| /8m*
sL(-r%)
Finally, using 197" < 1 and (3.2) in (3.8) we get |S| > 16mm”

(1-7%)°
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1-47

(-v)*

also does not occur. Hence we have proved,

whereas using < 1 in (3.9) we get |§] < 16mm® . Thus Case II

THEOREM 4. A geodesically complete asymptotically Euclidean static perfect
Fluid space-time having comnected fluid region and satisfying the timelike

convergence condition is diffeomorphic to RPx R .
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