
111 

BOUNDARY REGULARITY FOR SOLUTIONS . 

OF QUASI-LINEAR ELLIPTIC EQUATIONS 

Chi-ping Lau 

1. INTRODUCTION 

We consider the boundary regularity of a classical solution 

u{x) E c0 (Q) n c2 (Q) to the Dirichlet problem of a class of quasi-linear 

elliptic equations: 

(1.1) Q(u) _ a, . (x,u,Du)D, .u 
l.J l.J 

0 in n , 

u on ()Q , 

where n is a bounded c2 domain in IRn , n :::: 2 and cp E c0 (3Q) has 

some modulus of continuity S . Here we use the usual summation conven-

tion for repeated indices. 

We refer to 
2 a 

[GT], [JS] for the case when <p E C ' <3m , [GG], [G], 

[Li 1] for cp E c1 'a(()Q) , [Li 3] for cp having ocp Dini continuous and 

[Li 2], [Sl] for cp E c0 ' 1 (3m·. 

We shall mainly discuss how the order of non-uniformity .(h) and the 

geometry (convexity) of n affect the regularity of a solution of (1.1) 

near the boundary. As was remarked in [B], when 0 ~ h < 1 , the operator 

Q behaves very similarly to the Laplace operator (where h 0) ; when 

1 ~ h ~ 2 , some convexity (or some generalized convexity) condition has 

to be imposed on Q • A typical representative of the latter class is the 

minimal surface operator (where h = 2 ) • Since thi9 is discussed in 
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G. Williams' article in these proceedings we shall concentrate on 

0 :S h < 2 • For simplicity we shall not state the results in their full 

generality and refer the interested reader to the articles listed in the 

references. 

2. NOTATIONS AND DEFINITIONS 

and 

(2 .1) 

(2 .2) 

(2. 3) 

(2.4) 

(2. 5) 

(2. 6) 

(2. 7) 

(2 .8) 

(2.9) 

We shall always assume n to be a bounded c2 domain in Iff , n ?.: 2 

1 - ,,.n 
a .. (x,z,p) E C (Q x IR x IK ) 
~] 

Let 

0 , f3 '(t) > 0 in (0 , 00 ) , 

13"{t) :S 0 in (O,oo) , 

A(x,z,p) , A(x,z,p) the minimum, maximum eigenvalues of 

[a .. (x,z,p)] , 
~J 

E(x,z,p) =a .. (x,z,p)p.p. , 
~J ~ J 

* E (x,z,p) 

T(x,z,p) 
n 
L aii (x,z,p) 

i=l 

x E n} , 

[u]' = inf{H : ju(x) - u(y) I ::: Hlx- yJa a;n 

for all X E n , y E an} 

for 0 < a :: l , 

[u] = inf{H : lu(x) - u(y) I :S Hjx - yJa 
ad"l 

for all x, y E n} 

for 0 < a ::: 1 , 

Ha(Q) =the set of all functions u on Q for which 

JuJ 01 n + [u]a;n is finite. 
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(2.10) H (on) can be defined in the standard way by covering on 
(l 

with open balls and straightening the boundary. 

DEFINITION 1 

If A(x,z,p) = o<IPih> 
A(x,z,p) as IP I + 00 uniformly on (x,z) E n X [-M,M] 

for each M > 0 , then h is called the order of non-unifo~ty of the 

operator Q . 

REMARK 1 

12-h 
If the order of non-uniformity is h , then E(x,z,p) ::::clp "A(x,z,p) 

for some C > 0 as fpl + oo • We shall always write k = 2 - h • 

3. STATEMENTS OF RESULTS 

CASE 1: GENERAL DOMAIN , 0 :::; h < 1 

REMARK 2 

It is reasonable to consider only 0 ::::: h < 1 because for general 

domains , 1 ::::= h ::::= 2 , a solution may not even exist. See e.g. [La 2]. 

THEOREM 1 

(3.1) 

1i!here 

Let <P E Ha (on) , a E (O,ll a:nd o ::::: h < 1 • Then 

[u]' < oo 
ay 

2-h 
y = 2-a.h • 
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PROOF. Theorem 3.1 of [Li 2]. 

THEOREM 2 

Let 0 < h < 1 • Suppose for some neighbourhood u of xo E an I 

(3.2) <p(x) - <p(xo) 5 S<lx- xol> for• aU X E u nan . 

Then ther•e exists a constant IC depending on <p 1 n1 h such that 

1 

(3.3) u(x) - <p(x0 ) ::: cS<clx- x0 1l+h) for• aU x En. 

1 If h = 0 1 the exponent in (3.3) can be replaced by any 
l+h 

e 1 0 < e < 1 1 With C depending On e aS Well. 

CASE 2: CONVEX DOMAINS 1 0 ::; h < 2 

THEOREM 3 

Let n be convex, <p E Hct (an) 1 a E (0 1 1) 

Then 

(3.4) 

where 

PROOF. 

2-h 

[u]' < oo 
ay 

y = 2-cth • 

Theorem 3.4 of [Li 2]. 

Suppose 0 ::: h < 2 . 
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THEORE!Vi 4 

Let n be convex, 1 s h < 2 . Suppose for some neighbourhood u of 

(3.5) 

Then there is a constant c depending only on ~~ n and h such that 

(3. 6) 

2-h 

S Cp(Cix- x I 2 ) 
0 

CASE 3: STRICTLY CONVEX DOMAINS , 0 S h ~ 2 

DEFINITION 2 

Q is said to satisfy an enclosing sphere condition at a point 

if there exists a ball B = B (y) ~ Q with 
R -

'I'he 

domain n is said to be R-uniformly convex if it satisfies an enclosing 

sphere condition at each boundary point with a ball of fixed radius R > 0 . 

THEOREM 5 

Suppose there is a neighbourhood u of x 0 such that at each point 

y E U n an , there is an enclosing ball of fixed radius 

If 0 s h s 2 and 

(3. 7) 

R>O,B ~unn R-

then there is a constant c depending on ~ , Q such that 
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(3.8) 

COROLLARY 6 ([Li 2]) 

Let Q be R-uniformly convex for some R > 0 and o ~ h ~ 2 . 

If ~ E H~(ClQ) , ~ E (0,1] , then [u]~ < 

2 

4. SOME PROOFS 

We shall indicate how to prove theorems 2, 4 and 5. For convenience 

we may assume that x0 o , ~(x0 ) = o and the (x1 , ... ,xn_1 l-plane is 

tangent to ()Q at Let d(x) be the distance of X E Q from 

Since ()Q is assumed to be c2 , d(x) is in some neighbourhood r 

of an See [GT] Appendix. 

We take 

(4.1) w = [d(x) 2 + 
l.:J 

jx' !2J where x' (xl, · · · ,xn-1) ' 
l 

(4. 2) N { (x' E !Rn Jx'l < 0 and 0 < d(x) < 3_(08 
J 

(4. 3) 
e 

v(sl = KS<s l for s ~ o , for some o < e < 1 , 

(4. 4) f (x) 

Hence 

(4. 5) w(x) 

1 

Jd(xl + 2w8 for X E N 

v(f(x)) 

1 

KS ([Jd(xl + 2w8J8 J 

1 

- we>} 

o > 0 will be chosen to be small while J, K big. On ()Q , d(x) _ 0 , 

we have 
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(4.6) w(x) KSC26 jx'l>:::: KS<Ixl>:::: <p(x) for all lx'l<o, o small. 

Choose K > 0 sufficiently large so that 

(4.7) x E n} . 

Then u ~ w on aN . By the comparison principle, we only need to show 

(4.8) Q(w) - a .. (x,u(x) 
~J 

Dw)D •• w ~ 0 
~J 

in N 

to conclude that u ~ w in N and hence our theorems. We use Q 

instead of Q to avoid the direct dependence on the w variable so that 

the usual comparison principle can be applied. See [GT] p. 207. It is 

easy to compute that 

(4.9) 
v 11 (f) 

Q(w) = ---2- E (x,u(x) , Dw) + v' (f) a .. (x,u(x) , Dw)D .• f 
v' (f) ~J ~J 

v 11 (f) 
lowlk + v' (f) a .. D .. f (using remark 1) ~ ---c A 

v' (f) 2 1 ~J ~J 

1 

v' (f) A { v"(f) k a .. D .. d(x) e-- 2} 
~ C1J + J 0 

~) ~) + C(n,6)W 
v' (f) 3-k A 

where C(n,6) =a constant depending on n I e . Recall k 2 - h • We 

first note that 

(4.10) a .. D .• d(x) ~ a .. D .. d(y) . 
~) ~) ~) ~) 

where y = y(x) =the point on 3Q nearest to X • In fact, in terms of 

a principal coordinate system at y = y(x) , we have 

(4.ll) 
2 . [ -Kl -t<n-1 

[D d(x)] = d~ag 1-Kld(x) ' ••• ' 1 d( ) 
-Kn-1 X 

, o] 
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where K. ·' s are principal curvatures of ()!,1 at y . (See [ GT] Appendix 
~ 

Lemma 2.) 

CASE 1: General domain, 0 < h < 1 (or 1 < k < 2) . In this case, all 

we can say about the second term is 

(4.12) 
Ja .. D .. d(x) 2 
---'~""]'--"'-~ ],___ :::: JC (n) I D d I 0 ; r 

In order to make Q(w) :::: 0 , we make use of the first term 

(4.13) 

Take 

(4.14) 

e 1 
3-k 

v(f)2-k 

cl (8-l)Jl21-kwl-k 

v (f) 2-k 

so that 

1 e-2 1-k 

By choosing J > 0 sufficiently large, we ensure that Q(w) :::: 0 in N . 

For the case h = 0 or k = 2 , take 8 E (0,1) . 

CASE 2: Convex Domain, 1 :::" h < 2 or 0 < k :::" 1. Since rl is convex, 

we have 

(4.15) a .. D .. d(x) ::::a .. D .. d(y) :::: 0 • 
~J lJ lJ ~J 
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Hence 

(4.16) Q(w) 

1 

{ v"(f) k & - 2} _ 5 v'(f) A · c1J + C(n,8)W _ 
VI (f) 3-k 

Now 1 - k ~ 0 and 

(4.17) 

v(f)2-k v(f)2-k 

We take 8 
k 
2 

so that 

(4.18) 
1 1 
s-<1-k) 8- 2 

and argue as before. 

REMARK 3 

If we consider the case 1 < k < 2 , then 1 - k < 0 m1d we are 

back to ( 4 • 13) • 

CASE 3: R-uniform1y convex domain, 0 5 h 5 2 or 0 S k 5 2 . Since Q 

is R-uniform1y convex, we have 

(4.19) 

Take 8 
1 
2 

a .. D .. d(x) a .. D .. d(y) 1 
~~~J~~~J----5 -=~~J-=~~J----5-

A A R 

so that: 
1 
8-2 0 and argue as before. 
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REMARK 4 

For the case of the minimal surface equation, we have 

(4.20) I 12 -1 
Q(u) = ~u- (1 + Du ) D,uD.uD .. u 

~ J ~J 

and I 12 -1 
a .. (x, z, p) = a .. (p) = 15 . , - ( 1 + p ) p. p . 
~J ~J ~J ~ J 

The crucial curvature term is then 

(4. 21) I 12 -1 
a .. (Dw)D .. d(x) = (o .. - (1 + Dw ) D.wD.w)D .. d(x) 
~J ~J ~J ~ J ~J 

Since Df(x) ~ Dd(x) and 

term is ~d(x) . Since 

(4.22) M(xJ ::: M(yl 

Jod(x) I _ 1 , D.dD .. d(x) 
~ :LJ 

Kl (y) + •.• + Kn-1 (y) 

0 , the dominant 

(n-1) • the mean curvature of (lQ at y 

convexity of S"l is not exactly the most suitable geometric condition. 

In fact we have the following classical result: 

THEOREM ( [JS Jl 

The Dirichlet problem for the minimal surface equation is solvable 

with ~ avbitmry boundary function <p E c0 (Clrl) if and only if 3Q 

has non-negative mean curvature (wvt inward normal) everywhere. 
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REMARK 5 

Of course, geometrically the most interesting case is when k = 2 

which includes in particular the Euler-Lagrange equation of elliptic 

parametric integrals. When an is only assumed to have non-negative 

mean curvature, the boundary regularity question for the minimal surface 

equation has been thoroughly discussed in [W3]. But the general case is 

still open. 
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