BOUNDARY REGULARITY FOR SOLUTIONS OF QUASI-LINEAR ELLIPTIC EQUATIONS

Chi-ping Lau

1. INTRODUCTION

We consider the boundary regularity of a classical solution
$u(x) \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ to the Dirichlet problem of a class of quasi-linear elliptic equations:

$$
\begin{align*}
Q(u) & \equiv a_{i j}(x, u, D u) D_{i j} u=0 & & \text { in } \Omega, \tag{1.1}\\
u & =\varphi & & \text { on } \partial \Omega,
\end{align*}
$$

where Ω is a bounded C^{2} domain in $\mathbb{R}^{n}, n \geq 2$ and $\varphi \in C^{0}(\partial \Omega)$ has some modulus of continuity β. Here we use the usual summation convention for repeated indices.

We refer to $[G T],[J S]$ for the case when $\varphi \in C^{2, \alpha}(\partial \Omega),[G G],[G]$, [Li 1] for $\varphi \in C^{1, \alpha}(\partial \Omega)$, [Li 3] for φ having $D \varphi$ Dini continuous and [Li 2], [S1] for $\varphi \in C^{0,1}(\partial \Omega)$.

We shall mainly discuss how the order of non-uniformity (h) and the geometry (convexity) of Ω affect the regularity of a solution of (l.l) near the boundary. As was remarked in $[B]$, when $0 \leq h<1$, the operator Q behaves very similarly to the Laplace operator (where $h=0$) ; when $1 \leq h \leq 2$, some convexity (or some generalized convexity) condition has to be imposed on Ω. A typical representative of the latter class is the minimal surface operator (where $h=2$) . Since this is discussed in
G. Williams' article in these proceedings we shall concentrate on $0 \leq h<2$. For simplicity we shall not state the results in their full generality and refer the interested reader to the articles listed in the references.

2. NOTATIONS AND DEFINITIONS

We shall always assume Ω to be a bounded C^{2} domain in $\mathbb{R}^{n}, n \geq 2$ and $a_{i j}(x, z, p) \in C^{l}\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n}\right)$. Let
(2.1) $\quad \beta(t) \in C^{2}(0, \infty) \cap C^{0}[0, \infty)$ with $\beta(0)=0, \beta^{\prime}(t)>0$ in $(0, \infty)$. $\beta^{\prime \prime}(t) \leq 0$ in $(0, \infty)$,
(2.2) $\lambda(x, z, p), \Lambda(x, z, p)=$ the minimum, maximum eigenvalues of $\left[a_{i j}(x, z, p)\right] \quad$.
(2.3)

$$
E(x, z, p)=a_{i j}(x, z, p) p_{i} p_{j}
$$

(2.
(2.5) $T(x, z, p)=\sum_{i=1}^{n} a_{i i}(x, z, p)$,
(2.6) $|u|_{0 ; \Omega}=\sup \{|u(x)|: x \in \Omega\}$.
(2.7) $[u]_{\alpha ; \Omega}^{\prime}=\inf \left\{H:|u(x)-u(y)| \leq H|x-y|^{\alpha}\right.$ for all $x \in \Omega, y \in \partial \Omega\}$ for $0<\alpha \leq 1$.
(2.8) $\quad[u]_{\alpha_{i} \Omega}=\inf \left\{H:|u(x)-u(y)| \leq H|x-y|^{\alpha}\right.$ for all $x, y \in \Omega\}$ for $0<\alpha \leq 1$,
(2.9) $\quad{ }^{H_{\alpha}}(\Omega)=$ the set of all functions u on Ω for which
$|u|_{0 ; \Omega}+[u]_{\alpha i \Omega}$ is finite.
(2.10) $H_{\alpha}(\partial \Omega)$ can be defined in the standard way by covering $\partial \Omega$ with open balls and straightening the boundary.

DEFINITION 1

If $\frac{\Lambda(x, z, p)}{\lambda(x, z, p)}=0\left(|p|^{h}\right)$ as $|p| \rightarrow \infty$ uniformly on $(x, z) \in \bar{\Omega} \times[-M, M]$ for each $M>0$, then h is called the order of non-uniformity of the operator Q .

REMARK 1

If the order of non-uniformity is h, then $E(x, z, p) \geq c|p|^{2-h} \cdot \wedge(x, z, p)$ for some $C>0$ as $|p| \rightarrow \infty$. We shall always write $k=2-h$.

3. STATEMENTS OF RESULTS

CASE 1: GENERAL DOMAIN, $0 \leq h<1$

REMARK 2

It is reasonable to consider only $0 \leq h<1$ because for general domains , $1 \leq h \leq 2$, a solution may not even exist. See e.g. [La 2].

THEOREM 1

Let $\varphi \in H_{\alpha}(\partial \Omega), \alpha \in(0,1)$ and $0 \leq h<1$. Then
(3.1)
$[u]_{\alpha \gamma}^{p}<\infty$
where $\gamma=\frac{2-h}{2-\alpha h}$.

PROOF. Theorem 3.1 of [li 2].

THEOREM 2

Let $0<h<1$. Suppose for some neighbourhood u of $x_{0} \in \partial \Omega$,
(3.2)

$$
\varphi(x)-\varphi\left(x_{0}\right) \leq \beta\left(\left|x-x_{0}\right|\right) \text { for } \alpha Z L \in \cup \cap \partial \Omega .
$$

Then there exists a constant \mathbb{C} depending on $\varphi, \Omega, \mathrm{h}$ such that
(3.3) $u(x)-\varphi\left(x_{0}\right) \leq C B\left(c\left|x-x_{0}\right|^{\frac{1}{1+h}}\right.$ for all $x \in \Omega$.

If $\mathrm{h}=0$, the exponent $\frac{1}{1+\mathrm{h}}$ in (3.3) can be replaced by any $\theta, 0<\theta<1$, with C depending on θ as well.

CASE 2: CONVEX DOMAINS, $0 \leq \mathrm{h}<2$

THEOREM 3

Let Ω be convex, $\varphi \in H_{\alpha}(\partial \Omega), \alpha \in(0,1)$. Suppose $0 \leq h<2$.
Then

$$
\begin{equation*}
[u]_{\alpha \gamma}^{\prime}<\infty \tag{3.4}
\end{equation*}
$$

where $\gamma=\frac{2-\mathrm{h}}{2-\alpha \mathrm{h}}$.

PROOF. Theorem 3.4 of [Li 2].

THEOREM 4

Let Ω be convex, $I \leq h<2$. Suppose for some neighbourhood u of $x_{0} \in \partial \Omega$,

$$
\begin{equation*}
\varphi(x)-\varphi\left(x_{0}\right) \leq \beta\left(\left|x-x_{0}\right|\right) \quad \text { for all } x \in U \cap \partial \Omega . \tag{3.5}
\end{equation*}
$$

Then there is a constant C depending only on φ, Ω and h such that (3.6) $\quad u(x)-\varphi\left(x_{0}\right) \leq C B\left(C\left|x-x_{0}\right|^{\frac{2-h}{2}}\right)$.

CASE 3: STRICTLY CONVEX DOMAINS , $0 \leq h \leq 2$

DEFINITION 2

Ω is said to satisfy an enclosing sphere condition at a point $x_{0} \in \partial \Omega$ if there exists a ball $B=B_{R}(y) \supseteq \Omega$ with $x_{0} \in \partial B$. The domain Ω is said to be R-uniformly convex if it satisfies an enclosing sphere condition at each boundary point with a ball of fixed radius $R>0$.

THEOREM 5

Suppose there is a neighbourhood u of x_{0} such that at each point $\mathrm{y} \in \mathrm{U} \cap \partial \Omega$, there is an enclosing ball of fixed radius $R>0, B_{R} \supseteq U \cap \Omega$ with $\mathrm{y} \in \partial \mathrm{B}_{\mathrm{R}}$. If $0 \leq h \leq 2$ and
(3.7) $\varphi(x)-\varphi\left(x_{0}\right) \leq \beta\left(\left|x-x_{0}\right|\right)$ for all $x \in U \cap \partial \Omega$,
then there is a constant C depending on φ, Ω such that

$$
\begin{equation*}
u(x)-\varphi\left(x_{0}\right) \leq C \beta\left(C\left|x-x_{0}\right|^{\frac{1}{2}}\right) \tag{3.8}
\end{equation*}
$$

COROLLARY 6 ([Li 2])

Let Ω be R-uniformly convex for some $R>0$ and $0 \leq h \leq 2$.

$$
\text { If } \varphi \in H_{\alpha}(\partial \Omega), \alpha \in(0,1] \text {, then }[u]_{\frac{\alpha}{2}}^{\prime}<\infty
$$

4. SOME PROOFS

We shall indicate how to prove theorems 2, 4 and 5. For convenience we may assume that $x_{0}=0, \varphi\left(x_{0}\right)=0$ and the $\left(x_{1} \ldots, x_{n-1}\right)$-plane is tangent to $\partial \Omega$ at x_{0}. Let $d(x)$ be the distance of $x \in \Omega$ from $\partial \Omega$. Since $\partial \Omega$ is assumed to be $c^{2}, d(x)$ is c^{2} in some neighbourhood Γ of $\partial \Omega$. See [GT] Appendix.

We take
(4.1) $\quad W=\left[d(x)^{2}+\left|x^{p}\right|^{2}\right]^{\frac{1}{2}}$, where $x^{p}=\left(x_{1}, \ldots, x_{n-1}\right)$,
(4.2) $\quad N=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}:\left|x^{\prime}\right|<\delta \quad\right.$ and $\left.0<d(x)<\frac{2}{J}\left(\delta^{\frac{1}{\theta}}-w^{\frac{1}{\theta}}\right)\right\}$.
(4.3) $\quad \mathrm{v}(\mathrm{s})=\mathrm{K} \beta\left(\mathrm{s}^{\theta}\right)$ for $\mathrm{s} \geq 0$, for some $0<\theta<1$.
(4.4) $f(x)=J d(x)+2 w^{\frac{1}{\theta}}$ for $x \in \bar{N}$.

Hence
(4.5) $\quad w(x)=v(f(x))=K \beta\left(\left[J d(x)+2 w^{\frac{1}{\theta}} \theta\right)\right.$.
$\delta>0$ will be chosen to be small while J, K big. On $\partial \Omega, d(x) \equiv 0$, we have

$$
\begin{equation*}
w(x)=K \beta\left(2^{\theta}\left|x^{\prime}\right|\right) \geq K \beta(|x|) \geq \varphi(x) \text { for all }\left|x^{\prime}\right|<\delta, \delta \text { small. } \tag{4.6}
\end{equation*}
$$

Choose $K>0$ sufficiently large so that
(4.7) $K \beta\left(2^{\theta} \delta\right) \geq \sup \{|u(x)|: x \in \Omega\}$.

Then $u \leq w$ on ∂N. By the comparison principle, we only need to show

$$
\begin{equation*}
\bar{Q}(w) \equiv a_{i j}(x, u(x), D w) D_{i j} w \leq 0 \text { in } N \tag{4.8}
\end{equation*}
$$

to conclude that $u \leq w$ in N and hence our theorems. We use \bar{Q} instead of Q to avoid the direct dependence on the w variable so that the usual comparison principle can be applied. See [GT] p. 207. It is easy to compute that
(4.9) $\quad \bar{Q}(w)=\frac{v^{\prime \prime}(f)}{v^{\prime}(f)^{2}} E(x, u(x), D w)+v^{\prime}(f) a_{i j}(x, u(x), D w) D_{i j} f$

$$
\leq \frac{v^{\prime \prime}(f)}{v^{\prime}(f)^{2}} C_{1} \wedge|D w|^{k}+v^{\prime}(f) a_{i j} D_{i j} f^{f} \quad \text { (using remark 1) }
$$

$$
\leq v^{\prime}(f) \wedge\left\{\frac{v^{\prime \prime}(f)}{v^{\prime}(f)^{3-k}} C_{1} J^{k}+J \cdot \frac{a_{i j^{D} j^{\prime}} d(x)}{\wedge}+C(n, \theta) w^{\frac{1}{\theta}-2}\right\}
$$

where $C(n, \theta)=$ a constant depending on n, θ. Recall $k=2-h$. We first note that
(4.10)

$$
a_{i j} D_{i j} d(x) \leq a_{i j} D_{i j} d(y)
$$

where $y=y(x)=$ the point on $\partial \Omega$ nearest to x. In fact, in terms of a principal coordinate system at $y=y(x)$, we have

$$
\begin{equation*}
\left[D^{2} d(x)\right]=\operatorname{diag}\left[\frac{-K_{1}}{1-K_{1} d(x)}, \cdots, \frac{-K_{n-1}}{1-K_{n-1} d(x)}, 0\right] \tag{4.11}
\end{equation*}
$$

where k_{i} 's are principal curvatures of $\partial \Omega$ at y. (See [GT] Appendix Lemma 2.)

CASE 1: General domain, $0<\mathrm{h}<1$ (or $1<\mathrm{k}<2$). In this case, all we can say about the second term is
(4.12)

$$
\frac{J a_{i j} D_{i j} d(x)}{\Lambda} \leq J C(n)\left|D^{2} d\right|_{0 ; \Gamma}
$$

In order to make $\bar{Q}(w) \leq 0$, we make use of the first term

$$
\begin{align*}
& \frac{C_{1} v^{\prime \prime}(f) J^{k}}{v^{\prime}(f)^{3-k}} \leq \frac{C_{1} J^{k}(\theta-1) f^{1-k}}{v(f)^{2-k}} \tag{4.13}\\
\leq & \frac{C_{1} J^{k}(\theta-1)(2 J W)^{I-k}}{v(f)^{2-k}} \\
= & \frac{C_{1}(\theta-1) J^{1} 2^{1-k_{W} I-k}}{v(f)^{2-k}}
\end{align*}
$$

Take $\theta=\frac{1}{3-k}$ so that

$$
\begin{equation*}
\frac{1}{\theta}-2=1-\mathrm{k} \tag{4.14}
\end{equation*}
$$

By choosing $J>0$ sufficiently large, we ensure that $\bar{Q}(w) \leq 0$ in N. For the case $h=0$ or $k=2$, take $\theta \in(0,1)$.

CASE 2: Convex Domain, $1 \leq \mathrm{h}<2$ or $0<\mathrm{k} \leq 1$. Since Ω is convex, we have
(4.15)

$$
a_{i j} D_{i j} d(x) \leq a_{i j} D_{i j} d(y) \leq 0
$$

Hence
(4.16)

$$
\bar{Q}(w) \leq v^{\prime}(f) \wedge\left\{\frac{v^{\prime \prime}(f)}{v^{\prime}(f)^{3-k}} C_{1} J^{k}+C(n, \theta) w^{\frac{1}{\theta}-2}\right\}
$$

Now $1-k \geq 0$ and
(4.17) $\quad \frac{C_{1} V^{\prime \prime}(f) J^{k}}{V^{\prime}(f)^{3-k}} \leq \frac{C_{1}(\theta-1) J_{f}^{k} I-k}{V(f)^{2-k}}$

$$
\frac{C_{1}(\theta-1) J^{k}\left(2 W^{\frac{1}{\theta}}\right)^{1-k}}{v(f)^{2-k}}=\frac{C_{1}(\theta-1) 2^{1-k} J^{k^{\frac{1}{\theta}}(1-k)}}{v(f)^{2-k}} .
$$

We take $\theta=\frac{k}{2}$ so that

$$
\begin{equation*}
\frac{1}{\theta}(1-k)=\frac{1}{\theta}-2 \tag{4.18}
\end{equation*}
$$

and argue as before.

REMARK 3

If we consider the case $1<k<2$, then $1-k<0$ and we are back to (4.13).

CASE 3: R-uniformly convex domain, $0 \leq h \leq 2$ or $0 \leq k \leq 2$. Since Ω is R-uniformly convex, we have
(4.19)

$$
\frac{a_{i j} D_{i j} d(x)}{\Lambda} \leq \frac{a_{i j} D_{i j} d(y)}{\Lambda} \leq \frac{-1}{R}
$$

Take $\theta=\frac{1}{2}$ so that $\frac{1}{\theta}-2=0$ and argue as before.
Q.E.D.

REMARK 4

For the case of the minimal surface equation, we have
(4.20)

$$
\begin{aligned}
& Q(u)=\Delta u-\left(1+|D u|^{2}\right)^{-1} D_{i} u D_{j} u D_{i j} u \\
& a_{i j}(x, z, p)=a_{i j}(p)=\delta_{i j}-\left(1+|p|^{2}\right)^{-1} p_{i} p_{j}
\end{aligned}
$$

and

The crucial curvature term is then

$$
\begin{align*}
& a_{i j}(D w) D_{i j} d(x)=\left(\delta_{i j}-\left(1+|D w|^{2}\right)^{-1} D_{D_{i}} w D_{j} w\right) D_{i j} d(x) \tag{4.21}\\
& =\Delta d(x)-\left(1+|D w|^{2}\right)^{-1} v^{\prime}(f)^{2} D_{i} f D_{j} f D_{i j} d(x)
\end{align*}
$$

Since $\operatorname{Df}(x) \approx \operatorname{Dd}(x)$ and $|\operatorname{Dd}(x)| \equiv 1, D_{i} D_{i j} d(x)=0$, the dominant term is $\Delta d(x)$. Since
(4.22)

$$
\begin{aligned}
\Delta \mathrm{d}(\mathrm{x}) \leq \Delta \mathrm{d}(\mathrm{y}) & =\kappa_{1}(\mathrm{y})+\ldots+k_{\mathrm{n}-1}(\mathrm{y}) \\
& =(\mathrm{n}-1) \cdot \text { the mean curvature of } \partial \Omega \text { at } y
\end{aligned}
$$

convexity of Ω is not exactly the most suitable geometric condition. In fact we have the following classical result:

THEOREM ([Js])

The Dirichlet problem for the minimal surface equation is solvable with every arbitrary boundary function $\varphi \in C^{0}(\partial \Omega)$ if and only if $\partial \Omega$ has non-negative mean curvature (wrt inward normal) everywhere.

REMARK 5

Of course, geometrically the most interesting case is when $k=2$ which includes in particular the Euler-Lagrange equation of elliptic parametric integrals. When $\partial \Omega$ is only assumed to have non-negative mean curvature, the boundary regularity question for the minimal surface equation has been thoroughly discussed in [W3]. But the general case is still open.

REFERENCES

[B] S. Bernstein: Sur les équations du calcul des variations. Ann. Sci. Ec. Norm. Sup. (3), 29, 1912, pp. 431-485.
[GG] M. Giaquinta, E. Giusti: Global $C^{1, \alpha}$ regularity for second order quasi-Iinear elliptic equations in divergence form. J. reine angew. Math. 351, 1984, pp. 55-65.
[GT] D. Gilbarg, N. Trudinger: Elliptic partial differential equations of second order. Springer-Verlag, Heidelberg-New York, 1977, First Edition.
[G] E. Giusti: Boundary behaviour of non-parametric minimal surfaces. Indiana Univ. Math. J. 22, 1972, pp. 435-444.
[JS] H. Jenkins, J. Serrin: The Dirichlet problem for the minimal surface equation in higher dimensions. J. reine angew. Math. 229, 1968. pp. 170-187.
[Ial] C.P. Lau: Boundary regularity for quasi-linear elliptic equations with continuous boundary data, to appear in Comm. P.D.E.
[La.2] C.P. Lau: Quasi-Iinear elliptic equations with small boundary data. To appear in Manuscripta Math.
[Lil] G.M. Lieberman: The quasi-Iinear Dirichlet problem with decreased regularity at the boundary. Comm. P.D.E. 6, 1981, pp. 437-497.
[Li2] G.M. Lieberman: The dirichlet problem for quasi-linear elliptic equations with Holder continuous boundary values. Arch. Rat. Mech. Anal. 79, 1982, pp. 305-323.
[Li3] G.M. Lieberman: The Dirichlet problem for quasi-linear elliptic equations with continuously differentiable boundary data. Iowa State Univ. Report, Preprint.
[Sl] L. Simon: Global estimates of Hoolder continuity for a class of divergence-form elliptic equations. Arch. Rat. Mech. Anal. 56, 1974, pp. 253-272.
[s2] L. Simon: Boundary behaviour of solutions of the non-parometric least area problem. Bull. Austral. Math. Soc. 26, 1982, pp. 17-27.
[wl] G. Williams: The dirichlet problem for the minimal surface equation with Lipschitz continuous boundary data. J. reine angew. Math. 354, 1984, pp. 123-140.
[W2] G. Williams: Global regularity for solution of the minimal surface equation with continuous boundary values. Australian National Univ. Centre of Math. Analysis report CMA-RO1-84.
[W3] G. Williams: The best modulus of continuity of solutions of the minimal surface equation. Univ. of Wollongong research report preprint no. 10/85.

Department of Mathematics
Research School of Physical Sciences
Australian National University
GPO Box 4
CANBERRA ACT 2601
AUSTRALIA

