DEFORMING RIEMANNIAN METRICS ON THE 2-SPHERE

P.R.A. Leviton and J.H. Rubinstein

In 1982, Hamilton [Ha] proved the following:

Theorem Let X be a compact 3-dimensional Riemannian manifold of positive Ricci curvature. The evolution equation $\frac{\partial}{\partial t} g_{i j}=\frac{2}{3} r g_{i j}-2 R_{i j}$, where $r=\int R d \mu_{X} / \int_{X} d \mu_{x}$, has a unique solution for all t and it converges as $t \rightarrow \infty$ to a metric of constant positive curvature. Furthermore, any isometries of X are preserved as the metric evolves.

The aim of this paper is to prove a 2 -dimensional version of this theorem. We have also obtained analogous results for Kahler and Hermitian manifolds by applying the same method with Huisken's higher dimensional version of Hamilton's theorem [Hu].

We start with a compact, oriented Riemannian surface of positive Gaussian curvature (already this is enough to show that M is diffeomorphic to S^{2} by the Gauss-Bonnet theorem and the classification of compact surfaces). We then show that there is a principal S^{1} bundle over M with a metric of positive Ricci curvature such that the projection map is a Riemannian submersion. We allow the metric on this bundle to evolve to a metric of constant curvature; the metric on M then evolves to a metric of constant curvature also.

Let P be a principal S^{1} bundle over M and let π be the projection map. Let ω be the connection form and Ω the curvature form of a connection in the bundle P. Ω is a horizontal, invariant $2-$ form (because S^{1} is abelian) so $\Omega=\pi^{*}(\gamma)$ for some $2-$ form $\gamma=g d \mu_{M}$ on M where $d \mu_{M}$ is the volume form on M and g is a smooth function on M.

Let f be a smooth positive function on M. As in [K], define an invariant metric on P via $\langle u, v\rangle_{P}=\left\langle\pi_{*} u, \pi_{*} v\right\rangle_{M}+\pi^{*}\left(f^{2}\right) \omega(u) \omega(v)$. Note that any invariant metric on P may be constructed in this way; in fact we can recover the connection by defining the horizontal space to be the orthogonal complement of the fundamental vector field V, the metric on M via $\langle u, v\rangle_{M}=\left\langle u^{*}, v^{*}\right\rangle_{p}$ where u^{*} and v^{*} are the horizontal lifts, with respect to the connection just defined, of u and v respectively and f via $f^{2}=\langle V, V\rangle_{p}$.

Let $p \in P, m=\pi(p)$ and let X_{1}, X_{2} be an orthonormal basis for $T_{m}(M)$. Let Y_{1} and Y_{2} be the horizontal lifts at p of X_{1} and X_{2} respectively and let $Y_{0}=\frac{1}{f} V$, so that Y_{0}, Y_{1}, Y_{2} is an orthonormal basis for $T_{p}(P)$.

A straightforward but lengthy calculation shows that the Ricci curvature of P with respect to the basis Y_{0}, Y_{1}, Y_{2} is given by:

$$
\frac{1}{2} \pi^{*}\left[\begin{array}{lrr}
\mathrm{f}^{2} \mathrm{~g}^{2}-\frac{2}{\mathrm{f}} \Delta \mathrm{f} & \mathrm{fg}_{; 2}+3 \mathrm{f}_{; 2} \mathrm{~g} & -\mathrm{fg}_{; 1}-3 \mathrm{f}_{; 1 \mathrm{l}}^{\mathrm{g}} \\
\mathrm{fg} ; 2+3 \mathrm{f} ; 2^{\mathrm{g}} & 2 \mathrm{~K}-\mathrm{f}^{2} \mathrm{~g}^{2}-\frac{2}{\mathrm{f}} \mathrm{f} ; 11 & -\frac{2}{\mathrm{f}} \mathrm{f} ; 12 \\
-\mathrm{fg} ; 1-3 \mathrm{f} ; 1^{\mathrm{g}} & -\frac{2}{f} \mathrm{f} ; 21 & 2 \mathrm{~K}-\mathrm{f}^{2} \mathrm{~g}^{2}-\frac{2}{\mathrm{f}} \mathrm{f} ; 22
\end{array}\right]
$$

where ; denotes covariant differentiation in M with respect to the basis X_{1}, X_{2} and K denotes the Gaussian curvature of M.

For any harmonic 2 -form γ on M which represents an element of $H^{2}(M ; Z)$, there exists a principal S^{1} bundle over M and a connection in this bundle such that the curvature form is $\pi^{*}(\gamma)$ (see [K], proposition 9). Thus there exists a principal S^{1} bundle P over M with g a positive constant function chosen so that $\gamma=\operatorname{gd} \mu_{M} \varepsilon H^{2}(M ; z)$.

Let δ be a lower bound for the Gaussian curvature, so $0<\delta \leqslant \mathrm{K}$.
Choose f to be a constant function such that $0<\mathrm{f}<\frac{1}{g} \sqrt{ } 2 \delta$, so that $0<f^{2} g^{2}<2 \delta \leqslant 2 K$. With this choice the Ricci curvature of P with respect to Y_{0}, Y_{1}, Y_{2} is given by:

$$
\frac{1}{2} \pi^{*}\left[\begin{array}{ccc}
f^{2} g^{2} & 0 & 0 \\
0 & 2 K-f^{2} g^{2} & 0 \\
0 & 0 & 2 K-f^{2} g^{2}
\end{array}\right]
$$

which is obviously positive definite.

We now let the metric on P evolve, as in Hamilton's theorem, according to the equation $\frac{\partial}{\partial t} g_{i j}=\frac{2}{3} \operatorname{rg}_{i j}-2 R_{i j}$.

As the initial metric is invariant under the S^{1} action, it remains so for all time and hence it induces a metric on M, a connection and a function f, all of which will evolve as the metric on P does.

Another long but straightforward calculation shows that the evolution equation for the metric on M is:

$$
\frac{\partial}{\partial t} g_{i j}=\left(\frac{2}{3} r-2 K+f^{2} g^{2}\right) g_{i j}+\frac{2}{f} f_{j i j}
$$

and for f is:

$$
\frac{\partial}{\partial t} f=\Delta f+\left(\frac{1}{3} r-\frac{1}{2} f^{2} g^{2}\right) f
$$

where $r=\int_{M} f\left(2 K-\frac{1}{2} f^{2} g^{2}-\frac{2}{f} \Delta f\right) d \mu_{M} / \int_{M} f d \mu_{M}$.
The evolution equation for g is more difficult to calculate, however the scalar curvature R of P is S^{1} invariant and $R=\pi^{*}\left(2 K-\frac{1}{2} f^{2} g^{2}-\frac{2}{f} \Delta f\right)$, so $f^{2} g^{2}=4 R-2 \widetilde{R}-\frac{4}{f} \Delta f$ (where \tilde{R} is the function on M for which $R=\pi(\tilde{R})$).

Hamilton [Ha] has already calculated the evolution equation for R as: $\frac{\partial}{\partial t} R=\Delta R-\frac{2}{3} r R+2 S$, where $S=g^{i k} g^{j} I_{R_{i j}} R_{k l}$.

From previous calculations of the Ricci curvature, we have $\tilde{S}=\frac{1}{4}\left(f^{2} g^{2}-\frac{2}{f} \Delta f\right)^{2}+\frac{1}{2}\left(f_{;} g_{2}+3 f_{;} 2\right)^{2}+\frac{1}{2}\left(f_{; 1}+3 f_{; 1} g\right)^{2}$ $+\frac{1}{4}\left(2 K-f^{2} g^{2}-\frac{2}{f} f ; 11\right)^{2}+\frac{1}{2}\left(\frac{2}{f} f_{; 12}\right)^{2}+\frac{1}{4}\left(2 K-f^{2} g^{2}-\frac{2}{f} f ; 22\right)^{2}$ which may be written as a function of \widetilde{R}, K and f although it is unpleasant.

From this we may derive the evolution equation for \tilde{R} as $\frac{\partial}{\partial t} \tilde{R}=\Delta \tilde{R}+\frac{1}{f}\langle\nabla f, \nabla \tilde{R}\rangle-\frac{2}{3} r \tilde{R}+2 \tilde{S}$, where the extra term is because the Laplacian is now taken in M.

Thus we have the following:

Theorem Let M be a compact, oriented surface of positive Gaussian curvature. The system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial t} g_{i j}=\left(\frac{2}{3} r+2 R-2 \tilde{R}-\frac{4}{f} \Delta f\right) g_{i j}+\frac{2}{f} f_{j i j} \\
& \frac{\partial}{\partial t} f=3 \Delta f+\left(\frac{1}{3} r-2 K+\widetilde{R}\right) f
\end{aligned}
$$

$\frac{\partial}{\partial t} \tilde{R}=\Delta \tilde{R}+\frac{1}{f}\langle\nabla f, \nabla \tilde{R}\rangle-\frac{2}{3} r \tilde{R}+2 \tilde{S}$
where \widetilde{S} is a function of \tilde{R}, K and $f, r=\int_{M} f \tilde{R} d \mu_{M} / \int_{M} f \mu_{M}$ and initially $g_{i j}$ is the metric, f is the constant function chosen before and $\tilde{R}=2 K-\frac{1}{2} f^{2} g^{2}$ with g the constant function chosen before, has a unique solution for all t and $g_{i j}$ converges as $t \rightarrow \infty$ to a metric of constant positive curvature on M while f and \tilde{R} each converge to constant functions.

It is possible to extend this theorem to allow the Gaussian curvature of M to have isolated zeros, the only added complication being that we can no longer choose f to be constant.

References

[Ha] R.S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Differential Geom。 17 (1982), 255-306.
[Hu] G. Huisken, Ricci Deformation of the Metric on a Riemannian Manifold, J. Differential Geom. 21 (1985), 47-62.
[K] S. Kobayashi, Topology of Positively Pinched Kaehler Manifolds, Tôhoku Math. J. 15 (1963), 121-139.

