DEFORMING RIEMANNIAN METRICS ON THE 2-SPHERE

P.R.A. Leviton and J.H. Rubinstein

In 1982, Hamilton [Ha] proved the following:

<u>Theorem</u> Let X be a compact 3-dimensional Riemannian manifold of positive Ricci curvature. The evolution equation $\frac{\partial}{\partial t} g_{ij} = \frac{2}{3} rg_{ij} - 2R_{ij}$, where $r = \int Rd\mu_x / \int d\mu_x$, has a unique solution for all t and it converges as $x \to \infty$ to a metric of constant positive curvature. Furthermore, any isometries of X are preserved as the metric evolves.

The aim of this paper is to prove a 2-dimensional version of this theorem. We have also obtained analogous results for Kahler and Hermitian manifolds by applying the same method with Huisken's higher dimensional version of Hamilton's theorem [Hu].

We start with a compact, oriented Riemannian surface of positive Gaussian curvature (already this is enough to show that M is diffeomorphic to S^2 by the Gauss-Bonnet theorem and the classification of compact surfaces). We then show that there is a principal S^1 bundle over M with a metric of positive Ricci curvature such that the projection map is a Riemannian submersion. We allow the metric on this bundle to evolve to a metric of constant curvature; the metric on M then evolves to a metric of constant curvature also. Let P be a principal S¹ bundle over M and let π be the projection map. Let ω be the connection form and Ω the curvature form of a connection in the bundle P. Ω is a horizontal, invariant 2-form (because S¹ is abelian) so $\Omega = \pi^*(\gamma)$ for some 2-form $\gamma = gd\mu_M$ on M where $d\mu_M$ is the volume form on M and g is a smooth function on M.

Let f be a smooth positive function on M. As in [K], define an invariant metric on P via $\langle u, v \rangle_p = \langle \pi_* u, \pi_* v \rangle_M + \pi^* (f^2) \omega(u) \omega(v)$. Note that any invariant metric on P may be constructed in this way; in fact we can recover the connection by defining the horizontal space to be the orthogonal complement of the fundamental vector field V, the metric on M via $\langle u, v \rangle_M = \langle u^*, v^* \rangle_p$ where u^* and v^* are the horizontal lifts, with respect to the connection just defined, of u and v respectively and f via $f^2 = \langle V, V \rangle_p$.

Let $p \in P$, $m = \pi(p)$ and let X_1 , X_2 be an orthonormal basis for $T_m(M)$. Let Y_1 and Y_2 be the horizontal lifts at p of X_1 and X_2 respectively and let $Y_0 = \frac{1}{f} V$, so that Y_0 , Y_1 , Y_2 is an orthonormal basis for $T_p(P)$.

A straightforward but lengthy calculation shows that the Ricci curvature of P with respect to the basis Y_0 , Y_1 , Y_2 is given by:

 $\frac{1}{2} \pi^{*} \begin{bmatrix} f^{2}g^{2} - \frac{2}{f} \Delta f & fg_{;2} + 3f_{;2}g & -fg_{;1} - 3f_{;1}g \\ fg_{;2} + 3f_{;2}g & 2K - f^{2}g^{2} - \frac{2}{f}f_{;11} & -\frac{2}{f}f_{;12} \\ -fg_{;1} - 3f_{;1}g & -\frac{2}{f}f_{;21} & 2K - f^{2}g^{2} - \frac{2}{f}f_{;22} \end{bmatrix}$

where ; denotes covariant differentiation in M with respect to the basis $X_1^{}$, $X_2^{}$ and K denotes the Gaussian curvature of M.

124

For any harmonic 2-form γ on M which represents an element of $\mathrm{H}^2(\mathrm{M}; \mathbf{Z})$, there exists a principal S¹ bundle over M and a connection in this bundle such that the curvature form is $\pi^*(\gamma)$ (see [K], proposition 9). Thus there exists a principal S¹ bundle P over M with g a positive constant function chosen so that $\gamma = \mathrm{gd}\mu_{\mathrm{M}} \in \mathrm{H}^2(\mathrm{M}; \mathbf{Z})$.

Let δ be a lower bound for the Gaussian curvature, so $0 < \delta < K$. Choose f to be a constant function such that $0 < f < \frac{1}{g} \sqrt{2\delta}$, so that $0 < f^2g^2 < 2\delta < 2K$. With this choice the Ricci curvature of P with respect to Y₀, Y₁, Y₂ is given by:

$$\frac{1}{2}\pi^{*}\begin{bmatrix} f^{2}g^{2} & 0 & 0\\ 0 & 2K - f^{2}g^{2} & 0\\ 0 & 0 & 2K - f^{2}g^{2} \end{bmatrix}$$

which is obviously positive definite.

We now let the metric on P evolve, as in Hamilton's theorem, according to the equation $\frac{\partial}{\partial t} g_{ij} = \frac{2}{3} rg_{ij} - 2R_{ij}$.

As the initial metric is invariant under the S¹ action, it remains so for all time and hence it induces a metric on M, a connection and a function f, all of which will evolve as the metric on P does.

Another long but straightforward calculation shows that the evolution equation for the metric on M is:

$$\frac{\partial}{\partial t} g_{ij} = \left(\frac{2}{3} r - 2K + f^2 g^2\right) g_{ij} + \frac{2}{f} f_{;ij}$$

and for f is:

$$\frac{\partial}{\partial t} f = \Delta f + \left(\frac{1}{3}r - \frac{1}{2}f^2g^2\right)f$$

where $r = \int_{M} f \left(2K - \frac{1}{2} f^2 g^2 - \frac{2}{f} \Delta f \right) d\mu_M / \int_{M} f d\mu_M$.

The evolution equation for g is more difficult to calculate, however the scalar curvature R of P is S¹ invariant and R = $\pi^*(2K - \frac{1}{2}f^2g^2 - \frac{2}{f}\Delta f)$, so $f^2g^2 = 4K - 2\widetilde{R} - \frac{4}{f}\Delta f$ (where \widetilde{R} is the function on M for which R = $\pi^*(\widetilde{R})$).

Hamilton [Ha] has already calculated the evolution equation for R as: $\frac{\partial}{\partial t} R = \Delta R - \frac{2}{3} rR + 2S$, where $S = g^{ik}g^{jl}R_{ij}R_{kl}$.

From previous calculations of the Ricci curvature, we have $\widetilde{S} = \frac{1}{4} \left(f^2 g^2 - \frac{2}{f} \Delta f \right)^2 + \frac{1}{2} \left(fg_{;2} + 3f_{;2}g \right)^2 + \frac{1}{2} \left(fg_{;1} + 3f_{;1}g \right)^2$ $+ \frac{1}{4} \left(2K - f^2 g^2 - \frac{2}{f} f_{;11} \right)^2 + \frac{1}{2} \left(\frac{2}{f} f_{;12} \right)^2 + \frac{1}{4} \left(2K - f^2 g^2 - \frac{2}{f} f_{;22} \right)^2$

which may be written as a function of $\widetilde{R},\;K$ and f although it is unpleasant.

From this we may derive the evolution equation for \tilde{R} as $\frac{\partial}{\partial t} \tilde{R} = \Delta \tilde{R} + \frac{1}{f} \langle \nabla f, \nabla \tilde{R} \rangle - \frac{2}{3} r \tilde{R} + 2\tilde{S}$, where the extra term is because the Laplacian is now taken in M.

Thus we have the following:

<u>Theorem</u> Let M be a compact, oriented surface of positive Gaussian curvature. The system of equations:

$$\frac{\partial}{\partial t} g_{ij} = \left(\frac{2}{3}r + 2K - 2\widetilde{R} - \frac{4}{f}\Delta f\right)g_{ij} + \frac{2}{f}f_{;ij}$$
$$\frac{\partial}{\partial t} f = 3\Delta f + \left(\frac{1}{3}r - 2K + \widetilde{R}\right)f$$

$$\frac{\partial}{\partial t} \widetilde{R} = \Delta \widetilde{R} + \frac{1}{f} \langle \nabla f, \nabla \widetilde{R} \rangle - \frac{2}{3} r\widetilde{R} + 2\widetilde{S}$$

where \tilde{S} is a function of \tilde{R} , K and f, $r = \int_{M} f\tilde{R} d\mu_M / \int_{M} f d\mu_M$ and initially g_{ij} is the metric, f is the constant function chosen before and $\tilde{R} = 2K - \frac{1}{2} f^2 g^2$ with g the constant function chosen before, has a unique solution for all t and g_{ij} converges as $t \neq \infty$ to a metric of constant positive curvature on M while f and \tilde{R} each converge to constant functions.

It is possible to extend this theorem to allow the Gaussian curvature of M to have isolated zeros, the only added complication being that we can no longer choose f to be constant.

References

- [Ha] R.S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Differential Geom. 17 (1982), 255-306.
- [Hu] G. Huisken, Ricci Deformation of the Metric on a Riemannian Manifold,
 J. Differential Geom. 21 (1985), 47-62.
- [K] S. Kobayashi, Topology of Positively Pinched Kaehler Manifolds, Tohoku Math. J. 15 (1963), 121-139.

Department of Mathematics University of Melbourne PARKVILLE VIC 3052 127